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Part I): Applications and basic upscaling idea
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Example I: Catalyst layer in PEM fuel cell

Reference: [S.H. Kim, H. Pitsch, J. Electrochem. Soc. 2009
156(6): B673-B681;]
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Example II: Batteries
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Effective equations for multiscale problems: Idea
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Upscaling: The asymptotic expansion method

1) Make the Ansatz:

us(t , x) ≈ u0(t , x , y) + su1(t , x , y) + s2u2(t , x , y) + . . . ,

where y := x/s is the microscale.
2) Insert 1) in the periodic model: (formal method by

assuming differentiability)
Collect terms of the same order in s.

3) “Take the leading order terms”:
Solvability requirements provide the upscaled system for
u0.

References: - [Bensoussan, Lions, Papanicolaou (78)],
- [Cioranescu, Donato (99)], - [Chechkin, Piatnitski, Shamaev
(07)], - [G.A. Pavliotis, A.M. Stuart (08)]
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Part II): Upscaling of charge transport equations in
heterogeneous media
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Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Reference configuration: Solid-electrolyte composite

Y \ Y s

Y s

IY :=

Extension: Presence of a surface charge density σs on I
Replace (continuity of fluxes)

−λ2∇nφs
∣∣
∂Y s = −α∇nφs

∣∣
∂Y s on I ,

by

−κ(x/s)∇nφs
∣∣
∂Y s = sσs(x/s)

∣∣
∂Y s on I ,

for the Debey length λ and dielectric permittivity α := εm
εf

such
that κ̂(x) := λ2χΩs (x) + αχΩ\Ωs (x)
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Local Thermodynamic Equilibrium (LTE)

Definition: (Scale separation) We say that the chemical
potential µ is scale separated if and only if

∂µ(u0(x , t))

∂xk
=

{
0 on the reference cell Y ,
∂µ(u0(x ,t))

∂xk
on the macroscale Ω ,

where u0(x) is the upscaled/slow variable solving the
corresponding upscaled equation.
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Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Micro:


∂tn+

s = div
(
∇n+

s + n+
s ∇φs

)
in Ωs

∂tn−s = div
(
∇n−s − n−s ∇φs

)
in Ωs

−div (κ̂(x/s)∇φs) = n+
s − n−s in Ω

Micro interface:


∇nn+

s + n+
s ∇nφs = 0 on Is

∇nn−s − n−s ∇nφs = 0 on Is
−κ̂(x/s)∇nφs = sσs(x/s) on Is

becomes under local thermodynamic equilibrium

Macro:


p∂tn+

0 = div
(
D̂∇n+

0 + n+
0 M̂∇φ0

)
in Ω

p∂tn−0 = div
(
D̂∇n−0 − n−0 M̂∇φ0

)
in Ω

−div (κ̂eff∇φ0) = p(n+
0 − n−0 ) + ρs in Ω

where ρs := 1
|Y |
∫

I σs(x , y) do(y).
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Rigorous error bounds / Convergence rates:

Theorem: [M.S. 2012, ZAMM 92:304–319 (2012)]
Let ∂Ω be of class C∞ and ξk , ζkl ∈W 1,∞(Y ). Then, for
e1

s := n+
s − K1

sn+
0 , e2

s := n−s − K1
sn−0 , and e3

s := φs − K1
sφ0, there

holds ∥∥∥e1
s

∥∥∥2
(T ) ≤ CTs ,∥∥∥e2

s

∥∥∥2
(T ) ≤ CTs ,∥∥e3

s
∥∥2

H1(Ω)(T ) ≤ C (T + 1) s ,

where

K1
su0(t , x) :=

(
1− s

N∑
k=1

ξk (x/s)∂xk

)
u0(t , x) .

