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Part l): Applications and basic upscaling idea
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Example I: Catalyst layer in PEM fuel cell

PEM Catalyst GDL
' Parllcies

-

Smooth cylindrical Pt channel
1

Reaction plane (OHP)

GDL boundary | PEM boundary
conditions: conditions:
Constant oxygen Constant proton
concentration concentration
Noproton flux — \ R ction plane (OHP)eeseeeememsssseeemmee e No oxygen flux

Smooth Pt walls
Constant metal potential
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Example II: Batteries

Current
Collector

M. Schmuck

Composite Negative Composite Positive
Electrode Electrode

Current
“"Collector

Negative electrode active material (secondary particle)
Positive electrode active material (secondary particle)
Binder

Carbon additive

Pores filled by electrolyte
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Effective equations for multiscale problems: |dea

Y-Algorithm
H..
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Effective equations for multiscale problems: |dea

reference cell

Y-Algorithm

periodic replacement
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Effective equations for multiscale problems: |dea

reference cell

Y-Algorithm

periodic replacement

s—0

_—
(upscaling)
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Effective equations for multiscale problems: |dea

reference cell

Y-Algorithm L —y
L
periodic replacement homogenized

model

s—0

—_—
(upscaling)
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Upscaling: The asymptotic expansion method

1) Make the Ansatz:
us(t,X) ~ uO(taXay) + Su'l(tvxay) +32u2(taxay) .oy

where y := x/s is the microscale.
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Upscaling: The asymptotic expansion method

1) Make the Ansatz:

us(t,X) ~ uO(taXay)+Su1(t7Xay)+32u2(taxay)+"' )

where y := x/s is the microscale.

2) Insert 1) in the periodic model: (formal method by
assuming differentiability)
Collect terms of the same order in s.
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Upscaling: The asymptotic expansion method

1) Make the Ansatz:

us(t,X) ~ uO(taXay)+Su1(t7Xay)+32u2(taxay)+"' )

where y := x/s is the microscale.

2) Insert 1) in the periodic model: (formal method by
assuming differentiability)
Collect terms of the same order in s.

3) “Take the leading order terms”:

Solvability requirements provide the upscaled system for
Up.

HERIOT
7y

M. Schmuck Effective transport equations: Reliable upscaling



Upscaling: The asymptotic expansion method

1) Make the Ansatz:

us(t,X) ~ uO(taXay)+Su1(t7Xay)+32u2(taxay)+"' )

where y := x/s is the microscale.

2) Insert 1) in the periodic model: (formal method by
assuming differentiability)
Collect terms of the same order in s.

3) “Take the leading order terms”:
Solvability requirements provide the upscaled system for
Ug.

References: - [Bensoussan, Lions, Papanicolaou (78)],
- [Cioranescu, Donato (99)], - [Chechkin, Piatnitski, Shamaev
(07)], - [G.A. Pavliotis, A.M. Stuart (08)]
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Part Il): Upscaling of charge transport equations in
heterogeneous media
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Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Reference configuration: Solid-electrolyte composite

Extension: Presence of a surface charge density . on /
Replace (continuity of fluxes)

_)\2Vn¢s = _aVn¢s on /7

|BYS |8YS

by
fﬁ(x/s)vnqﬁs}ays = So(x S)‘ayS on/,
for the Debey length A and dielectric permittivity o := < such

that IA{(X) = AZXQS(X) + OzXQ\Qs(X)
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Reference cell Y a ¢

Periodic covering by cells Y Homogenous approximation

A
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Local Thermodynamic Equilibrium (LTE)

Definition: (Scale separation) We say that the chemical
potential 1. is scale separated if and only if

O, %X(kxaf)) on the macroscale 2,

Ip(uo(x, b)) _ { 0 on the reference cell Y ,

where uy(x) is the upscaled/slow variable solving the
corresponding upscaled equation.

