Opinion Dynamics and Price Formation

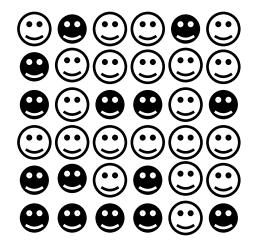
The University of Warwick Centre for Complexity Science

> Guillem Mosquera Doñate 3rd March 2016

- 1. Standard Voter Model
- 2. Heterogeneous Voter Model
- 3. VM in Networks
- 4. Social Pressure in Coevolving VM

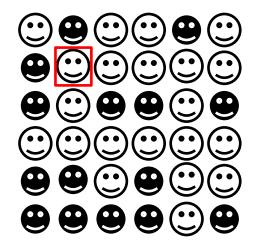
-Binary state of opinion: $n_i(t) = \begin{cases} 1 \\ 0 \end{cases}$ -Activation Poisson Process \rightarrow Activation Rate :: λ_i

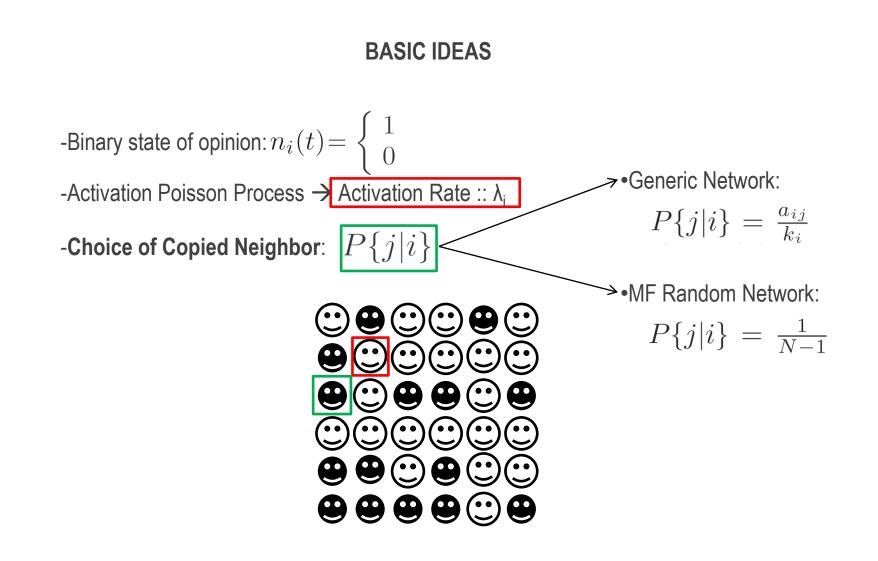
-Choice of Copied Neighbor: $P\{j|i\}$

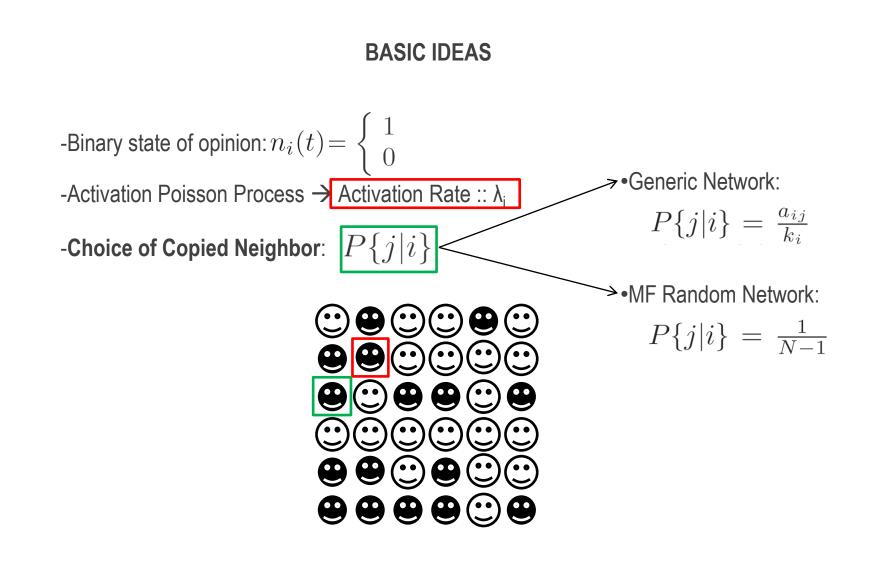


-Binary state of opinion: $n_i(t) = \begin{cases} 1 \\ 0 \end{cases}$ -Activation Poisson Process \rightarrow Activation Rate :: λ_i

