IIIIIIIIIIII

OOOOOO

Mathematical

Mathematical modelling of
stress distributions in

batteries

Colin Please
Warwick
30 November 2015

’
§ Eaay
o RO



Battery modelling

OXFORD

Mathematical
Institute

Mathematicians

Oxford - Jon Chapman, Alain Goriely, John Ockendon, Peter Howell, Jeevan
Chakraborty, Cameron Hall, Chang Wang

Southampton —Giles Richardson, Jamie Foster, Rahifa Ranom
QUT Brisbane — Troy Farrell, Stephen Dargaville
Chemists

Southampton — John Owen
Nexeon Ltd Bill Macklin, Mike Lain

Alkaline batteries

Li-ion batteries

Oxford _ Mathematical modelling of stress distributions in batteries
Mathematics November 30, 2015



Battery modelling
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Some design considerations:

Rapid charging
Energy storage per kilogram
Maximum power of discharge

Long life recharging/discharging

Yufit et al., Electrochemistry Communications,13, 2011, pp608-610
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Alkaline batteries
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Basic structure of alkaline battery
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Scale 1: Cathode Scale 2: Porous

Typical thickness: 1-5 mm EMD particle
Typical diameter: 5-500 mm

—— Can wall

Top Cap KOH solution

arator
Sep Conductiv(

Anode Material —>—

~

Current Collector

Current Collector
Rod

CurrcntholIcctor
Y

< Y~ Scale 3: EMD crystal
N Typical diameter: 400A

' . o Negative Porous Positive
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|dealised
geometry Different scales
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Modelling of behaviour of Alkaline batteries
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° Scale 1: Cathode Scale 2: Porous
Ele.Ctron ﬂOW through the Typical thickness: 1-5 mm EMD particle
solid matrix: ohmic s Typical diameter: 5-500 mm

» Transport of species in K o e _KOH solution
the solid: diffusion

 Reaction at the
solid/electrolyte interface:

Butler Volmer

* Transport through the Scale 3: EMD crystal
electrolyte: concentrated e
theory Ty

« Separator and anode -
behaviour
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General issues in modelling batteries
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» Carbon to create electrically Diagram courtesy of John Owen
connected matrix but remain small
volume

» Large salt concentrations to make
easy electrolyte transport and avoid
depletion but also avoid precipitation

« Small crystals to reduce distance for
species to diffuse  cuicumme  smorron

Typical thickness: 1-5 mm EMD particle
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General issues in modelling of Alkaline batteries
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Scale 1: Cathode Scale 2: Porous
EMD particle
Typical diameter: 5-500 mm
— Can wall

« Large numbers of particles —
homogenisation to create
“Newman” models
(averaged over particles)

« Many extensions: such as
three different scales

Typical thickness: 1-5 mm

.....
L0

Scale 3: EMD crystal
Typical diameter: 400A
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General issues in modelling of Alkaline batteries
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Bulter-Volmer — OCV (solid concentrations / electrolyte =~ Scale 1: Cathode S‘:Ea'\':Dzi P°_'°|US
Typical thickness: 1-5 mm particle
Typical diameter: 5-500 mm
+— Can wall

concentrations
KOH solution

0 (= 60— U)))

i0 (exp (2‘151(@ — O — U)) — exp ( =T

Scale 3: EMD crystal
‘ypical diameter: 400A

U(CS7CC) F(aa + ac CS
1 1 -
“+aq S + aog T + as g \ _
14 0 (e =BV 1 +e;f(cs,max p2) 14 e (emx 1) OH .
1 Cs ; H
T + %4 Tmax T e ; e
oa . ac Uses ides of Nernst plus lattice site
i0(Cs, Ce) = kee™ ™™ (Comax — Cs)atae o5 energies/interaction energies (Howey et al)
Lack of transfer current data: allow for depletion
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« Damage from leaking
alkaline batteries

« Possible poor
manufacture/sealing

« Manganese dioxide
expands by ~10% on

discharge
« Stresses induced by —
confinement S

Current Collector

« Changes in particle or =

Top Cap

Conductive Film

Scale 1: Cathode Scale 2: Porous

Typical thickness: 1-56 mm EMD particle
Typical diameter: 5-500 mm

= Can wall
K

‘I Graphite
ol .

OH solution

Scale 3: EMD crystal

. Sealing Gasket —— Typical diameter: 400A
cathode porosity | "
Sealing Epoxy —ii wmwe Disk OHH_
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Lithium-ion batteries

Mathematical
Institute

Structures has three scales -
cathode/particle/crystal (crystal=particle?)

aaaaaa

Very small distances between current collectors

. Electron conduction through matrix
. Transport of intercalated Lithium in solid
. Intercalation reaction at solid/electrolyte interface

. Transport in electrolyte

OCV of many cathode materials is very flat — R
makes tracking State of Charge (SOC) very

difficult
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Q '@34» 224
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Steel-Can
(Negative Terminal)

Models needed to infer SOC and deterioration of
battery

)’

“

FePO4 LiFePO4

Anode Tab
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Lithium-ion batteries
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Cathode material swells with Lithium 4
A , 3

Transport of intercalated lithium is
significantly affected by mechanical stresses

Reaction at surface is dependent on
mechanical stresses

SEI (Solid electrolyte interface) gets
deformed and may fracture/buckle

e (ZREIEN
;4&»*»:4{«»;«?’&34
4»"@‘4»‘6‘4» <
32 4»"@"4»"&"
e Anode Tab
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Silicon as a anode material: Nexeon
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Silicon — stores 6 time the energy per kilogram compared to carbon
Silicon swells up to 3 times its volume by intercalation

