A Kinematic Explanation for Gamma Ray Bursts

R.S.MacKay and C.P.Rourke University of Warwick

Wikipedia

Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely energetic explosions that have been observed in distant galaxies. They are the most luminous electro-

magnetic events known to occur in the universe. Bursts can last from ten milliseconds to several minutes, although a typical burst lasts 20– 40 seconds. The initial burst is usually followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, micro and radio). Most observed GRBs are believed to consist of a narrow beam of intense radiation released during a supernova event, as a rapidly rotating, high-mass star collapses to form a neutron star, quark star, or black hole. "Black hole kills star and blasts 3.8 billion light-year beam at Earth" (UW press release on work of A.Levan)

Light curves for some others

Our (controversial) proposal

- Just kinematics: our entry into the region illuminated by a continuous emitter
- No cataclysm required
- We demonstrate it in de Sitter space

De Sitter space

• The hyperboloid $-x_0^2 + \sum_{i=1}^n x_i^2 = \alpha^2$

in 5-dimensional Minkowski space

$$ds^{2} = -dx_{0}^{2} + \sum_{i=1}^{n} dx_{i}^{2}.$$

- Ric = Λg , $\Lambda = 3/\alpha^2$
- Picture from Moschella
- Let's scale metric so $\alpha=1$
- The time-like/null geodesics are the intersections with 2-planes through 0 of slope >/= 45°.

Pairs of time-like geodesics

- Time-like geodesic flow on de Sitter space is Anosov (uniformly hyperbolic): there's a splitting of the tangent bundle to the space of unit time-like tangent vectors into the direct sum of the flow direction and bundles E⁺, E⁻ such that all displacements in E⁺ contract like e^{-t} in forwards proper time and similarly for E⁻ in backwards time.
- One proof: Jacobi equation v" = Mv = -R(u,v,u) for perpendicular displacement v to geodesic with unit tangent u. Tr M = -Ric(u,u) = -Λg(u,u) = Λ.
 Rotational symmetry about u, so v" = Λ/3 v, and v = v⁺ e^{-t} + v⁻ e^t.
- Another proof: unstable manifold W⁻ (integral submanifold of E⁻) is given by the tangents to y=cst on t=0 in expanding flat slice coordinates (t,y):
 x₀ = sinh t + r²/2 e^t, x₁ = cosh t - r²/2 e^t,

 $x_i = e^t y_i$, where $r^2 = \Sigma y_i^2$ (for the geodesic y=0 at t=0).

• So most pairs of geodesics separate exponentially in both forward and backward time.

Null geodesics between time-like geodesics in de Sitter space

- Seems not to have been treated fully (despite de Sitter, Weyl, fashion in the 1950-60s...)
- Given a receiver geodesic r (wlog y=0) and an emitter geodesic e, there is a (future-preserving) isometry M such that e = Mr. Parametrise them by their proper times t_r=t and t_e=u, then the set of pairs (t,u) with a future-pointing null geodesic from e to r is given by:
 -(a sinh u + b cosh u) sinh t + (c sinh u + d cosh u) cosh t = 1 with a sinh u + b cosh u < sinh t, where [a b \\ c d] is the top block of M. Constraints (ab-cd)² ≤ (a²-c²-1)(b²-d²+1), both factors non-negative and a≥1.
- Can write in terms of T = exp t, U = exp u, as

-ATU+BT/U+CU/T-D/TU=2,

with A,B,C,D \geq 0 a linear transformation of a,b,c,d. Causal solution T=(U+sqrt[BD+(1-BC-AD)U²+ACU⁴])/(B-AU²) for U<sqrt[B/A]

General features

- There is a first t* (T²=D/B) after which e becomes visible to r (u starts at -∞) [when we enter π(W⁻(e))] and a last u* (U²=B/A) from which emissions can be seen by r (as t →+∞).
- u(t) monotone increasing
- Exceptionally, D=0, t*=-∞ (backward asymptotic) or A=0, u*=∞ (forward asymptotic) or B=0, t*=+∞, u*=-∞ (pastasymptotic to antipodal).
- Weyl did not like t* finite and declared that no emitters follow such geodesics: BIG MISTAKE in our opinion!