-Choice of Copied Neighbor: $P\{j|i\}$







-Binary state of opinion: $n_i(t) = \begin{cases} 1\\ 0 \end{cases}$ -Activation Poisson Process \rightarrow Activation Rate :: λ_i

-Choice of Copied Neighbor: $P\{j|i\}$

-Instantaneous Opinion Evolution:

$$n_i(t + dt) = n_i(t)[1 - \xi_i(t)] + \eta_i\xi_i(t)$$

$$\xi_i(t) = \begin{cases} 1 & \text{with prob. } \lambda_i dt, \\ 0 & \text{with prob. } 1 - \lambda_i dt \end{cases} \quad \eta_i(t) = \begin{cases} 1 & \text{with prob. } \sum_{j \neq i} P\{j|i\}n_j(t), \\ 0 & \text{with prob. } 1 - \sum_{j \neq i} P\{j|i\}n_j(t) \end{cases}$$

-Binary state of opinion: $n_i(t) = \begin{cases} 1 \\ 0 \end{cases}$

-Activation Poisson Process \rightarrow Activation Rate :: λ_i

-Choice of Copied Neighbor: $P\{j|i\}$

-Instantaneous Opinion Evolution: $n_i(t + dt) = n_i(t)[1 - \xi_i(t)] + \eta_i \xi_i(t)$

-Ensemble Average Evolution: $ho_i(t) = \langle n_i(t)
angle_{ec n}$

$$\frac{d\rho_i}{dt} = \lambda_i \left(\sum_{j \neq i} P\{j|i\} \rho_j(t) - \rho_i \right)$$

-Binary state of opinion:
$$n_i(t) = \begin{cases} 1 \\ 0 \end{cases}$$

-Activation Poisson Process \rightarrow Activation Rate :: λ_i

-Choice of Copied Neighbor: $P\{j|i\}$

-Instantaneous Opinion Evolution: $n_i(t+dt) = n_i(t)[1-\xi_i(t)] + \eta_i\xi_i(t)$

-Ensemble Average Evolution:
$$\frac{d\rho_i}{dt} = \lambda_i \left(\sum_j P\{j|i\}\rho_j(t) - \rho_i \right)$$

-Conservation Laws:

$$\phi(j) = \sum_{i=1}^{N} \phi(i) P\{j|i\} \longrightarrow \sum_{i=1}^{N} \frac{\phi(i)}{\lambda_i} \rho_i(t) = \operatorname{const}_i$$

-Binary state of opinion: $n_i(t) = \begin{cases} 1 \\ 0 \end{cases}$

-Activation Poisson Process \rightarrow Activation Rate :: λ_i

-Choice of Copied Neighbor: $P\{j|i\}$

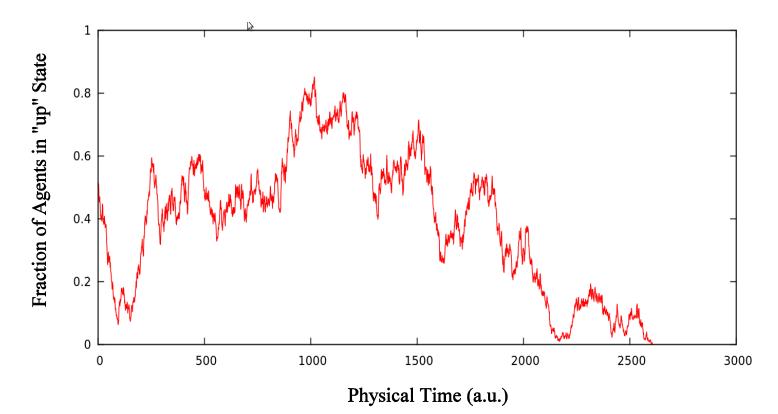
-Instantaneous Opinion Evolution: $n_i(t+dt) = n_i(t)[1-\xi_i(t)] + \eta_i\xi_i(t)$

Ensemble Average Evolution:
$$\frac{d\rho_i}{dt} = \lambda_i \left(\sum_{j \neq i} P\{j|i\} \rho_j(t) - \rho_i \right)$$

-Conservation Laws:

