
It’s too late now!

Jeremy Gray

What you might have done starting out a long time ago.
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It’s well known (in 1820) that

An algebraic curve is given by a polynomial equation in two variables.

Conic sections are given by second-degree equations.

There are some things Euler and Cramer discovered about cubic curves
(degree 3) and quartic curves (degree 4).
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For example, the folium of Descartes

Figure :
x3 + y3 = 3xy .

Notice the singular point at the origin and the infinite branch or branches.
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And there’s a new idea from the 1820s: duality

Duality associates: to each point of the plane a line, and

to each line in the plane a point

in such a way that

collinear points are associated to concurrent lines, and

concurrent lines are associated to collinear points
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The geometry is classical

Fix a conic.

Figure : From an external point draw the two tangents to the conic. Draw the
line that joins the points of tangency. Associate this line to that point.
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Prove the collinear – concurrence result (La Hire’s theorem)

Figure : Let the external point move along a straight line, x = 2. The
corresponding lines rotate about a point, ( 1

2 , 0).

This picture also tells you how to deal with points inside the conic.
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Algebraically

To the point (a, b) other than the origin associate the line
ax + by + 1 = 0.

OK, I’ve cheated – but it’s still a duality, it’s the conic that’s gone
weird.

The test for collinearity of three points is precisely the test for
concurrence of three lines,

Theorem: the dual of the dual of a point P is P,

the dual of the dual of a line ` is `.
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True confessions: points, and a line, at infinity.

Recall that the conic sections are sections of a cone, and that mapping
along the rays of the cone (the lines through the vertex) establishes a
1− 1 correspondence between one conic and another –

except for the infinitely distant point on the parabola –

and the infinitely distant points on the hyperbola – its infinite branches.
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The projective plane in the 1820s

It is the usual plane with a line at infinity – convince yourself of this by
drawing pictures.

Go to your National Gallery.

Dream of getting a job as a set designer in theatres (trompe l’oeil)

Or even creating backdrops for films (well, you can dream in the 1820s).
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An imaginary city
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Duality pictorially – but this will lead to problems

Fix a conic, Ω.

Pick a curve, C .

At each point P on C take the tangent tP to C at P.

Use the conic Ω to associate tP with a point P ′.

The dual curve to C is the set of points P ′.
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Equivalently

Fix a conic, Ω.

Pick a curve, C .

To each point P on C associate its dual line `P with respect to Ω

The dual curve to C is the curve enveloped by the lines `P .
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Curves and their tangents

Consider the curve C : f (x , y) = 0 of degree n.

Differentiating gives

fxdx + fydy = 0, so
dy

dx
= − fx

fy
.

Let (a, b) be a point on the curve, then the tangent at (a, b) has
equation

xfx(a, b) + yfy (a, b)− (afx(a, b) + bfy (a, b)) = 0.
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The constant term (afx(a, b) + bfy (a, b))

Consider only the terms of maximal degree in f (x , y). Say they are of
degree n, and that they define f (n)(x , y). So

f (a, b) = f (n)(a, b) + g(a, b)

where g is of degree less than n.

x
∂

∂x
f (n)(x , y) + y

∂

∂y
f (n)(x , y) = nf (n)(x , y),

so f (a, b) = 0⇒ f (n)(a, b) = −g(a, b), and

a
∂

∂x
f (n)(a, b) + b

∂

∂y
f (n)(a, b) = nf (n)(a, b) = −ng(a, b),

and the constant term is of degree n − 1 at most in a and b.
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Tangents from a point to a curve

Suppose (u, v) lies on the tangent to the curve C at (a, b).

Then

ufx(a, b) + vfy (a, b)− (afx(a, b) + bfy (a, b)) = 0.

Which lines through (u, v) are tangents to C at some point?
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Which lines through (u, v) are tangents to C at some point?

Consider

ufx(a, b) + vfy (a, b)− (afx(a, b) + bfy (a, b)) = 0

as an equation for fixed (u, v) and varying (a, b).

It is the equation of a curve C ′ in (a, b) coordinates (called a polar
curve to C ) and this curve meets C in the points where the line

ufx(a, b) + vfy (a, b)− (afx(a, b) + bfy (a, b)) = 0

is a tangent to C and passes through (u, v). The polar curve is of degree
n − 1 in a and b.
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Conclusion!

The curve C has degree n.