HERIOT
L)

'WATT

M. Schmuck Effective transport equations: Reliable upscaling



Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

ong =div (Vng + ngVes)  inQ°
Micro: < 9;ng =div (Vng —ngVes)  inQ°
—div (A#(x/S)V¢s) = ng —ng inQ

v”n‘—g‘r + n;_Vn(bs - 0 on IS
Micro interface: < V,ng — ngV,¢s =0 on /s
—R(X/8)Vnops = so.(x/s) onls
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Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

ong =div (Vnd + nfVegs) inQS
Micro: < 9;ng =div (Vng —ngVes)  inQ°
—div (A#(x/S)V¢s) = ng —ng inQ

v”n;- + n;i-Vngbs == 0 on IS
Micro interface: < V,ng — ngV,¢s =0 on /s
—R(Xx/8)Vnps = so.(x/s) onls
becomes under local thermodynamic equilibrium
pong = div (DVng + nfMVd) inQ
Macro: < po;ny = div (DVny — nyMVag) inQ
—div (RerVo) = p(ng —ng ) +p. inQ
where p. := “7‘ fy0.(x. y) do(y).
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Rigorous error bounds / Convergence rates:

Theorem:  [M.S. 2012, ZAMM 92:304-319 (2012)]

Let 9Q be of class C> and ¢X, ¢¥' ¢ W'>°(Y). Then, for

1. ot xipt 02— p- — Kin- _ 1
el :==nd —King, e :=ny —Kin, and ed := ¢s — Kioo, there

holds
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Rigorous error bounds / Convergence rates:

Theorem:  [M.S. 2012, ZAMM 92:304-319 (2012)]

Let 00 be of class C™ and ¢, ¢K' ¢ W'*°(Y). Then, for

es = ng —King, e2:=ng —Kiny, and el := ¢s — Klgo, there
holds

2
(T)<CTs,

)
Cs

2
e2|| (T)< CTs,

HCEHZM(Q)(T) < C(T+1)s,

where

N
Kiuo(t, x) := (1 - sng(x/s)axk) Uo(t, x) .

k=1

Related Reference: Two-scale converge result
- [M. S., COMMUN MATH SClI, 9(3):685-710 (2011)]
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2) Key ideas in the proof:

Step 1: Define error variables
fori=1,2,3.

Step 2: Determine equations for e} based on

ou(x,y)
ox

such thatforr =1,2

1
= 8Xu(Xv.y) + gayU(X,}’),

‘%S = div (Ve§ + ze5Ved) + sFL  in Q5x]0, T,

eg = SGj on 9Q°x]0, T[,
—div (k(x/s)Ved) = el —e2 + sFS inQr,
ed = sG3 on 9Qx]0, T[.

HERIOT
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3) Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Einstein relations: M#£ LD
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3) Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Einstein relations: M #

Consequence:

Seem to loose Boltzmann distribution in equilibrium and
Einstein relations !
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3) Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Einstein relations: M #

Consequence:

Seem to loose Boltzmann distribution in equilibrium and
Einstein relations !

But:

Introduce the mean field approximations

vnt :=DVn*,
V¢ :=MVg,
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3) Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Einstein relations: M #

Consequence:

Seem to loose Boltzmann distribution in equilibrium and
Einstein relations !

But:

Introduce the mean field approximations

vnt :=DVn*,
Vé =MV,

then again the Boltzmann distribution is obtained, i.e.,
KTn M.V = DLVn* + zontkTM. V¢,

where ;= /% and ¢ = 3.

HERIOT
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Example |: Straight channels

Assumption: Insulating porous matrix, i.e., « — 0
The correction tensor D = M becomes

y_2
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Example |: Straight channels

Assumption: Insulating porous matrix, i.e., « — 0
The correction tensor D = M becomes

d

y_2

o

.||.
OO =
o O O

- O O
L

Literature: Auriault & Lewandowska 1997

HERIOT
ZYWATT

M. Schmuck Effective transport equations: Reliable upscaling



Example Il: Perturbed straight channels

Assumption: Insulating porous matrix, i.e., « — 0

The correction tensor D = M becomes
y

2
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Example Il: Perturbed straight channels

Assumption: Insulating porous matrix, i.e., « — 0

The correction tensor D = M becomes
y

2

Literature: Auriault & Lewandowska 1997
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Part lll): Effective Proton Transport in Catalyst Layers
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1) Effective catalyst layer in PEMFC: [with P. Berg (NTNU)]

Periodic catalyst layer: Microscopic scenario

ps and Butler-Volmer

H.O

PEM r GDL
HY, G ey — 000
Xo e
T—>X1
Butler-Volmer: O, +4H" +4e° = 2H,O
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Result:
[M.S. & P. Berg, Appl. Math. Res. Express. 2013(1):57-78 (2013)]