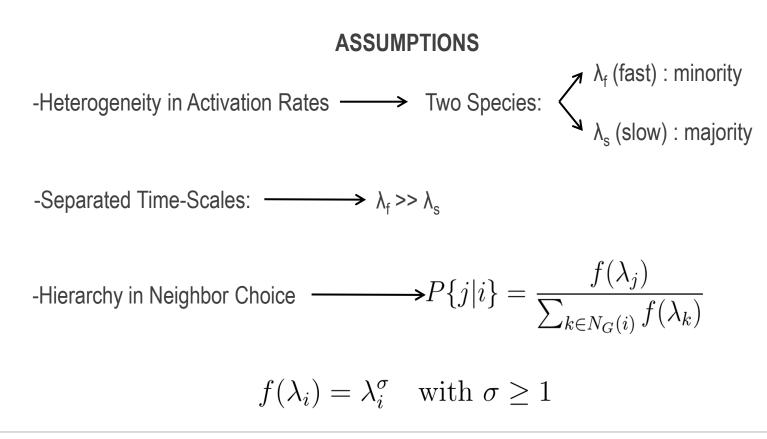
$$\sum_{i=1}^{N} \frac{\phi(i)}{\lambda_{i}} \rho_{i}(t) = \operatorname{const} \longrightarrow P_{1} = \frac{\sum_{i=1}^{N} \frac{\phi(i)}{\lambda_{i}} \rho_{i}(t=0)}{\sum_{i=1}^{N} \frac{\phi(i)}{\lambda_{i}}}$$

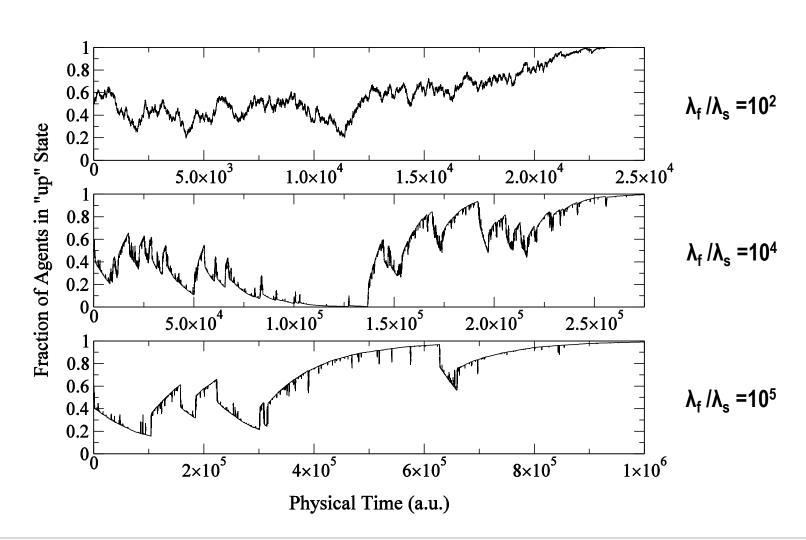
-Typical path of "magnetization": quasi-diffusion to one absorbing state (consensus)



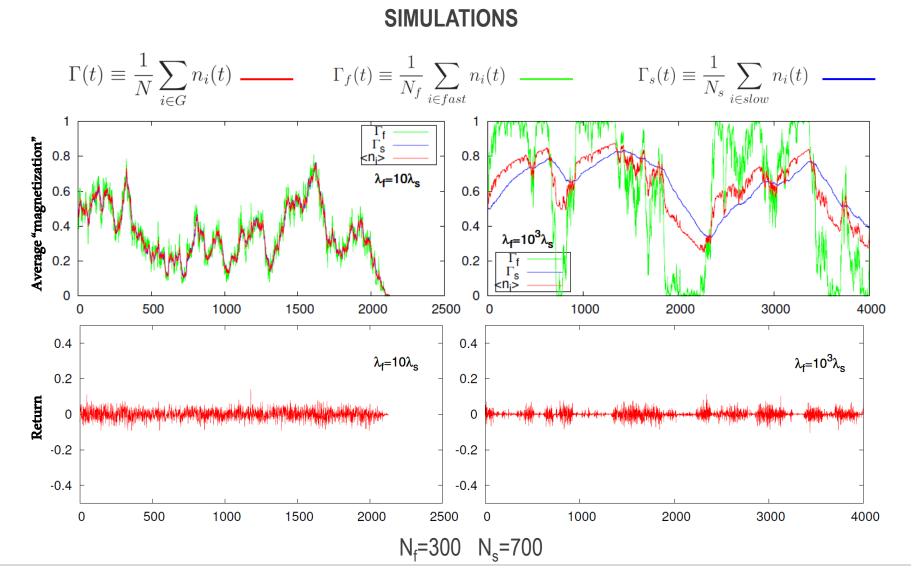
REFERENCE

M.Boguñá and G. Mosquera-Doñate, "Follow the Leader: Herding Behavior in Heterogeneous Populations", *Physical Review E.* **91** (2015).