The polar curve C ′ has degree n − 1.

So they meet in n(n − 1) points, by Bezout’s theorem.

There are n(n− 1) (concurrent) tangents to a curve of degree n from a
point P not on the curve.

So, by duality, the dual curve to C is met in n(n − 1) points by a line
(the dual line to P).

So the dual curve has degree n(n − 1).

Jeremy Gray It’s too late now! June 2014 17 / 58



Disaster! The duality paradox

On the one hand the dual of the dual of a curve C is point for point
the curve C .

On the other hand the dual of C has degree n(n − 1), so the dual of
the dual of curve C is of degree

N = ([n(n − 1)] ([n(n − 1)]− 1) .

If n > 2 then N > n.

This is the research frontier.
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Obstacles

It is not easy to calculate the equation of the dual of a curve.

Figure : It seems impossible to draw 6 tangents to a cubic curve. Where are the
‘missing’ tangents to y2 = x(x2 − 1)?
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Julius Plücker (1801–1868)
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Julius Plücker’s question and answer

What is a tangent to a curve?

A line that meets the curve in two coincident points.

What if the curve has a double point?
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Example: the folium of Descartes

C : x3 + y3 − 3xy = 0.

fx = 3(x2 − y); fy = 3y2 − x .

ufx(a, b) + vfy (a, b)− (afx(a, b) + bfy (a, b)) = 0

u3(a2 − b) + v3(b2 − a)−
(
a3(a2 − b) + b3(b2 − a)

)
= 0,

(a, b) is on the curve, so a3 + b3 = 3ab and so

u(a2 − b) + v(b2 − a)− (3ab − 2ab) = 0,

u(a2 − b) + v(b2 − a)− ab = 0,

Notice that this polar curve is of degree 2 in a and b.
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The polar curve always passes through the double point

Figure : The polar curve with respect to (u, v) (switch now to (x , y) coordinates)
has equation

u(x2 − y) + v(y2 − y)− xy = 0,

and always passes through the origin. Here (u, v) = (2,−2).
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The double point gives rises to a false tangent

The line from (u, v) to the origin is not a tangent

The polar curve meets the folium in two points at the double point,
which must be discounted.

The degree of the dual curve is lowered by 2 for each double point on
the curve.
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Cusps points are a particular kind of double point

Figure : y2 = x3. All lines through the origin meet the cusp twice there, the
horizontal tangent meets it three times
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A polar curve to a cusp

Figure : The polar curve −3x2u + 2vy + y2 = 0 has a 3-fold point of intersection
with the origin with the cusp. Here (u, v) = (2,−5)
A cusp on the curve lowers the degree of its dual by 3.
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The dual of the cubic y 2 − x3 = 0

A point on this curve has coordinates (a, b) = (t2, t3).

The equation of the tangent at (t2, t3) to the curve is

x(−3a2) + y(2b)− (a(−3a2) + b(2b)) = 0,

−3a2x + 2by + b2 = 0.

−3t4x + 2t3y + t6 = 0.

−3t−2x + 2t−3y + 1 = 0.

The dual point to this has coordinates (−3t−2, 2t−3) so the dual curve is
(x/3)3 + (y/2)2 = 0, which is indeed of degree 3.

Notice that its cusp corresponds to the point at infinity on the original
curve (t =∞).
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Cusps and inflection points are dual

Consider the curves y = x3 and y2 = x3.

In each case, the line y = 0 meets the curve where x3 = 0, which has
the three-fold solution x = 0, and so a triple point of contact.

In the first case, in an inflection point; in the second case at a cusp
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Double points and bitangents are dual

Figure : The x-axis is bitangent to the w -shaped curve
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Cubic curves

The basic table

degree n n′ n′′ = n

double points d b d
cusps c j c

inflection points j c j
bitangents b d b

n′ = n(n − 1)− 2d − 3c .

n′′ = n′(n′ − 1)− 2b − 3j = n.
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Non-singular cubics

d = 0, c = 0. For any cubic, b = 0.

degree n = 3 n′ n′′ = n

double points 0 0 0
cusps 0 j 0

inflection points j 0 j
bitangents 0 0 0

In this case n′ = n(n − 1)− 2d − 3c = 3.2 = 0− 0 = 6.

n′′ = 6.5− 3j = 3, so j = 9.

