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Empirical Motivation

@ Boyson et al. (2010) analysed data on the returns of eight
different Hedge Fund styles from January 1990 to
October 2008.

@ They concluded that the worst hedge fund returns,
defined as returns that fall in the bottom 10% of a hedge
fund style's monthly returns, show higher correlation than
expected from economic fundamentals (contagion).
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e Contagion is linked with liquidity shocks, in support for
the mechanism proposed by Brunnermeier and Pedersen
(2009).

@ Brunnermeier and Pedersen (2009) links an asset's
market liquidity and traders’ funding liquidity.

@ Traders provide market liquidity, and their ability to do so
depends on their availability of funding.

@ Conversely, traders’ funding, depends on the assets’
market liquidity.

@ Thus, there is a reinforcing mechanism at play leading to
liquidity spirals.
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@ The mechanism proposed by Brunnermeier and Pedersen
(2009) is related to the so-called “Leverage
Cycle”(Geanakoplos, 1997, 2010a,b; Thurner et al., 2012;
Poledna et al., 2014).
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@ The mechanism proposed by Brunnermeier and Pedersen
(2009) is related to the so-called “Leverage
Cycle”(Geanakoplos, 1997, 2010a,b; Thurner et al., 2012;
Poledna et al., 2014).

The leverage cycle in a nutshell:

The Leverage Cycle

The pro-cyclical expansion and contraction of credit supply.

@ Leverage becomes too high in boom times, and too low in
bad times.
@ As a result, in boom times asset prices are too high, and
in crisis times they are too low.
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Motivation

Driving Questions:

@ The link between heterogeneity and the clustering of
defaults.

@ Is a deterministic (non-linear) description of the default
process feasible?
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The Economy

@ Traders have a choice between owning a risky and
risk-free asset.
@ Two kinds of traders:
@ Noise traders.
@ Hedge funds (HF). (Receive a private noisy signal.
Signal precision varies among HFs).
@ Credit: The HFs can increase the size of their long
position by borrowing from a bank using the asset as
collateral.
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Key Results

@ The distribution of waiting times between defaults
(WTBD) is qualitatively different on the micro and macro
level.

© Microscopic level: Exponentially distributed = Poisson
process.
@ After aggregation: Power-law = Scale invariance.
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Fat-tail, so what?

Consequences of the fat-tail

@ The emergence of a fat-tailed distribution of WTBD on
the aggregate level leads to clustering of defaults.

@ The bursty character of the occurance of defaults allows a
deterministic description of the time-sequence of defaults.

@ The statistical properties of the default process, as viewed
on the aggregate level, can be accurately described by an
Intermittent (type Ill) process.
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Noise Traders

@ The demand d™ of the representative noise-trader for the
risky asset, in terms of cash value, is assumed to follow
an AR(1) mean-reverting process (Xiong, 2001; Thurner
et al., 2012; Poledna et al., 2014).
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Noise Traders

@ The demand d™ of the representative noise-trader for the
risky asset, in terms of cash value, is assumed to follow
an AR(1) mean-reverting process (Xiong, 2001; Thurner
et al., 2012; Poledna et al., 2014).

@ Thus, the demand (in cash value) d/" = D™p, of the NTs
follows

log d"* = plog d*y + 0™ x; + (1 — p)log(VN). (1)

where x; = N(0,1) and p € (—1,1).
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Hedge Funds Il WARWICK

@ HFs are represented by risk averse agents with CRRA.

e Utility: U=1-— e*a’"t?, where T’Z dgnotes .the rate of
return of the jth HF, i.e. v/ = (W} — Wj_,)/ Wi_,.

@ Each HF receives a private noisy signal V = V + €.

o V the fundamental value of the risky asset.
@ €5~ N(0,0’;)
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Hedge Funds

Hedge Funds Il

e HFs are represented by risk averse agents with CRRA.

o Utility: U=1—c¢ —orl where 7‘7 denotes the rate of
return of the jth HF, i.e. v/ = (W} — Wi )/ W_,.

@ Each HF receives a private noisy 5|gna| V =V +e.
o V the fundamental value of the risky asset.

(4] 6]' ~ N(O O'6~).
Their wealth at each period is W/ = Dip, + CV.
° Di, demand for the risky asset.
@ p;, price.
o C/, amount of risk-free asset (cash).
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Hedge Funds

Funds

The maximization yields

D{ ao Wtjv m:V_pt (2)

@ Demand is capped by X = Dlp,/ W/ < A,

Amax the maximum allowed leverage set externally.
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The Model
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Hedge Funds

Price

@ The wealth of a HF evolves according to
Wi = Wi+ (pa — p) D] — F (3)
° th managerial fees following the 1/10 rule:
Fl =~ (Wey + 10max { W), — Wi,,0})  (4)

@ The price of the risky asset is determined by the market
clearance condition

n

D*(p:) +Y_ Di(p:) = N. (5)

J=1
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What is Clustering?

If defaults are clustered, then C'(t) decays such that the sum
of the autocorrelation function over the lag variable diverges
(Baillie, 1996; Samorodnitsky, 2007). Thus,
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What is Clustering?