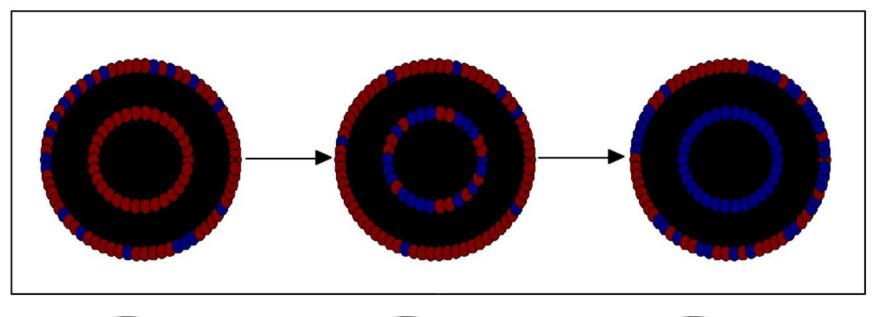


SIMULATIONS



$\bullet \bullet \bullet \bullet$

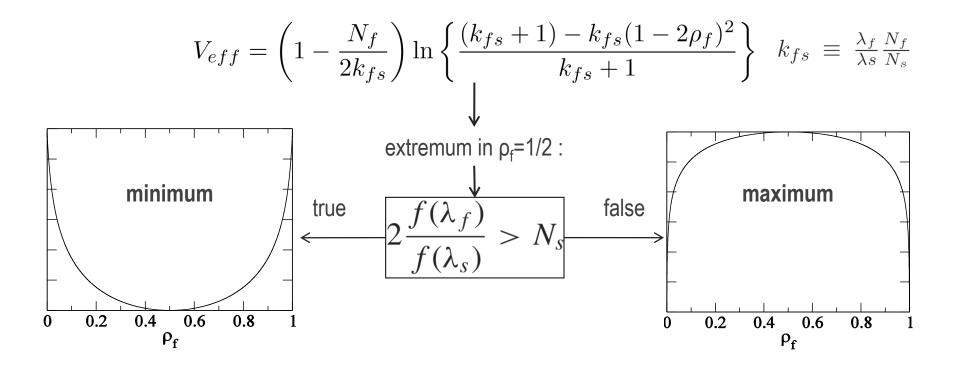
REPOLARIZATION OF THE LEADING CORE

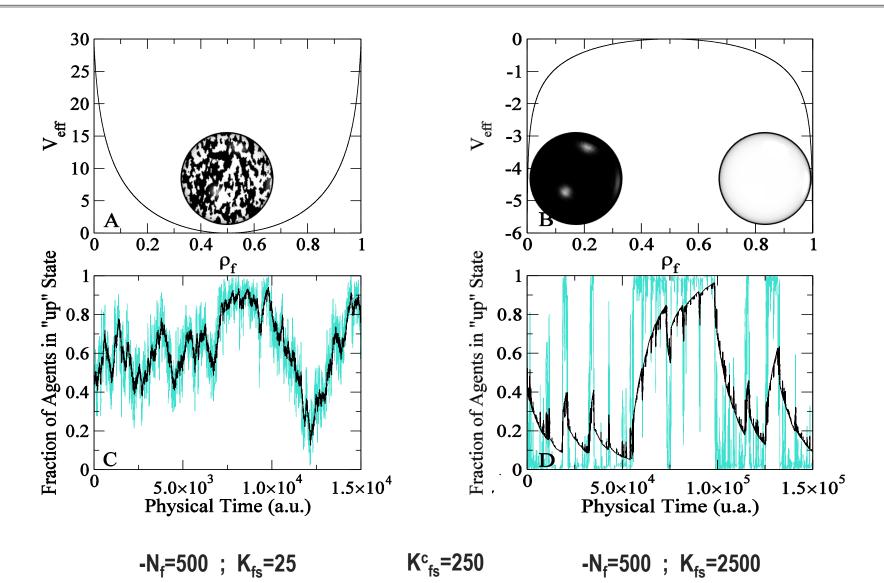


PHASE TRANSITION AND BISTABILITY

- Focker-Planck Effective Potential for Fast Dynamics:

