Introduction	The Model	Results	Conclusions	References

1+1=2? Well, think again...

A. K. Karlis^{1,3} G. Galanis² S. Terovitis² M. S. Turner^{1,3}

¹Department of Physics, University of Warwick, UK. ²Department of Economics, University of Warwick, UK. ³Complexity Center, University of Warwick, UK.

Introduction	The Model	Results	Conclusions	References
000000				

Empirical Motivation

- Boyson et al. (2010) analysed data on the returns of eight different Hedge Fund styles from January 1990 to October 2008.
- They concluded that the worst hedge fund returns, defined as returns that fall in the bottom 10% of a hedge fund style's monthly returns, show higher correlation than expected from economic fundamentals (contagion).

Introduction ○●○○○○○	The Model	Results	Conclusions	References

Theoretical Insight

- Contagion is linked with liquidity shocks, in support for the mechanism proposed by Brunnermeier and Pedersen (2009).
- Brunnermeier and Pedersen (2009) links an asset's market liquidity and traders' funding liquidity.
- Traders provide market liquidity, and their ability to do so depends on their availability of funding.
- Conversely, traders' funding, depends on the assets' market liquidity.
- Thus, there is a reinforcing mechanism at play leading to liquidity spirals.

Introduction ○●○○○○○	The Model	Results	Conclusions	References
TI .				
I heoret	ical Insight			

- Contagion is linked with liquidity shocks, in support for the mechanism proposed by Brunnermeier and Pedersen (2009).
- Brunnermeier and Pedersen (2009) links an asset's market liquidity and traders' funding liquidity.
- Traders provide market liquidity, and their ability to do so depends on their availability of funding.
- Conversely, traders' funding, depends on the assets' market liquidity.
- Thus, there is a reinforcing mechanism at play leading to liquidity spirals.

Introduction 000000	The Model	Results	Conclusions	References
Theoretic	cal Insight	:		

- Contagion is linked with liquidity shocks, in support for the mechanism proposed by Brunnermeier and Pedersen (2009).
- Brunnermeier and Pedersen (2009) links an asset's market liquidity and traders' funding liquidity.
- Traders provide market liquidity, and their ability to do so depends on their availability of funding.
- Conversely, traders' funding, depends on the assets' market liquidity.
- Thus, there is a reinforcing mechanism at play leading to liquidity spirals.

Introduction ○●○○○○○	The Model	Results	Conclusions	References
Theoreti	cal Insight	;		

- Contagion is linked with liquidity shocks, in support for the mechanism proposed by Brunnermeier and Pedersen (2009).
- Brunnermeier and Pedersen (2009) links an asset's market liquidity and traders' funding liquidity.
- Traders provide market liquidity, and their ability to do so depends on their availability of funding.
- Conversely, traders' funding, depends on the assets' market liquidity.
- Thus, there is a reinforcing mechanism at play leading to liquidity spirals.

Introduction ○●○○○○○	The Model	Results	Conclusions	References
Therese	and the states			
I heoret	ical Insight			

- Contagion is linked with liquidity shocks, in support for the mechanism proposed by Brunnermeier and Pedersen (2009).
- Brunnermeier and Pedersen (2009) links an asset's market liquidity and traders' funding liquidity.
- Traders provide market liquidity, and their ability to do so depends on their availability of funding.
- Conversely, traders' funding, depends on the assets' market liquidity.
- Thus, there is a reinforcing mechanism at play leading to liquidity spirals.

Introduction ○●○○○○○	The Model	Results	Conclusions	References
Therese	and the states			
I heoret	ical Insight			

- Contagion is linked with liquidity shocks, in support for the mechanism proposed by Brunnermeier and Pedersen (2009).
- Brunnermeier and Pedersen (2009) links an asset's market liquidity and traders' funding liquidity.
- Traders provide market liquidity, and their ability to do so depends on their availability of funding.
- Conversely, traders' funding, depends on the assets' market liquidity.
- Thus, there is a reinforcing mechanism at play leading to liquidity spirals.

Introduction	The Model	Results	Conclusions	References
Relevan	t Literatur	<u>م</u>		

 The mechanism proposed by Brunnermeier and Pedersen (2009) is related to the so-called "Leverage Cycle"(Geanakoplos, 1997, 2010a,b; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

The Leverage Cycle

- Leverage becomes too high in boom times, and too low in bad times.
- As a result, in boom times asset prices are too high, and in crisis times they are too low.