> u as a function of t, with origin shifted to (t*,u*), for a sample emitter geodesic

Red/blue-shift

- Redshift z defined by 1+z = dt/du = U/T dT/dU
- $\omega_r/\omega_e = 1/(1+z) = du/dt$
- z goes from -1 (infinitely blue) to +∞ (infinitely red) as t goes from t* to +∞.
- 1+z ~ t-t* as t decreases to t*.
- z>0 for all but a bounded interval of t. Time of passage through z=0 is defined by (UT)²=D/A.
- Blueshift period $t_B = \frac{1}{2} \log \frac{1 + \sqrt{AD} + \sqrt{1 + 2\sqrt{AD} + AD BC}}{\sqrt{AD}}$
- Exceptionally z goes from 0 to ∞ (backward asymptotic) or -1 to 0 (forward asymptotic), or jumps across 0 (intersecting geodesics).

Received Flux

- The received flux Φ = P/((1+z)ρ)², where P is the emitter power per unit solid angle and the "corrected luminosity distance" ρ accounts for geometric expansion of the bundle of rays.
- In de Sitter space, ρ is given by change in affine parameter along the null geodesic scaled to equal elapsed time in emitter frame initially. Thus

 $\rho = 1 - (C/T - AT)U.$

Received flux (continued)

- p starts at 1 (de Sitter radius) at t*: apparently infinite distance is offset by Lorentz transformation of isotropic emission into a narrow forward beam (angle 2(1+z)).
 dp/dU = (AD-BC)/sqrt[BD] at U=0, and ρ goes to +∞ with t.
- Hence if P=cst, Φ starts infinite and its integral over t diverges because Φ ~ P/(t-t*)²

For a real emitter

- Emitter power P is not constant, probably has a start date, may go through a supernova phase and is probably an integrable function of emitter time u
- So Φ doesn't really start infinite, nor have infinite integral, but still can have a large initial peak
- Received energy per unit area from time t* to t is

$$\int_{-\infty}^{u(t)} \frac{DP(u)}{T\rho^3} (e^{-u} + \frac{T}{D} - \frac{Ce^u}{D}) du$$

- Large if ρ decreases to a small value before going to + ∞
- This favours the region of short blueshift period BC >> AD.

Two-parameter family

- By isometries, we can reduce the generic case to a=cosh φ, b=c=0, d=cos θ.
- Then A=D=(a-d)/2 and B=C=(a+d)/2
- And shift origin of t to t* for the plots

Added bonus: Hubble's law

- Hubble plot: $z v \rho$
- Note $z \sim \rho$ as $t \rightarrow +\infty$.
- All emitters for which the blueshift period was in our distant past line up along this asymptote.
- So an asymptotic Lemaitre-Hubble law, with H=1/de Sitter radius.

Challenges

- What about claims to measure redshift of gamma ray bursts?
 Perhaps an artefact of intervening dust
- How do you explain the observed non-thermal spectra of gamma ray bursts? The spectra are obtained by time-averaging, but timeaveraging a thermal spectrum with rapidly varying temperature looks non-thermal
- We are not really in de Sitter space See next

Beyond de Sitter

- Anosov systems are structurally stable, so all small perturbations of the metric have close time-like behaviour.
- Does not apply to null geodesics.
- Still, expect gamma ray bursts from same mechanism (our entry into region illuminated by emitter), and asymptotic Lemaitre-Hubble law with H = Lyapunov exponent
- For example, Schwarzschild de Sitter metric $ds^{2} = -Q(r)dt^{2} + Q(r)^{-1}dr^{2} + r^{2}d\Omega^{2} \text{ with}$ $Q(r) = 1 - 2M/r - r^{2}/a^{2} > 0 \text{ in } r_{b} < r < r_{c}$ satisfies Ric = Ag and extends beyond r=r_c to submanifold $X^{2} - T^{2} = k^{-2}Q(r) \text{ of } R^{5} \text{ with}$ $ds^{2} = -dT^{2} + dX^{2} + b(r)dr^{2} + r^{2}d\Omega^{2},$ $k = (r_{c}^{3}-Ma^{2})/a^{2}r_{c}^{2} \approx 1/a, b(r) = (1-k^{-2}Q'(r)^{2})/Q(r) \approx 1$ which is a small perturbation for M small, r>(Ma^{2})^{1/3}.

Conclusion

- We propose gamma ray bursts are a kinematic effect: our entry into the region illuminated by a continuous emitter. No cataclysm required.
- Also Lemaitre-Hubble law does not require big bang
- Can we revise cosmology further?

Explain the cosmic microwave background, the proportions of light elements, dark sky at night?