- Quasi-Constant Approximation: ρ_S =1/2





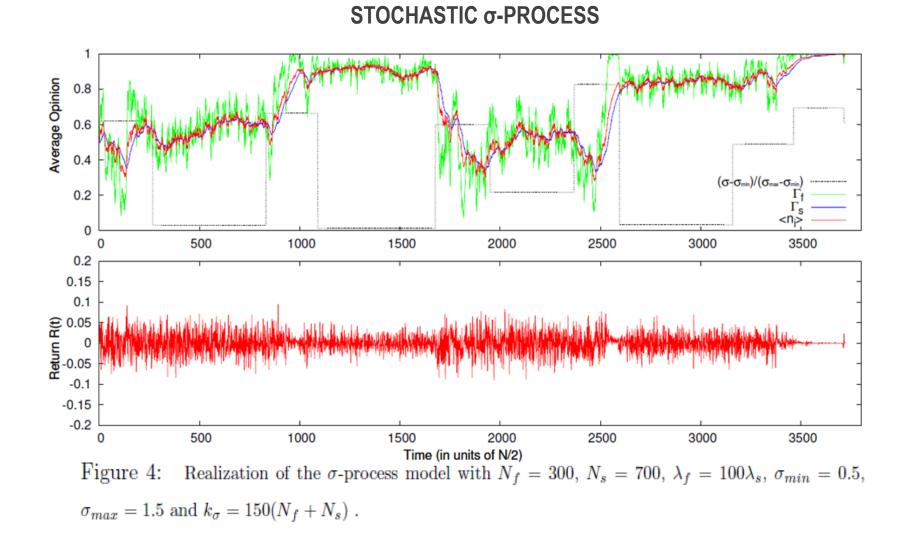
STOCHASTIC σ -PROCESS

-Stochastic Updating Process for
$$\sigma \longrightarrow f(\lambda_i) = \lambda_i^{\sigma}$$
 with $\sigma \ge 1$

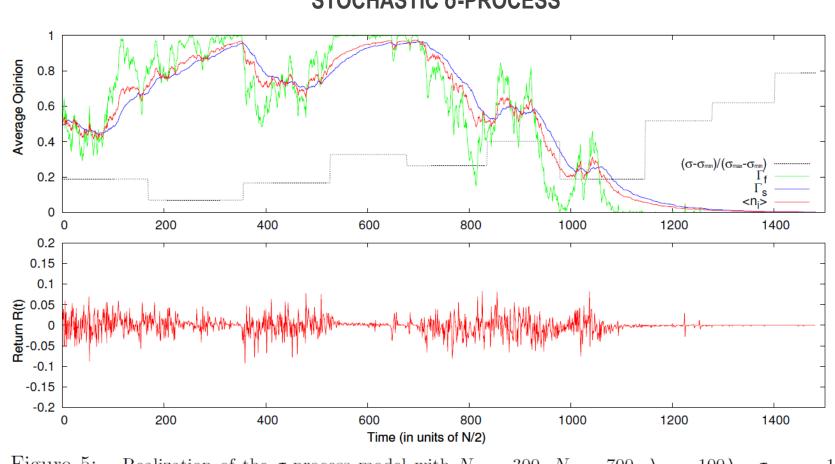
-Poisson updating \longrightarrow realizations of $\sigma(t) \sim U(\sigma_{\min}, \sigma_{\max})$

-Inhomogeneous Periods -----> Shorter convulse (bimodal) phases?

$$T_{\sigma}(t) = \frac{1}{\lambda_{\sigma}(t)} = \frac{k_{\sigma}}{\sigma(t)} \qquad \qquad k_{\sigma} > 0$$