Mechanical stresses due to swelling — causes fracture of particles and loss of
electrical connection
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Nano structure to avoid large concentration (volume increase) gradients in the solid

Oxford . Mathematical modelling of stress distributions in batteries
Mathematics November 30, 2015



Silicon as a anode material: Nexeon

OXFORD

Mathematical
Institute

Nano structures prevent large

concentration (volume increase) gradients
in the solid
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Strategies for avoiding mechanical stresses
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* Only create small concentration gradients in the solid
* Nanostructures
* Very high matrix conductivity
* Very small distances between current collectors

« Constrain the solid so that it swells in a controlled way
« Use the crystal parts of the solid as these are highly
anisotropic
« when lithium intercalates at high concentrations
the solid becomes amorphous and isotropic
* Use other harder materials
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Stresses within anode materials
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Electrolyte and i
External constraints

Separator conductor composite
[ Electrolyte ]

g:;, % l | Deformation ]
nge, i [ Diffusion of Li f——f (Vpjmetric 4)@
“x»@.‘.\'Ol)g N CATHODE T Elastic)
/ >\
"~~L¢“__,,L,\—"' Total deformation due to 3 effects:
iT+e” —(Li) ©oQ . :
T s Volume increase, elastic

deformation, plastic deformation
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Modelling deformation of crystals
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Model of Chakraborty et al

« Large deformations

» Chemical potential depends
on concentration and stress

» Deformations are described
as product of three
deformation gradient tensors

« Strain energy and plasticity
laws

Chemical Potential ](—@
S

h 4
l Stress Deformation I
™

3
| Plastic stretch [€

3 =—DcVpu
[ = [conc + Mstress

0
Hconc = Hconc + log(ﬁ]"C)

ow

lstress — —~

Hst oc

oW
O'O = W = f(CEC)
F=FF'F =1+Vu
, 1 )

B = (FTF -1

F° = (1 + 3i¢)"*1
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Modelling deformation of crystals
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Chemical Potential ](—@
S

) = —DcVpu
Model of Chakraborty et al ’ /

[ = [conc + Mstress

l Stress Deformation I 0 o
j(—-(—C» Hconec = Heone -+ log( ]‘C)

+ Applied to single rod of P ﬂ
amorphous material oc
 Constrained and unconstrained o
cases . O‘O — W _ f((‘ EC)
« Main issues

Plastic stretch [€

| o - F = FFF =1+ Vu
* where is plastic yield ) I
stress reached during B =5 (FTF 1)

charging — rate

dependent Net axial force is zero.
« possible buckling when

constrained

F° = (1 + 3i¢)"*1

Net axial displacement is zero.

Oxford ‘ Mathematical modelling of stress distributions in batteries
Mathematics November 30, 2015



Modelling constrained rod
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* |dealised rod no
external forces

e Silicon with a
similar stronger
material acting as
a constraint

 Constraint has
higher yield stress,
same elasticity,
and no volume
increase

13
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10°

f’f.D/fo.C

Outer constraint

10° 10' 10°
orB/0fC

Inner constraint

Yield stress of Region D: 0 ¢ p Yield stress of Region C: o ¢ ¢ Yield stress of Region B: 0 ¢ B

Contour values indicate percentage increase in length
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Homogenisation theory
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Qa  : Anode
EXtending ideaS tO the Qe @ Electrolyte
macrcscale 00,01 : Boundary between anode and electrolyte
ca : Concentration of lithium in anode particles
A cel @ Concentration of lithium ions in electrolyte
SSL!me ¢ . Electric potential
 Dilute electrolyte s o . Stress
« Perfectly conducting @=qu : Displacement
matrix

» Uniform size particles

with no smaller scale
crystals E =
« Small deformations L F =
(linear theory) I ;“;fT
Negative Porous Positive
Anode) P e
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Homogenisation theory

UNIVERSITY OF

0),42(0)23D)

Mathematical

Institute
. V.-g=0
In particles: 5= C:E°=C:(Va—cyl)
* Linear elasticity oea o in Q4
« Concentration and stress or 7
induced diffusion ja =~ ka[Vea = Saca V()]
In electrolyte: Yo v a
 Dilute theory Jol = —DVeq, (NS
0=V _-gs,
it = —D (Cce1Ve — aVeg) . )
At interfaces: g7 =0,
« Usual continuities Ja M= QLZ
. . Jel - T = ek,
« Simple Butler Volmer with j; = k(1 — 0)Qu. L on 00,

stresses

i 11
Qan = 1\/10621 (1 —ca)2 c?2

—exp {26 - 0) = Zsau(e) }].

[exp {—%w —U) - %sdtrw)}
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Homogenisation theory
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« Multiple scale (anode vs
particle) give averaged
equations. (Newman with
stress)

« Simplest case is when
particles are very small so
concentration is uniform in
particle

« Parameters in problem
are derived from particle
geometry and physical
properties

90(0)

dc -

1 (0) .

o= =DV - (B VeQ) + kQa,

DV {B- (¢ccQ V6@ —avel)) } = —k(1 - 2)Ga,

b

(1_(1)) C)f :_Qa-

v. (Ceﬁ . va® — chf”) — 0.
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Getting good descriptions of OCV and transfer currents is
needed to improve predictive models

Stresses induced within a battery can affect its performance
* micro-scale and macro-scale damage
 altering porosity
« Changing reaction rates at surfaces
« transporting species in solids
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