A non-singular cubic has 9 inflection points.
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Cubics with a double point

d = 1. For any cubic, b = 0.

degree n = 3 n′ n′′ = n

double points 1 0 1
cusps c j 0

inflection points j c j
bitangents 0 1 0

In this case n′ = 6− 2d − 3, so c = 0 and n′ = 4

n′′ = 4.3− 3j = 4, so j = 3.

A cubic with a double point has 3 inflection points and no cusps.
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Cubics with a cusp

c = 1. For any cubic, b = 0.

degree n n′ n′′ = n

double points d 0 d
cusps 1 j 1

inflection points j 1 j
bitangents 0 1 0

In this case n′ = 6− 2d − 3, so d = 0 and n′ = 3

n′′ = 3.2− 3j = 3, so j = 1.

A cubic with a cusp has 1 inflection point and no double points.
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Inflection points

A non-singular curve of degree n is cut at its inflection points by a
curve of degree 3(n − 2)

(this new curve is called the Hessian of the original curve).

This suggests that j = 3n(n − 2).

However, if the curve has a double point the Hessian makes 6-fold
contact with the original curve at the double point, so

j = 3n(n − 2)− 6d .

Notice that these results confirm our analysis in the case of cubics.
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Quartic curves, n = 4 curves

The non-singular quartic, d = 0, c = 0

n = 4 so, j = 3.4.2 = 24.

degree n n′ n′′ = n

double points 0 b 0
cusps 0 24 0

inflection points 24 0 24
bitangents b 0 b

n′ = n(n − 1)− 2d − 3c = 4.3− 0− 0 = 12.

n′′ = 12.11− 2b − 3.24 = 132− 2b − 72, so b = 28.

The non-singular curve of degree 4 has 28 bitangents.
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Can all 28 bitangents to a quartic curve be real?

Figure : The curve composed of four beans has 28 real bitangents. (Plücker 1839)
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Plücker’s curve – the correct equation

Figure : (y2 − x2)(x − 1)(x − 3
2 )− 2(y2+x(x − 2))2
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Some bitangents

Figure : Each bean has its own bitangent, each of the 6 pairs has 4 bitangents
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Non-singular curves of degree n > 4

N = ([n(n − 1)] ([n(n − 1)]− 1) .

j = 3n(n − 2)− 6d = 3n(n − 2)− 0 = 3n(n − 2)

The duality paradox will be resolved if

N = [n(n − 1)] ([n(n − 1)]− 1)− 2b − 3j = n

n = [n(n − 1)] ([n(n − 1)]− 1)− 2b − 9n(n − 2)

or, as Plücker conjectured and Jacobi proved,

b =
1

2
n(n − 2)(n2 − 9).
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What’s left? The next round of research problems

Reducible curves: a conic and a line together do not behave like a
cubic, but are defined by a cubic equation.

Higher singularities.
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Bringing the algebra and the geometry into harmony – Bezout’s
theorem

A plane curve of degree k and another of degree m meet in mk points.

Problems:

A line parallel to the axis of a parabola meets the parabola only once –
solution: points at infinity.

Two circles only meet in two points – solution: complex points of
intersection.

A line tangent to a curve meets it (at least) twice there – solution:
count carefully.
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The familiar plane has a line at infinity

An ellipse does not meet the line at infinity;

A parabola touches the line at infinity;

A hyperbola crosses the line at infinity.
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The projective plane is not orientable

Figure : The asymptote is a tangent to the curve at infinity. The tangent cannot
be an inflectional tangent – a hyperbola has degree 2. But as the hyperbola heads
to infinity this asymptote is on its left, and when it comes back it is on the right.

Conclusion: the projective plane is not orientable.
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Non-orientable surfaces

Figure : Darboux (left) and Klein (right) exploring a non-orientable surface.
Non-orientability is not a local property – all finite parts of the projective plane
are orientable.
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Homogeneous coordinates – Hesse

Used earlier by Möbius and Plücker.

Write

x =
X

Z
, y =

Y

Z
,

f (x , y) = 0 as F (X ,Y ,Z ) = Z k .f

(
X

Z
,

Y

Z

)
= 0,

where k is the least power of Z that clears the expression of fractions.

F (X ,Y ,Z ) = 0 is the equation of a curve in projective space (even in
the modern sense of the term, for RP2 or CP2.)