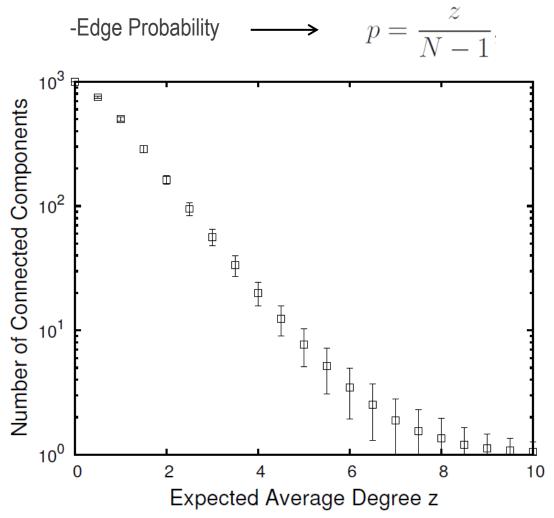


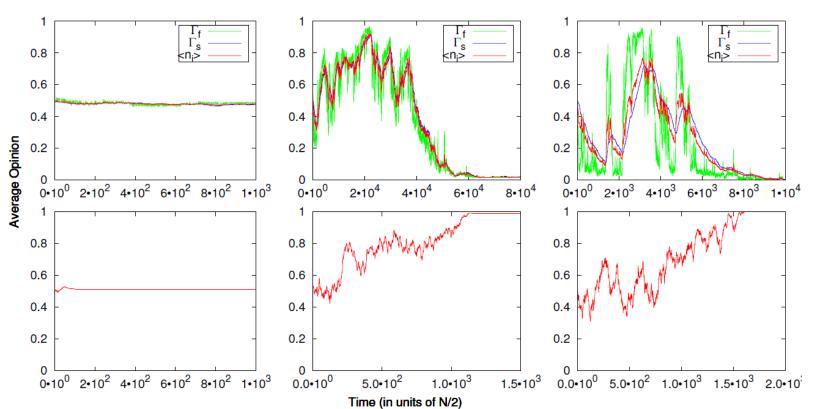
$\bullet \bullet \bullet \bullet$



STOCHASTIC σ -PROCESS

Figure 5: Realization of the σ -process model with $N_f = 300$, $N_s = 700$, $\lambda_f = 100\lambda_s$, $\sigma_{min} = 1$, $\sigma_{max} = 2$ and $k_{\sigma} = 100(N_f + N_s)$.





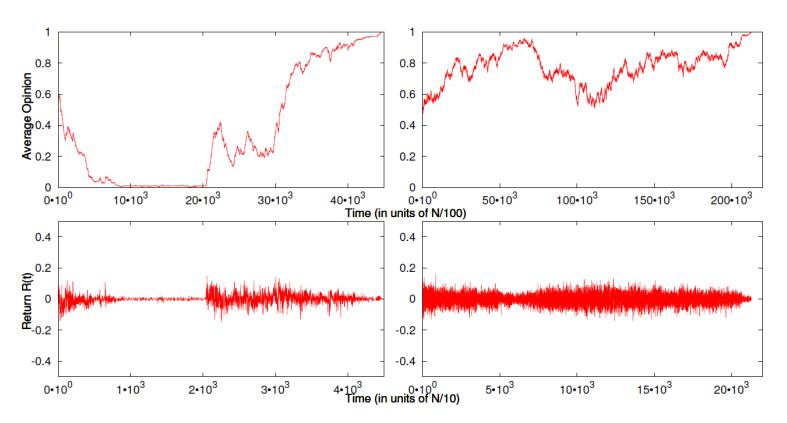
ERDÖS-RÉNYI RANDOM GRAPHS

Figure 6: Realizations of the Voter Model on Erdős-Rényi random graphs with N=1000 agents. Top plots use the Heterogeneous Population model with $\lambda_f = 1000\lambda_s$ and $N_f = 300$, whereas bottom plots use homogeneous population in terms of activation rates. Right, center and left columns represent networks with z=8, z=4 and z=1 respectively.

PREFERENTIAL ATTACHMENT GRAPHS

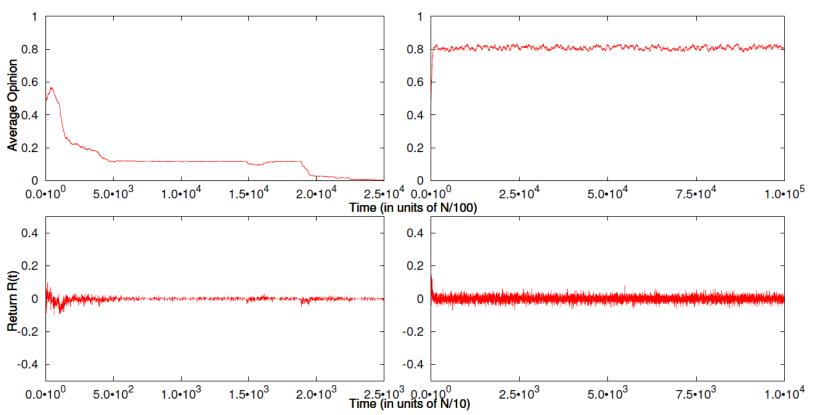
-Barabási – Albert model
$$\longrightarrow p_i = \frac{k_i}{\sum_j k_j}$$