Introduction 000000	The Model	Results	Conclusions	References
Relevant I	iterature			

 The mechanism proposed by Brunnermeier and Pedersen (2009) is related to the so-called "Leverage Cycle"(Geanakoplos, 1997, 2010a,b; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

The Leverage Cycle

- Leverage becomes too high in boom times, and too low in bad times.
- As a result, in boom times asset prices are too high, and in crisis times they are too low.

Introduction	The Model	Results	Conclusions	References
Relevant I	iterature			

• The mechanism proposed by Brunnermeier and Pedersen (2009) is related to the so-called "Leverage Cycle"(Geanakoplos, 1997, 2010a,b; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

The Leverage Cycle

- Leverage becomes too high in boom times, and too low in bad times.
- As a result, in boom times asset prices are too high, and in crisis times they are too low.

Introduction	The Model	Results	Conclusions	References
Relevant I	iterature			

• The mechanism proposed by Brunnermeier and Pedersen (2009) is related to the so-called "Leverage Cycle"(Geanakoplos, 1997, 2010a,b; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

The Leverage Cycle

- Leverage becomes too high in boom times, and too low in bad times.
- As a result, in boom times asset prices are too high, and in crisis times they are too low.

Introduction	The Model	Results	Conclusions	References
Relevant I	iterature			

• The mechanism proposed by Brunnermeier and Pedersen (2009) is related to the so-called "Leverage Cycle" (Geanakoplos, 1997, 2010a,b; Thurner et al., 2012; Poledna et al., 2014).

The leverage cycle in a nutshell:

The Leverage Cycle

- Leverage becomes too high in boom times, and too low in bad times.
- As a result, in boom times asset prices are too high, and in crisis times they are too low.

Introduction	The Model	Results	Conclusions	References
Motivation	า			

Driving Questions:

- The link between heterogeneity and the clustering of defaults.
- Is a deterministic (non-linear) description of the default process feasible?

Introduction	The Model	Results	Conclusions	References
Motivatior	า			

Driving Questions:

- The link between heterogeneity and the clustering of defaults.
- Is a deterministic (non-linear) description of the default process feasible?

Introduction	The Model	Results	Conclusions	References
Motivatior	ı			

Driving Questions:

- The link between heterogeneity and the clustering of defaults.
- Is a deterministic (non-linear) description of the default process feasible?

Introduction	The Model	Results	Conclusions	References
The Econ	omy			

- Traders have a choice between owning a risky and risk-free asset.
- Two kinds of traders:
 - Noise traders.
 - 2 Hedge funds (HF). (Receive a private noisy signal. Signal precision varies among HFs).
- Credit: The HFs can increase the size of their long position by borrowing from a bank using the asset as collateral.

Introduction	The Model	Results	Conclusions	References
The Econ	omy			

- Traders have a choice between owning a risky and risk-free asset.
- Two kinds of traders:
 - Noise traders.
 - Hedge funds (HF). (Receive a private noisy signal. Signal precision varies among HFs).
- Credit: The HFs can increase the size of their long position by borrowing from a bank using the asset as collateral.

Introduction	The Model	Results	Conclusions	References
The Econ	iomy			

- Traders have a choice between owning a risky and risk-free asset.
- Two kinds of traders:
 - Noise traders.
 - Hedge funds (HF). (Receive a private noisy signal. Signal precision varies among HFs).
- Credit: The HFs can increase the size of their long position by borrowing from a bank using the asset as collateral.

Introduction 0000000	The Model	Results	Conclusions	References
Key Resul	ts			

- The distribution of waiting times between defaults (WTBD) is qualitatively different on the micro and macro level.
 - Interpretent State And A State And A State A State
 - **2** After aggregation: Power-law \Rightarrow Scale invariance.

Introduction 0000000	The Model	Results	Conclusions	References
Key Resul	ts			

- The distribution of waiting times between defaults (WTBD) is qualitatively different on the micro and macro level.
 - Interpretent State And State And
 - 2 After aggregation: Power-law \Rightarrow Scale invariance.

Introduction	The Model	Results	Conclusions	References
Key Resul	ts			

- The distribution of waiting times between defaults (WTBD) is qualitatively different on the micro and macro level.
 - Microscopic level: Exponentially distributed ⇒ Poisson process.
 - **2** After aggregation: Power-law \Rightarrow Scale invariance.