The line Z = 0 is the line at infinity, but by a coordinate change any
line may be regarded as the line at infinity.
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Complex points of intersection

How can a real curve cross another in complex points?

Solution: think of the curve as a complex curve, a locus in C× C.

Riemann (1857): An algebraic curve is a branched covering of the
(Riemann) sphere, and conversely.

The surface defined by

w2 = (1− x2)(1− k2x2)

is a covering of the sphere branched over 4 points z = ±1, ± 1
k

so its genus χ̃ = 2× genus of sphere −4 = 0;

it is a torus.
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Cayley, 1878 – a curve can be thought of as a set of points in C× C

Figure :

I was under the impression that the theory was a known one; but I have
not found it anywhere set out in detail.
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Counting carefully, or, how bad is my singular point?

Consider the nonsingular cubic curve in space, parameterised by
(t2 − 1, t(t2 − 1), t).

It projects onto the (x , y) plane as the curve parameterised by
(t2 − 1, t(t2 − 1)),

which has equation y2 = x2(x + 1), a cubic with a double point at the
origin.

It projects onto the (y , z) plane as the curve y = z(z2 − 1) – a
non-singular cubic.

This suggests that one might see a singular cubic in the plane as a
projection of a non-singular curve in space.
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Cremona transformations – “going up and coming down”

The quadratic Cremona transformation (a birational map from P2 to
P2). Send [x , y , z ] to [1/x , 1/y , 1/z ] = [yz , zx , xy ]. Not defined at
[1, 0, 0], [0, 1, 0], [0, 0, 1]. Otherwise maps the line z = 0, [s, t, 0], to the
point [0, 0, st] = [0, 0, 1].

The transformation is of period 2.

It blows the lines x = 0, y = 0, z = 0 down to the opposite points, and
blows up those points to lines.
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The fate of a double point

Consider the line y = mx through [0, 0, 1], parameterized by [t,mt, s].

It is sent to [mts, st,mt2] = [ms, s,mt] or x = my , a line that meets
z = 0 at the point [0, 0,m].

So a curve with a double point and distinct tangents at the origin is
sent to a curve, and the branches that crossed at the double point meet
the line z = 0 at distinct points.

Generally, the degree of the image of a curve is affected by what
happens at the singular points of the transformation.
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Max Noether’s theorem (1870)

Figure : Every Cremona transformation of the projective plane is a product of
quadratic transformations.
A different and more rigorous proof is (Veronese 1885).
Then (Castelnuovo 1901).

The situation for P3 is unclear – see (Hilda Hudson 1927).
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What you might hope

Given a curve with a higher order point, to reduce them to lower order
points by repeated transformations, until they are no longer singular.

Given a curve with many singular points, to reduce them all at once!
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What you get

You can always resolve a singular point of whatever kind.

But the triangle you use may cross the curve, and so produce new
singular points.

All you can hope for is that the singularities you introduce are not as
bad as the ones you are eliminating.

Result: A singular curve can be reduced in this fashion to a curve with
finitely many double points and no other singular ones.
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Rudolf Friedrich Alfred Clebsch (1833–1872)

Figure : Cremona transformations, and 1–1 transformations of a curve with d
double points, c cusps, and no other singular points do not change the number
p = 1

2 (n − 1)(n − 2)− d − c . He called this number the genus of the curve, and
identified it with Riemann’s (much more) topological concept.
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The Riemann–Roch theorem

On a Riemann surface, there is a formula connecting the dimension of
the space of functions having poles at a certain number of points, with the
dimension of the space of 1-forms having zeros at the given points, the
genus of the curve, and the number of points.

Was it proved by Riemann (or Roch, who sorted out the contribution of
the 1-forms)?

Riemann gave a very convincing argument, but only for complex curves
(Riemann surfaces) having at most some double points.
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What was still to be done?

The resolution of singularities of plane algebraic curves.

The proof of the Riemann-Roch theorem for singular curves.

Leaving the plane for higher dimensions.
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Francis Sowerby Macaulay, Charlotte Angas Scott, Hilda Hudson

(Macaulay, Scott) A careful study of the resolution of singularities.

(Macaulay) The Riemann–Roch theorem for curves with arbitrary
singularities.

(Macaulay) Singularities of surfaces

(Hudson) Cremona transformations of space (CP3).
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Among the next generation

Figure : Francis Sowerby Macaulay, Charlotte Angas Scott, Hilda Hudson
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