Related Reference: Two-scale converge result
- [M. S., COMMUN MATH SCI, 9(3):685-710 (2011)]

M. Schmuck Effective transport equations: Reliable upscaling



Rigorous error bounds / Convergence rates:

Theorem: [M.S. 2012, ZAMM 92:304–319 (2012)]
Let ∂Ω be of class C∞ and ξk , ζkl ∈W 1,∞(Y ). Then, for
e1

s := n+
s − K1

sn+
0 , e2

s := n−s − K1
sn−0 , and e3

s := φs − K1
sφ0, there

holds ∥∥∥e1
s

∥∥∥2
(T ) ≤ CTs ,∥∥∥e2

s

∥∥∥2
(T ) ≤ CTs ,∥∥e3

s
∥∥2

H1(Ω)(T ) ≤ C (T + 1) s ,

where

K1
su0(t , x) :=

(
1− s

N∑
k=1

ξk (x/s)∂xk

)
u0(t , x) .

Related Reference: Two-scale converge result
- [M. S., COMMUN MATH SCI, 9(3):685-710 (2011)]

M. Schmuck Effective transport equations: Reliable upscaling



2) Key ideas in the proof:

Step 1: Define error variables

ei
s := ui

s − s
d∑

r=1

ξir (y)
∂ui

0
∂xr

for i = 1,2,3.

Step 2: Determine equations for ei
s based on

∂u(x , y)

∂x
= ∂xu(x , y) +

1
s
∂yu(x , y) ,

such that for r = 1,2
∂er

s
∂t = div

(
∇er

s + zr er
s∇e3

s
)

+ sFr
s in Ωs×]0,T [ ,

er
s = sGr

s on ∂Ωs×]0,T [ ,

−div
(
κ(x/s)∇e3

s
)

= e1
s − e2

s + sF3
s in ΩT ,

e3
s = sG3

s on ∂Ω×]0,T [ .
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3) Charged porous media
[M.S. & M.Z. Bazant, SIAM J. Appl. Math., 75(3), 1369-1401 (2015).]

Einstein relations: M̂ 6= D̂
kT

Consequence:
Seem to loose Boltzmann distribution in equilibrium and
Einstein relations !
But:
Introduce the mean field approximations

∇n± := D̂∇n± ,

∇φ := M̂∇φ ,

then again the Boltzmann distribution is obtained, i.e.,

kTn±M±∇µ̃ = D±∇n± + z±n±kTM±∇φ ,

where µ = µ̃
kT and φ = eΦ

kT .
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Example I: Straight channels

Assumption: Insulating porous matrix, i.e., α→ 0
The correction tensor D̂ = M̂ becomes

D̂ := p

 1 0 0
0 0 0
0 0 1

 .

Literature: Auriault & Lewandowska 1997
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Example II: Perturbed straight channels

Assumption: Insulating porous matrix, i.e., α→ 0
The correction tensor D̂ = M̂ becomes

D̂ := p

 0.3833 0 0
0 0 0
0 0 1

 .

Literature: Auriault & Lewandowska 1997
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Part III): Effective Proton Transport in Catalyst Layers
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1) Effective catalyst layer in PEMFC: [with P. Berg (NTNU)]

Periodic catalyst layer: Microscopic scenario

rPEM GDL

e−

x1

x2

ρs and Butler-Volmer

H+, c+ O2, cO

H2O

Butler-Volmer: O2 + 4H+ + 4e− 
 2H2O
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Result:
[M.S. & P. Berg, Appl. Math. Res. Express. 2013(1):57-78 (2013)]

Under large overpotential, i.e., Φs − Φeq � 0, we have

Micro bulk:


−∆cs

O = 0 in Ωs

−div (∇cs
+ + cs

+∇φs) = 0 in Ωs

−div (κ̂(x/s)∇φs) = cs
+ in Ω

Interface:


−∇ncs

O = sβO(cs
O)nO (cs

+)n+ exp [−αc (Φs − Φ0)] on I
−∇ncs

+ − cs
+∇nΦs = sβ+(cs

O)nO (cs
+)n+ exp [−αc (Φs − Φ0)] on I

−κ(x/s)∇nΦs = sσs(x , x/s) on I

turns after upscaling under scale separation into
−div

(
D̂O∇CO

)
= βO(C+)n+ (CO)nO exp (−αc(Φ− Φ0)) , in Ω

−div
(
D̂+∇C+ + C+M̂+∇Φ

)
= β+(C+)n+ (CO)nO exp (−αc(Φ− Φ0)) , in Ω

−div
(
ε̂(λ2, γ)∇Φ

)
= pC+ + ρs , in Ω

where βO := βOΛ = i0Λ
4eDO

and β+ := βOΛ = i0Λ
4eD+

with Λ := |I|.
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I-V curves: Circle shaped pores (R = `/a, a = 3,6,12)
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I-V curves: Square with (R = `/a, a = 3,6,12)