Introduction	The Model	Results	Conclusions	References
000000				

- The emergence of a fat-tailed distribution of WTBD on the aggregate level leads to clustering of defaults.
- The bursty character of the occurance of defaults allows a *deterministic* description of the time-sequence of defaults.
- The statistical properties of the default process, as viewed on the aggregate level, can be accurately described by an Intermittent (type III) process.

Introduction	The Model	Results	Conclusions	References
000000				

- The emergence of a fat-tailed distribution of WTBD on the aggregate level leads to clustering of defaults.
- The bursty character of the occurance of defaults allows a *deterministic* description of the time-sequence of defaults.
- The statistical properties of the default process, as viewed on the aggregate level, can be accurately described by an Intermittent (type III) process.

Introduction	The Model	Results	Conclusions	References
0000000				

- The emergence of a fat-tailed distribution of WTBD on the aggregate level leads to clustering of defaults.
- The bursty character of the occurance of defaults allows a *deterministic* description of the time-sequence of defaults.
- The statistical properties of the default process, as viewed on the aggregate level, can be accurately described by an Intermittent (type III) process.

Introduction	The Model	Results	Conclusions	References
000000	00000	000000000000000	00	

- The emergence of a fat-tailed distribution of WTBD on the aggregate level leads to clustering of defaults.
- The bursty character of the occurance of defaults allows a *deterministic* description of the time-sequence of defaults.
- The statistical properties of the default process, as viewed on the aggregate level, can be accurately described by an Intermittent (type III) process.

Introduction	The Model	Results	Conclusions	References
	00000			
Noise Traders				
Noise Tr	raders			

- The demand *d^{nt}* of the representative noise-trader for the risky asset, in terms of cash value, is assumed to follow an AR(1) mean-reverting process (Xiong, 2001; Thurner et al., 2012; Poledna et al., 2014).
- Thus, the demand (in cash value) $d_t^{nt} = D^{nt}p_t$ of the NTs follows

$$\log d_t^{nt} = \rho \log d_{t-1}^{nt} + \sigma^{nt} \chi_t + (1 - \rho) \log(VN).$$
 (1)

where $\chi_t = N(0, 1)$ and $\rho \in (-1, 1)$.

Introduction	The Model	Results	Conclusions	References
	00000			
Noise Traders				
Noise T	raders			

- The demand *d^{nt}* of the representative noise-trader for the risky asset, in terms of cash value, is assumed to follow an AR(1) mean-reverting process (Xiong, 2001; Thurner et al., 2012; Poledna et al., 2014).
- Thus, the demand (in cash value) $d_t^{nt} = D^{nt}p_t$ of the NTs follows

$$\log d_t^{nt} = \rho \log d_{t-1}^{nt} + \sigma^{nt} \chi_t + (1 - \rho) \log(VN).$$
 (1)

where $\chi_t = N(0, 1)$ and $\rho \in (-1, 1)$.

Introduction	The Model ○●○○○	Results	Conclusions	References
Hedge Funds				
Hedge F	unds I			

The Model

Introduction	The Model	Results	Conclusions	References
0000000	00000	000000000000000000	00	
Hedge Funds				
Hedge F	unds II			

- HFs are represented by risk averse agents with CRRA.
- Utility: $U = 1 e^{-\alpha r_t^j}$, where r_t^j denotes the rate of return of the *j*th HF, i.e. $r_t^j = (W_t^j W_{t-1}^j)/W_{t-1}^j$.
- Each HF receives a private noisy signal $\tilde{V} = V + \epsilon_j$.
 - V the fundamental value of the risky asset.
 - $\epsilon_j \sim \mathsf{N}(0, \sigma_j^{\epsilon}).$

- D_t^j , demand for the risky asset.
- p_t , price.
- C_t^j , amount of risk-free asset (cash).

Introduction	The Model ○○●○○	Results	Conclusions	References
Hedge Funds				
Hedge F	unds II			

- HFs are represented by risk averse agents with CRRA.
- Utility: $U = 1 e^{-\alpha r_t^j}$, where r_t^j denotes the rate of return of the *j*th HF, i.e. $r_t^j = (W_t^j W_{t-1}^j)/W_{t-1}^j$.

• Each HF receives a private noisy signal $\tilde{V} = V + \epsilon_j$.

• V the fundamental value of the risky asset.

• $\epsilon_j \sim \mathsf{N}(0, \sigma_j^{\epsilon}).$

- D_t^j , demand for the risky asset.
- p_t , price.
- C_t^j , amount of risk-free asset (cash).