Under large overpotential, i.e., ®° — &, > 0, we have
—Acy =0 in Q°

Micro bulk: ¢ —div(Vcs +ciVe®) =0 inQ°
—div(R(x/s)V¢®)=c] inQ

—Vinch = sBo(cd)0(cs)™exp [—ac ($° — )] on /
Interface: ¢ —V,cf — cfV,pd® = s8.(cd)™0(ci) ™ exp [—ac (P — do)] on /
—K(x/S)Vp®° = sos(x, x/8) on/

HERIOT
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Result:
[M.S. & P. Berg, Appl. Math. Res. Express. 2013(1):57-78 (2013)]

Under large overpotential, i.e., ®° — &, > 0, we have

—Acy =0 in Q°
Micro bulk: ¢ —div(Vcs +ciVe®) =0 inQ°
—div(R(x/s)V¢®)=c] inQ

—Vn€3 = 5B0(€3)"(c3)™ exp [—ac (¢° — ®o)]
Interface: § —VacS — €5 Va0 = 58,(c5)"(c3)" exp [~ac (° — ®0)]
—K(x/S)Vp®° = sos(x, x/8)

turns after upscaling under scale separation into
—div (D9VCo) = Bo(C+)"™ (Co)" exp (—ac(® — o)) ,

—div (D*VCs + CLMTV®) = B, (C.)" (Co)" exp (—ac(P — d)) .
—div ((\%,7)V®) = pCy + ps .

where B = oA = 42]’3\ and 3, := Bol = 42’& with A := [/].

M. Schmuck Effective transport equations: Reliable upscaling
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I-V curves: Circle shaped pores (R=//a, a=3,6,12)

1-V curves for cirlce

=
=)

)
©

voltage V
o o o o
= o ~ ©

o
S

=
w
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0.1
0

100 200 300 400 500
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I-V curves: Square with (R =//a, a=3,6,12)

10 I-V curves for square
— square R=1/3
0.9 — square R=l/6
— square R=1/12
0.8
0.7
>
v
o
pet
s
>

50 100 150 200 250 300 350 400 450
current |
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I-V curves: Cross shaped pores (R =/¢/a,a=3,6,12)

1V curves for cross

— cross R=l/3
0.9 — cross R=1/6
— cross R=l/12

voltage V

=50 0 50 100 150 200 250 300 350
current |
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I-V curves: Shamrock (R =7/¢/a, h=R/2,a=3,6,12)
|/

\

M. Schmuck

\

a

10 1-V curves for shamrock

— shamrock R=1/3
0.9 — shamrock R=1/6
— shamrock R=1/12

voltage V

=50 0 50 100 150 200 250 300 350 p——
current | FIWATT
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2) Extension towards fluid flow
[M. Schmuck & P. Berg, J ELECTROCHEM SOC, 161(8):E3323-E3327 (2014)]

—EPAUS + Vp° = kf* 1= —kcS VS in Q°
divu =0 in Q°
Micro bulk: ¢ 8:c§ — div (D°Vc§ — Peuccd) =0 in Q°
oS — div (DY (Vei + ¢5Ve®) — Peu’cy) =0 inQ°
—div (E(x/s)V¢°) = ¢} in Q
u; =0 on /
u; = —SRw(cs, ch.n°) on /
Interface: ¢ —Vncd = sBo(cd)™0(cs)  exp [—ag (P° — )] on /
—VncS — i Va®® = sB(cd)™(c5) ™ exp [—ac ($° — $o)] on /
—k(x/S)Vn®° = sos(x, x/S) on /

where

R.(c3,cd.11°) =B, (c3)™ (c3)™ exp (—acen®) .

and f, := ;5 for « € {+, O} and By = ’OQ”W
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Scale Separation: Local Equilibrium

Local Thermodynamic Equilibrium (LTE): A system
depending on a flow velocity U is in local thermodynamic
equilibrium if and only if

0
= —u, — <K<
0 8ka Ug, for 1<k<N,

on the level of microscale Y, where . € {O, +}, Uy is the k-th
velocity component of the upscaled fluid velocity U and p,
denotes the electrochemical potenials w.r.t. upscaled variables,
ie.,

o In Cp if +=0,
po= InCy+2z.® if 1=+.