If defaults are clustered, then C'(t) decays such that the sum
of the autocorrelation function over the lag variable diverges
(Baillie, 1996; Samorodnitsky, 2007). Thus,

Definition

Let C(t') denote the autocorrelation of the time series of
defaults, with ¢’ being the lag variable. Defaults are clustered
iff

0

SOt ~ / C(t)dt' — oo. (6)
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Results
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Results

Theorem

Consider an exponential density function P(T; 1),
parametrized by pn € R.. If pu is itself a random variable with a
density function p(y), and p(u) in a neighbourhood of 0 can
be expanded in a power series of the form

plp) = Z et 4+ Ryy1(p), where v > —1, then the
leading order behaviour for T — oo of the aggregate
probability function is P(7) oc 7= t*+%) where k is the order

of the first non-zero term of the power series expansion of
p(p) for  — 04 (exhibits a power-law tail).
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Proof.

The aggregate density can be viewed as the Laplace transform L [.] of the function
o(n) = pW(p), with respect to p. Hence,

P(u) = L1o(w)] (v) = / 6 (1) exp(—pr) dp. )
0

Watson's Lemma (Debnath and Bhatta, 2007):

"~ Da+k+1) 1
Lulfwl )~ Y bt v o (). (8)
k=0
Therefore,
- 1 1
P(r) o vtz +0 (Tk+u+3) : (9)
O
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Mathematical Statements

Autocorrelation

Results

Theorem

Let T,, e Ry, n >0, be a sequence gf i.d.d. random variables. Assume
that the probability density function P(T, = 1) oc 7=%, for 7 — oo.
Consider now the renewal process S, = 3 T;. Let Y (t) = 1,4 (Sn),

i=0
where 14 : R — {0,1} denotes the indicator function, satisfying

1.— 1 : z€d
A710 : z¢A

If2 < a < 3, then the autocorrelation function of Y (t), for t — oo
decays as

c(t) o« /> (10)
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Mathematical Statements
Proof.
A renewal process is ergodic:
C(t') < lim E YiYiiw. (11)
K—oo K

The correlation function can then be expressed in terms of the aggregate density
(Procaccia and Schuster, 1983; Schuster and Just, 2006):

t/
= O =7)P(r) +dr0. (12)

T=0

fo3, 2<a<3
[log(f)l, a=3 . (13)
const., a>3

<1
XX

F{C)}

Results
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Numerical results

Failure Function — Microscopic Level
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Numerical results

After Aggregation
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Numerical results

Clustering of Defaults

Asymmetric and Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics
stemming from the heterogeneity of the market, is the absence
of a characteristic time-scale for the occurrence of defaults
(scale-free asymptotic behaviour).
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Numerical results

Clustering of Defaults

Asymmetric and Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics
stemming from the heterogeneity of the market, is the absence
of a characteristic time-scale for the occurrence of defaults
(scale-free asymptotic behaviour).

e Fitting the aggregate distribution we obtain
P(r) ~ 73,

@ According to Theorem 2, the autocorrelation function
decays as,

C(t/) ~ t/—1/3. (14)
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Autocorrelation Function

100

Results 22/33



Results
00000000

Numerical results

Better Information for All
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Numerical results

Non-Normal Returns
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Numerical results

Clustered Volatility
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Results

Intermittency

Deterministic Description

@ All statistical properties of default events can be replicated by a
very simple deterministic map.

Typ1 = 2 +uzf mod 1, z> 1. (15)

@ Characteristic behaviour: The evolution of w; is regular close to the
vicinity of 0 (marginally unstable fixed point) and chaotic away
from it = Random alternation between almost regular and chaotic
dynamics.

e Regular motion — Laminar phase.
e Chaotic motion — Turbulent phase.
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Results

Intermittency

Deterministic Description Il

@ The distribution of waiting times between transition from
the laminar to the turbulent phase follows a power-law
(Schuster and Just, 2006).

p(r) o777, (16)
@ Also, the autocorrelation function of x; decays
algebraically
C(t) x 51, 3/2< 2 < 2. (17)
Setting z = Z, and mapping the:

e HFs Active — Laminar phase.
e Default events — Turbulent phase.
plt) ~ 7T, O = ¢ (18)
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Conclusions
[ 1]

@ We assume that the heterogeneity of the agents stems
from the HFs’ different quality of the mispricing signals
they receive.

@ We show that the failure function of the HFs is
qualitatively different when observed on the micro and
the aggregate level.

@ We also show that the scale-free property of the emergent
statistics on the aggregate level is directly connected with
the clustering of defaults.
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Which is the Real Cause?

Conclusions

... A crucial part of my story is heterogeneity
between investors. .. But an important difference is
that | do not invoke any asymmetric

information. . . Of course, the asymmetric information
revolution in economics was a tremendous advance,
and asymmetric information plays a critical role in
many lender-borrower relationships; sometimes,
however, the profession becomes obsessed with

it. .. (Geanakoplos, 2010a)
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