Introduction	The Model ○○●○○	Results	Conclusions	References
Hedge Funds				
Hedge F	unds II		T V	HE UNIVERSITY OF

- HFs are represented by risk averse agents with CRRA.
- Utility: $U = 1 e^{-\alpha r_t^j}$, where r_t^j denotes the rate of return of the *j*th HF, i.e. $r_t^j = (W_t^j W_{t-1}^j)/W_{t-1}^j$.
- Each HF receives a private noisy signal $\tilde{V} = V + \epsilon_j$.
 - V the fundamental value of the risky asset.
 - $\epsilon_j \sim \mathsf{N}(0, \sigma_j^{\epsilon}).$

- D_t^j , demand for the risky asset.
- p_t , price.
- C_t^j , amount of risk-free asset (cash).

Introduction	The Model ○○●○○	Results	Conclusions	References
Hedge Funds				
Hedge F	unds II			

- HFs are represented by risk averse agents with CRRA.
- Utility: $U = 1 e^{-\alpha r_t^j}$, where r_t^j denotes the rate of return of the *j*th HF, i.e. $r_t^j = (W_t^j W_{t-1}^j)/W_{t-1}^j$.
- Each HF receives a private noisy signal $\tilde{V} = V + \epsilon_j$.
 - V the fundamental value of the risky asset.
 - $\epsilon_j \sim \mathsf{N}(0, \sigma_j^{\epsilon}).$

- D_t^j , demand for the risky asset.
- p_t , price.
- C_t^j , amount of risk-free asset (cash).

Introduction	The Model ○○○●○	Results	Conclusions	References
Hedge Funds				
Funds				

The maximization yields

$$D_t^j = \frac{m}{\alpha \sigma_j^2} W_t^j, \quad m = V - p_t.$$
⁽²⁾

• Demand is capped by $\lambda^j = D_t^j p_t / W_t^j \le \lambda_{\max}$, λ_{\max} the maximum allowed leverage set externally.

Introduction	The Model	Results	Conclusions	References
0000000	00000	0000000000000000	00	
Hedge Funds				
- ·				
Price				
1 1100				

• The wealth of a HF evolves according to

$$W_{t+1}^{j} = W_{t}^{j} + (p_{t+1} - p_{t})D_{t}^{j} - F_{t}^{j}$$
(3)

• F_t^j , managerial fees following the 1/10 rule:

$$F_t^j = \gamma \left(W_{t-1} + 10 \max \left\{ W_{t-1}^j - W_{t-2}^j, 0 \right\} \right)$$
(4)

 The price of the risky asset is determined by the market clearance condition

$$D_t^{\mathsf{nt}}(p_t) + \sum_{j=1}^n D_t^j(p_t) = N.$$
 (5)

Introduction	The Model	Results •••••	Conclusions	References	
Mathematical Statements					
What is C	lustering?				

If defaults are clustered, then C(t') decays such that the sum of the autocorrelation function over the lag variable diverges (Baillie, 1996; Samorodnitsky, 2007). Thus,

Definition

Let C(t') denote the autocorrelation of the time series of defaults, with t' being the lag variable. Defaults are clustered iff

$$\sum_{t'=0}^{\infty} C(t') \approx \int_0^{\infty} C(t') dt' \to \infty.$$
 (6)

Introduction	The Model	Results •••••	Conclusions	References
Mathematical Statement	s			
What is C	lustering?			

If defaults are clustered, then C(t') decays such that the sum of the autocorrelation function over the lag variable diverges (Baillie, 1996; Samorodnitsky, 2007). Thus,

Definition

Let C(t') denote the autocorrelation of the time series of defaults, with t' being the lag variable. Defaults are clustered iff

$$\sum_{t'=0}^{\infty} C(t') \approx \int_0^{\infty} C(t') dt' \to \infty.$$
 (6)

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Mathematical Statements				

Theorem

Consider an exponential density function $P(\tau; \mu)$, parametrized by $\mu \in \mathbb{R}_+$. If μ is itself a random variable with a density function $\rho(\mu)$, and $\rho(\mu)$ in a neighbourhood of 0 can be expanded in a power series of the form $ho(\mu) = \mu^{
u} \sum_{k=0}^{n} c_k \mu^k + R_{n+1}(\mu)$, where u > -1, then the leading order behaviour for $\tau \to \infty$ of the aggregate probability function is $\tilde{P}(\tau) \propto \tau^{-(2+\nu+k)}$, where k is the order of the first non-zero term of the power series expansion of $\rho(\mu)$ for $\mu \to 0_+$ (exhibits a power-law tail).