M. Schmuck Effective transport equations: Reliable upscaling



I-V curves: Cross shaped pores (R = `/a, a = 3,6,12)
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I-V curves: Shamrock (R = `/a, h = R/2, a = 3,6,12)
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2) Extension towards fluid flow
[M. Schmuck & P. Berg, J ELECTROCHEM SOC, 161(8):E3323-E3327 (2014)]

Micro bulk:


−ε2∆us +∇ps = κfs := −κcs

+∇φs in Ωs

divuε = 0 in Ωs

∂tcεO − div
(
DO∇cs

O − Peuεcs
O

)
= 0 in Ωs

∂tcs
+ − div

(
D+ (∇cs

+ + cs
+∇φs)− Peuscs

+

)
= 0 in Ωs

−div (E(x/s)∇φs) = cs
+ in Ω

Interface:


us
τ = 0 on I

us
n = − s

2 Rw (cs
+, cs

O , η
s) on I

−∇ncs
O = sβO(cs

O)nO (cs
+)n+ exp [−αc (Φs − Φ0)] on I

−∇ncs
+ − cs

+∇nΦs = sβ+(cs
O)nO (cs

+)n+ exp [−αc (Φs − Φ0)] on I
−κ(x/s)∇nΦs = sσs(x , x/s) on I

where

Rι(cs
+, c

s
O, η

s) := βι
(
cs

+

)n+
(
cs

O
)nO exp (−αcη

s) ,

and βι := i0L
4eDι for ι ∈ {+,O} and βw = i0Mw

ρw F
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Scale Separation: Local Equilibrium

Local Thermodynamic Equilibrium (LTE): A system
depending on a flow velocity U is in local thermodynamic
equilibrium if and only if

0 =
∂

∂xk
µι − Uk , for 1 ≤ k ≤ N ,

on the level of microscale Y , where ι ∈ {O,+}, Uk is the k-th
velocity component of the upscaled fluid velocity U and µι
denotes the electrochemical potenials w.r.t. upscaled variables,
i.e.,

µι :=

{
ln CO if ι = O ,

ln C+ + z+Φ if ι = + .
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Result: Two-scale asymptotics

Idea: Apply LTE and multiscale expansions of the form

v s(x) = v(x , x/s) ≈ V (x , x/s) + sv1(x , x/s) +O(s2) ,

where V denotes the upscaled variable.

Result:
U = C+M

+∇Φ−K∇P , in Ω ,

div U
= − 1

2βw (C+)n+ (CO)nO exp (−αc(Φ− Φ0)) , in Ω ,{
θ∂tCO − div

(
DO∇CO − PeUCO

)
= 1

4βO(C+)n+ (CO)nO exp (−αc(Φ− Φ0)) , in Ω ,{
θ∂tC+ − div

(
D+∇C+ + C+M

+∇Φ− PeUC+

)
= β+(C+)n+ (CO)nO exp (−αc(Φ− Φ0)) , in Ω ,

{
−div

(
E∇Φ

)
= θC+ + Qs in Ω ,
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3) Moving frame approach: Strongly periodic fluid flow

Periodic flow problem:
−µ∆yu +∇yp = e1 in Y 1 ,

divy (u) = 0 in Y 1 ,

u = 0 on IY ,
u and p are Y -periodic.
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Ansatz: Asymptotic expansion with drift vj := Peloc

|Y 1|
∫

Y 1 uj(y) dy

uε(t , x) = u
(

t , x − v
ε

t , x/ε
)
≈ U(t , x) +

∞∑
i=1

εiui

(
t , x − v

ε
t , x/ε

)