-Topology-based Hierarchy $\longrightarrow P(j|i) = \frac{k_{EP_j}^{\sigma}}{k_{EP_j}^{\sigma} + k_{EP_i}^{\sigma}}$
 $\sigma \in \mathbb{R}$



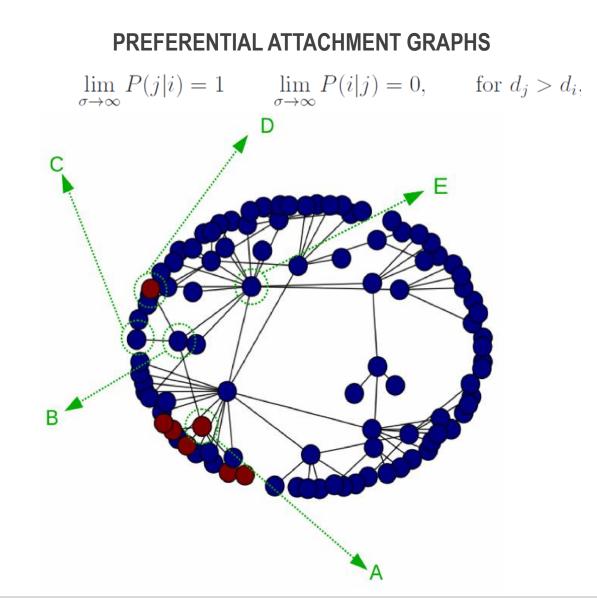
PREFERENTIAL ATTACHMENT GRAPHS

Figure 8: Average instantaneous opinion of the system (top) and associated return R(t) (bottom) for two realizations of the preferential attachment voter model. Simulation parameters are N = 1000 and m = 1 (number of edges for each new node) for both cases, and $\sigma = 1$ (left) $\sigma = 0$ (right)



PREFERENTIAL ATTACHMENT GRAPHS

Figure 9: Average instantaneous opinion of the system (top) and associated return R(t) (bottom) for two realizations of the preferential attachment voter model. Simulation parameters are N = 1000 and m = 1 (number of edges for each new node) for both cases, but $\sigma = 3$ (left) and $\sigma = 1000$ (right)



REVISITING THE σ -PROCESS

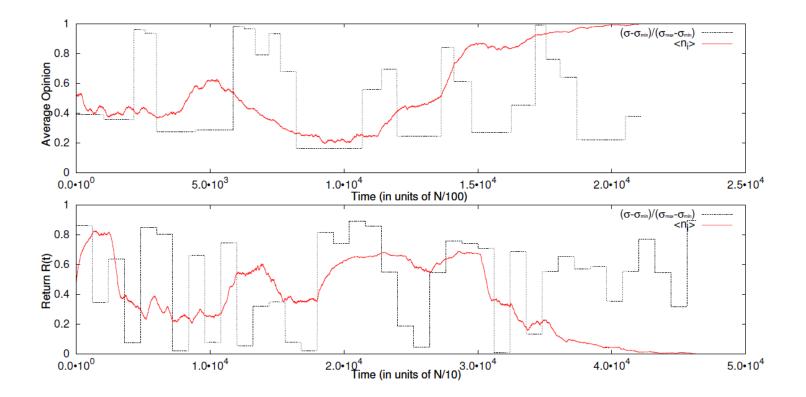


Figure 11: Average instantaneous opinion of the system for two realizations of the preferential attachment voter model with a σ -process. Simulation parameters are N = 1000 and m = 1 (number of edges for each new node) for both cases. Top plot has a stochastic $\lambda_{\sigma}(t)$ and bottom plot has a fixed $\lambda_{\sigma} = 6n$.