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Mathematical Statements				

Proof.

The aggregate density can be viewed as the Laplace transform $\mathcal{L}[.]$ of the function $\phi(\mu) \equiv \mu W(\mu)$, with respect to μ . Hence,

$$\tilde{P}(\mu) \equiv \mathcal{L}\left[\phi(\mu)\right](\tau) = \int_0^\infty \phi(\mu) \exp(-\mu\tau) d\mu.$$
(7)

Watson's Lemma (Debnath and Bhatta, 2007):

$$\mathcal{L}_{\mu}\left[f(\mu)\right](\tau) \sim \sum_{k=0}^{n} b_{k} \frac{\Gamma(a+k+1)}{\tau^{a+k+1}} + O\left(\frac{1}{\tau^{a+n+2}}\right).$$
(8)

Therefore,

$$\tilde{P}(\tau) \propto \frac{1}{\tau^{k+\nu+2}} + O\left(\frac{1}{\tau^{k+\nu+3}}\right).$$
(9)

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Mathematical State	ements			
Autocor	rolation			

Theorem

COLLEIGTION

Let $T_n \in \mathbb{R}_+$, $n \ge 0$, be a sequence of i.d.d. random variables. Assume that the probability density function $\tilde{P}(T_n = \tau) \propto \tau^{-\alpha}$, for $\tau \to \infty$. Consider now the renewal process $S_n = \sum_{i=0}^n T_i$. Let $Y(t) = 1_{[0,t]}(S_n)$, where $1_A : \mathbb{R} \to \{0,1\}$ denotes the indicator function, satisfying

$$1_A = \begin{cases} 1 & : x \in A \\ 0 & : x \notin A \end{cases}$$

If $2 < \alpha \leq 3$, then the autocorrelation function of Y(t), for $t \to \infty$ decays as

$$C(t') \propto {t'}^{2-\alpha} \tag{10}$$

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Mathematical Statements				

Proof.

A renewal process is ergodic:

$$C(t') \propto \lim_{K \to \infty} \frac{1}{K} \sum_{t=0}^{K} Y_t Y_{t+t'}.$$
(11)

The correlation function can then be expressed in terms of the aggregate density (Procaccia and Schuster, 1983; Schuster and Just, 2006):

$$C(t') = \sum_{\tau=0}^{t'} C(t'-\tau)\tilde{P}(\tau) + \delta_{\tau,0}.$$
 (12)

$$\mathcal{F}\{C(t')\} \overset{f \ll 1}{\propto} \begin{cases} f^{a-3}, & 2 < a < 3\\ |\log(f)|, & a = 3\\ \operatorname{const.}, & a > 3 \end{cases}$$
(13)

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Numerical results				

Failure Function — Microscopic Level

Results

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Numerical results				

After Aggregation

Results

Introduction	The Model	Results	Conclusions	References
	00000		00	

Clustering of Defaults

Asymmetric and Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics stemming from the heterogeneity of the market, is the absence of a characteristic time-scale for the occurrence of defaults (scale-free asymptotic behaviour).

- Fitting the aggregate distribution we obtain $\tilde{P}(\tau) \sim \tau^{-(7/3)}$.
- According to Theorem 2, the autocorrelation function decays as,

$$C(t') \sim t'^{-1/3}$$
. (14)

Introduction	The Model	Results	Conclusions	References
0000000	00000	000000000000000000000000000000000000000	00	
Numerical results				

Clustering of Defaults

Asymmetric and Information Leads to Clustering of Defaults

An important effect of the emergent heavy-tail statistics stemming from the heterogeneity of the market, is the absence of a characteristic time-scale for the occurrence of defaults (scale-free asymptotic behaviour).

- Fitting the aggregate distribution we obtain $\tilde{P}(\tau) \sim \tau^{-(7/3)}$.
- According to Theorem 2, the autocorrelation function decays as,

$$C(t') \sim t'^{-1/3}$$
. (14)

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Numerical results				

Autocorrelation Function

Results

Introduction	The Model	Results	Conclusions	References
Numerical results				

Better Information for All

Results

Introduction The Wodel Results Conclusions	References

Introduction	The Model	Results	Conclusions	References
		0000000000000000		
Numerical results				

Non-Normal Returns

Introduction	The Model	Results ○○○○○○○○○○○	Conclusions	References
Numerical results				

Clustered Volatility

Results

Introduction	The Model	Results ○○○○○○○○○○●○○	Conclusions	References
Intermittency				
Determi	nistic Desc	cription		

• All statistical properties of default events can be replicated by a very simple deterministic map.

$$x_{t+1} = x_t + ux_t^z \mod 1, \ z > 1. \tag{15}$$

- Characteristic behaviour: The evolution of x_t is regular close to the vicinity of 0 (marginally unstable fixed point) and chaotic away from it \Rightarrow Random alternation between almost regular and chaotic dynamics.
 - Regular motion \rightarrow Laminar phase.
 - Chaotic motion \rightarrow Turbulent phase.