Result:{
θ∂tCO − div

(
DO

(u)∇CO

)
= 1

4βO(C+)n+(CO)nO exp (−αc(Φ− Φ0)) , in Ω ,{
θ∂tC+ − div

(
D+

(u)∇C+ + C+M
+∇Φ

)
= β+(C+)n+(CO)nO exp (−αc(Φ− Φ0)) , in Ω ,{

−div
(
E∇Φ

)
= θC+ + Qs .
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Part IV): Control of Macroscopic Transport Characteristics
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Microscopic formulation

Material characteristic: Composite with high contrast in
electric permittivity ⇒⇒⇒ strongly oscillating electric potential

Y \ Y s

Y s

IY :=

Micro:


∂tn+

s = div
(
∇n+

s + n+
s ∇φs

)
in Ωs

∂tn−s = div
(
∇n−s − n−s ∇φs

)
in Ωs

−div (κ̂(x/s)∇φs) = n+
s − n−s in Ω

Micro interface:


∇nn+

s + n+
s ∇nφs = 0 on Is

∇nn−s − n−s ∇nφs = 0 on Is
−κ̂(x/s)∇nφs continuous over Is
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Idea: Use modified expansions (u1
s := n+

s , u2
s := n−s )

ur
s = ur

0 − s
N∑

k=1

ξrk (t , x ,x/s)
∂φ0

∂xk
+ s2

N∑
k,l=1

ζ rkl (t , x , x/s)ur
0 + . . . for r = 1, 2 ,

φs = φ0 − s
N∑

k=1

ξk
φ(x/s)

∂φ0

∂xk
+ s2

N∑
k,l=1

ζkl
φ (x/s)

∂2φ0

∂xk ∂xl

+ . . . ,

where ξrk (·, ·, y) ∈ V (ΩT ,W](Y s)), ξ3k (y) ∈W](Y ),
ζ rkl (·, ·, y) ∈ V (ΩT ,W](Y s)), and ζ3kl (y) ∈W](Y ) solve elliptic
cell problems.

Result: u0 is solution of the following upscaled system{
p∂tur

0−p∆ur
0 + div (Dr (t , x)∇φ0)− div

(
zr ur

0M∇φ0
)

= 0 in ΩT ,

−div
(
εεε0∇φ0
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= p

(
u1

0 − u2
0
)

in ΩT ,

where p := |Y s| / |Y | is the porosity and the tensors
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}
1≤k .l≤N are defined by
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s , u2
s := n−s )

ur
s = ur

0 − s
N∑

k=1

ξrk (t , x ,x/s)
∂φ0
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+ . . . ,

where ξrk (·, ·, y) ∈ V (ΩT ,W](Y s)), ξ3k (y) ∈W](Y ),
ζ rkl (·, ·, y) ∈ V (ΩT ,W](Y s)), and ζ3kl (y) ∈W](Y ) solve elliptic
cell problems.

Result: u0 is solution of the following upscaled system{
p∂tur

0−p∆ur
0 + div (Dr (t , x)∇φ0)− div

(
zr ur

0M∇φ0
)

= 0 in ΩT ,

−div
(
εεε0∇φ0
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Dr
ik (t , x) :=

1
|Y |

∫
Y s

N∑
j=1

{
δij∂yj ξ

rk (t , x ,y)
}

dy ,

Mik :=
1
|Y |

∫
Y s

N∑
j=1

{
δik − δij∂yj ξ

3k (y)
}

dy ,

ε0ik : =
1
|Y |

∫
Y

N∑
j=1

κ̂(y)
(
δik − δij∂yj ξ

3k (y)
)

dy .

Reference:
[M. Schmuck, J MATH PHYS, 54(2):21 p.021504 (2013)]
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Conclusion:

I Presented formal and rigorous upscaling/homogenization
methods.

I Systematically derived upscaled charge transport
equations valid for different pore geometries

I Developed a framework for deriving effective macroscopic
catalyst layer equations

I Upscaling provides means to control transport on the
macroscale!
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