SOCIAL PRESSURE VOTER MODEL

$$n_i(t+dt) = n_i(t)[1-\xi_i(t)] + \eta_i\xi_i(t)$$

$$\xi_i(t) = \begin{cases} 1 & \text{with prob. } \lambda_i dt, \\ 0 & \text{with prob. } 1-\lambda_i dt \end{cases} \qquad \eta_i(t) = \begin{cases} 1 & \text{with prob. } P_1^i(t) \\ 0 & \text{with prob. } 1-P_1^i(t) \end{cases}$$

$$P_1^i(t) = S_i(t) \langle n_j(t) \rangle_{j \in \nu_i} + (1 - S_i(t)) \mathcal{U}_i(t)$$

SOCIAL PRESSURE VOTER MODEL

$$n_{i}(t + dt) = n_{i}(t)[1 - \xi_{i}(t)] + \eta_{i}\xi_{i}(t)$$

$$\xi_{i}(t) = \begin{cases} 1 & \text{with prob. } \lambda_{i}dt, \\ 0 & \text{with prob. } 1 - \lambda_{i}dt \end{cases} \qquad \eta_{i}(t) = \begin{cases} 1 & \text{with prob. } P_{1}^{i}(t) \\ 0 & \text{with prob. } 1 - P_{1}^{i}(t) \end{cases}$$

$$P_{1}^{i}(t) = S_{i}(t)\langle n_{j}(t)\rangle_{j\in\nu_{i}} + (1 - S_{i}(t))\mathcal{U}_{i}(t)$$

$$\mathcal{U}_{i}(t) \sim U(0, 1) \quad // \quad \mathcal{U}_{i}(t) = 1 - \sum_{j\in\nu_{i}} n_{j}(t)$$

$$\langle n_j(t) \rangle_{j \in \nu_i} = \sum_{j \neq i} P\{j|i\} n_j(t) \qquad P\{j|i\} = \frac{a_{ij} f(k_j^{out})}{\sum_k a_{ki} f(k_k^{out})}$$

SOCIAL PRESSURE VOTER MODEL

$$n_i(t+dt) = n_i(t)[1-\xi_i(t)] + \eta_i\xi_i(t)$$

$$\xi_i(t) = \begin{cases} 1 & \text{with prob. } \lambda_i dt, \\ 0 & \text{with prob. } 1-\lambda_i dt \end{cases} \qquad \eta_i(t) = \begin{cases} 1 & \text{with prob. } P_1^i(t) \\ 0 & \text{with prob. } 1-P_1^i(t) \end{cases}$$

$$P_1^i(t) = S_i(t) \langle n_j(t) \rangle_{j \in \nu_i} + (1 - S_i(t)) \mathcal{U}_i(t)$$

$$S_{i}(t) = f(k_{i}^{in}(t), k_{i}^{out}(t), \sum_{j \in \nu_{i}} k_{j}^{out}(t)) \in [0, 1]$$
$$S_{i}(t) = 1 - e^{-x}, \quad \text{where} \quad x = k_{i}^{in}(t) \frac{\sum_{j \in \nu_{i}} k_{j}^{out}(t)}{C + k_{i}^{out}(t)}$$

PRICE FORMATION AND NODE EARNINGS

-Price – Magnetization Coupling:

$$P(t) = \frac{K}{N} \sum_{i} n_i(t) \quad \text{where} \quad K \in [0, \infty)$$

-Log – Normal Random Variable:

$$P(t) = e^{\mu(t) + \sigma(t)Z} \text{ where } Z \sim N(0, 1)$$
$$\mu(t) = f(\vec{n}, G) \quad \sigma(t) = g(\vec{n}, G)$$

-Continuous Double Auction: Order Book Statistical Models

-Node Earnings
$$E_i(t+1) = E_i(t) \pm P(t+1)$$

-Order Size, Activity Rate and Influence $\lambda_i \sim exp(\frac{k_i^{out}}{\lambda}), \quad \lambda \in \mathbb{R}^+$

COEVOLVING NETWORKS

-Inhomogeneous Dynamics Random Graph:

-Earnings-based Hierarchical Attachment:

$$P_{ij}(t) = \Psi(E_i(t), E_j(t))$$
$$\Psi(E_i(t), E_j(t)) = \mathbb{I}_{E_i < E_j} \frac{E_i - E_j}{\max_{i,j \in G} \Psi(E_i, E_j)}$$

COEVOLVING NETWORKS

-Inhomogeneous Dynamics Random Graph:

-Earnings-based Hierarchical Attachment:

$$\begin{split} P_{ij}(t) &= \Psi(E_i(t), E_j(t)) \\ \Psi(E_i(t), E_j(t)) &= \mathbb{I}_{E_i < E_j} \frac{E_i - E_j}{\max_{i,j \in G} \Psi(E_i, E_j)} \\ \text{-Exogenous Approach: } E_i(t) \sim BM(\mu, \sigma) \quad \forall i \in G \end{split}$$

-Endogenous Approach: Social Pressure + Earnings + Coevolving Network