Introduction	The Model	Results	Conclusions	References
		000000000000000000000000000000000000000		
Intermittency				

Deterministic Description II

Introduction	The Model	Results ○○○○○○○○○○○○○○○	Conclusions	References
Intermittency				
Determi	nistic Desc	cription III		

• The distribution of waiting times between transition from the laminar to the turbulent phase follows a power-law (Schuster and Just, 2006).

$$\rho(\tau) \propto \tau^{-\frac{z}{z-1}},\tag{16}$$

• Also, the autocorrelation function of x_t decays algebraically

$$C(t') \propto t'^{\frac{z-2}{z-1}}, \ 3/2 \le z < 2.$$
 (17)

Setting $z = \frac{7}{4}$, and mapping the:

- HFs Active \rightarrow Laminar phase.
- Default events \rightarrow Turbulent phase.

$$\rho(t) \sim \tau^{-7/3}, \ C(t') = t'^{-1/3}$$
(18)

Introduction	The Model	Results	Conclusions	References
			•0	

- We assume that the heterogeneity of the agents stems from the HFs' different quality of the mispricing signals they receive.
- We show that the failure function of the HFs is qualitatively different when observed on the micro and the aggregate level.
- We also show that the scale-free property of the emergent statistics on the aggregate level is directly connected with the clustering of defaults.

Introduction	The Model	Results 000000000000000	Conclusions ○●	References

Which is the Real Cause?

... A crucial part of my story is heterogeneity between investors... But an important difference is that I do not invoke any asymmetric information... Of course, the asymmetric information revolution in economics was a tremendous advance, and asymmetric information plays a critical role in many lender-borrower relationships; sometimes, however, the profession becomes obsessed with it... (Geanakoplos, 2010a)

Introduction	The Model	Results	Conclusions	References
Referenc	es l			

- Baillie, R. T., 1996. Long memory processes and fractional integration in econometrics. Journal of Econometrics 73 (1), 5 59.
- Boyson, N. M., Stahel, C. W., Stulz, R. M., 2010. Hedge fund contagion and liquidity shocks. Journal of Finance 65 (5), 1789–1816.
- Brunnermeier, M. K., Pedersen, L. H., June 2009. Market Liquidity and Funding Liquidity. Review of Financial Studies, Society for Financial Studies 22 (6), 2201–2238.
- Debnath, L., Bhatta, D., 2007. Integral transforms and their applications. Chapman & Hall/CRC.
- Geanakoplos, J., 1997. The economy as an evolving complex system II. Vol. 28. Addison-Wesley Reading, MA.
- Geanakoplos, J., 2010a. The leverage cycle. In: NBER Macroeconomics Annual 2009, Volume 24. National Bureau of Economic Research, Inc, pp. 1–65.
- Geanakoplos, J., 2010b. Solving the present crisis and managing the leverage cycle (Aug), 101–131.

Introduction	The Model	Results	Conclusions	References
Referenc	es II			

- Poledna, S., Thurner, S., Farmer, J. D., Geanakoplos, J., 2014. Leverage-induced systemic risk under Basle II and other credit risk policies. Journal of Banking & Finance 42 (C), 199–212.
- Procaccia, I., Schuster, H.-G., 1983. Functional renormalization-group theory of universal 1/f noise in dynamical systems. Physical Review A 28, 1210.
- Samorodnitsky, G., Jan. 2007. Long range dependence. Found. Trends. Stoch. Sys. 1 (3), 163–257.
- Schuster, H., Just, W., 2006. Deterministic Chaos: An Introduction. Wiley.
- Thurner, S., Farmer, J. D., Geanakoplos, J., 2012. Leverage causes fat tails and clustered volatility. Quantitative Finance 12, 695,707.
- Xiong, W., 2001. Convergence trading with wealth effects: an amplification mechanism in financial markets. Journal of Financial Economics 62 (2), 247–292.