HERIOT
WA
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Result: Two-scale asymptotics

Idea: Apply LTE and multiscale expansions of the form
V(x) = v(x, x/s) ~ V(x, x/8) + svi(X, X/8) + O(s?)

where V denotes the upscaled variable.
Result:

divU

U=C.M Vo -KVP, inQ,
= —1B,(C)™(Co)™ exp (—ac(® — b)), inQ,

{ 99:Co — div (ﬁovco - PeUCo)
1B0(C1)™ (Co) exp (—ac(® — o)) , inQ,
{98,@ — div (ﬁ*va O M Ve - PeUC+)
=B.(C:)"(Co)0 exp(—ao(® — ®o)) , inQ,

{~div(EVe) =0C. + Qs inQ,

HERIOT
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3) Moving frame approach: Strongly periodic fluid flow

Periodic flow problem:

—pAyUu + Vyp = ey in Y,
divy (u) =0 in Y,
u==0 on ly,

u and p are Y-periodic.
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Ansatz: Asymptotic expansion with drift v/ := Tf);”’ Sy w(y)dy

oo
v ; v
u(t,x)=u (t,x — gz‘, x/e> ~ U(t x)+ ;_1 €U (t,x — ;t’ x/e>

Result:

{9@00 dw( ()vco)
= 180(C+)™ (Co)™ exp (—ac(® — @0)) . inQ.

{eatm _ div (D*(u)vc+ + C+M+vq>)
= B4(C4)™(Co)" exp (—ac(® — ®g)) , in,

{~div (EV®) =6C, + Qs
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Part IV): Control of Macroscopic Transport Characteristics
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Microscopic formulation

Material characteristic: Composite with high contrast in
electric permittivity = strongly oscillating electric potential
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Microscopic formulation

Material characteristic: Composite with high contrast in
electric permittivity = strongly oscillating electric potential

ong =div (Vn§ + ngVes)  inQ°
Micro: < 9;ng =div (Vng — ngVes)  inQ°
—div (A#(x/S)V¢s) = ng —ng inQ

Vnn; + n;VnQZ)S = O on ls
Micro interface: < V,ng — ng Vs =0 on /s

—R(x/S)Vnos continuous over /g
M. Schmuck Effective transport equations: Reliable upscaling
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Idea: Use modified expansions (u} := ng, u2 := ny)

N N
ug=up—s» £t XX/S)aif()O +87 >t x, x/s)ug+ ... forr=1,2,

k=1 K,I=1

N 2
ps = ¢o—sZ§¢ x/s) %+S2Z§f;’(x/s)§ 20 +.o,
k,I=1 Xk X

where ¢'(-, -, y) € V(Qr, Wy(Y?®)), €% (y) € Wy(Y),
Ca(-, -, y) € V(Qr, Wi(Y®)), and ¢34(y) € Wi(Y) solve elliptic
cell problems.
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Idea: Use modified expansions (u} := ng, u2 := ny)

N N
ug=up—sy &t XX/S)a—ﬁO +82 57 ¢t X, x/S)ub + ... forr=1,2,

k=1 k=1

N 2
ps = ¢o—sZ§¢ x/s) %+S2Z§f;’(x/s)§§° +.o,
k,I=1 Xk X

where & (-, -, y) € V(Qr, Wy(Y?)), &(y) € Wi(Y),
C(- -, y) € V(Qr, Wy(YS)), and (3 (y) € W,(Y) solve elliptic
cell problems

Result: ug is solution of the following upscaled system

porul—pAug + div (D' (t, X)Vo) — div (Z-ufMVeg) =0 inQr,
—div (e°Vp) = p (uf — u3) in Qr,

where p := |Y*®| /| Y| is the porosity and the tensors
D" (8, x) == {Djy(t, X) } 1 o jepr M = {Mis}1 < j<p» and
S {62/}1§k.l§N are defined by
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N
1
Di(tx) = g7 [ 3 (e (tx)} o
=1
1 N
Lo L 8.0, £3k
Mici= o [ S;{a,k G0, E%(y) } d

N
1
o._ ' - L 8540, £3K
=y /| > (51— a0 ) .

Reference:
[M. Schmuck, J MATH PHYS, 54(2):21 p.021504 (2013)]
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Conclusion:

» Presented formal and rigorous upscaling/homogenization
methods.

» Systematically derived upscaled charge transport
equations valid for different pore geometries

» Developed a framework for deriving effective macroscopic
catalyst layer equations

» Upscaling provides means to control transport on the
macroscale!
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Conclusion:

» Presented formal and rigorous upscaling/homogenization
methods.

» Systematically derived upscaled charge transport
equations valid for different pore geometries

» Developed a framework for deriving effective macroscopic
catalyst layer equations

» Upscaling provides means to control transport on the
macroscale!
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