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Empirical Motivation

Boyson et al. (2010) analysed data on the returns of eight
different Hedge Fund styles from January 1990 to
October 2008.
They concluded that the worst hedge fund returns,
defined as returns that fall in the bottom 10% of a hedge
fund style’s monthly returns, show higher correlation than
expected from economic fundamentals (contagion).
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Theoretical Insight

Contagion is linked with liquidity shocks, in support for
the mechanism proposed by Brunnermeier and Pedersen
(2009).
Brunnermeier and Pedersen (2009) links an asset’s
market liquidity and traders’ funding liquidity.
Traders provide market liquidity, and their ability to do so
depends on their availability of funding.
Conversely, traders’ funding, depends on the assets’
market liquidity.
Thus, there is a reinforcing mechanism at play leading to
liquidity spirals.
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Relevant Literature

The mechanism proposed by Brunnermeier and Pedersen
(2009) is related to the so-called “Leverage
Cycle”(Geanakoplos, 1997, 2010a,b; Thurner et al., 2012;
Poledna et al., 2014).

The leverage cycle in a nutshell:
The Leverage Cycle
The pro-cyclical expansion and contraction of credit supply.

Leverage becomes too high in boom times, and too low in
bad times.
As a result, in boom times asset prices are too high, and
in crisis times they are too low.
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Motivation

Driving Questions:
1 The link between heterogeneity and the clustering of

defaults.
2 Is a deterministic (non-linear) description of the default

process feasible?
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The Economy

Traders have a choice between owning a risky and
risk-free asset.
Two kinds of traders:

1 Noise traders.
2 Hedge funds (HF). (Receive a private noisy signal.

Signal precision varies among HFs).
Credit: The HFs can increase the size of their long
position by borrowing from a bank using the asset as
collateral.
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Key Results

The distribution of waiting times between defaults
(WTBD) is qualitatively different on the micro and macro
level.

1 Microscopic level: Exponentially distributed ⇒ Poisson
process.

2 After aggregation: Power-law ⇒ Scale invariance.
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Fat-tail, so what?

Consequences of the fat-tail

The emergence of a fat-tailed distribution of WTBD on
the aggregate level leads to clustering of defaults.
The bursty character of the occurance of defaults allows a
deterministic description of the time-sequence of defaults.

The statistical properties of the default process, as viewed
on the aggregate level, can be accurately described by an
Intermittent (type III) process.
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Noise Traders

Noise Traders

The demand dnt of the representative noise-trader for the
risky asset, in terms of cash value, is assumed to follow
an AR(1) mean-reverting process (Xiong, 2001; Thurner
et al., 2012; Poledna et al., 2014).
Thus, the demand (in cash value) dnt

t = Dntpt of the NTs
follows

log dnt
t = ρ log dnt

t−1 + σntχt + (1− ρ) log(VN ). (1)

where χt = N (0, 1) and ρ ∈ (−1, 1).
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Hedge Funds
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Hedge Funds

Hedge Funds II

HFs are represented by risk averse agents with CRRA.
Utility: U = 1− e−αr j

t , where r j
t denotes the rate of

return of the jth HF, i.e. r j
t = (W j

t −W j
t−1)/W j

t−1.
Each HF receives a private noisy signal Ṽ = V + εj .

V the fundamental value of the risky asset.
εj ∼ N(0, σεj ).

Their wealth at each period is W j
t = Dj

t pt + C j
t .

Dj
t , demand for the risky asset.

pt , price.
C j

t , amount of risk-free asset (cash).
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Hedge Funds

Funds

The maximization yields

Dj
t = m

ασ2
j
W j

t , m = V − pt . (2)

Demand is capped by λj = Dj
t pt/W j

t ≤ λmax,
λmax the maximum allowed leverage set externally.
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Hedge Funds

Price

The wealth of a HF evolves according to

W j
t+1 = W j

t + (pt+1 − pt)Dj
t − F j

t (3)

F j
t , managerial fees following the 1/10 rule:

F j
t = γ

(
Wt−1 + 10 max

{
W j

t−1 −W j
t−2, 0

})
(4)

The price of the risky asset is determined by the market
clearance condition

Dnt
t (pt) +

n∑
j=1

Dj
t (pt) = N . (5)
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Mathematical Statements

What is Clustering?

If defaults are clustered, then C (t ′) decays such that the sum
of the autocorrelation function over the lag variable diverges
(Baillie, 1996; Samorodnitsky, 2007). Thus,

Definition
Let C (t ′) denote the autocorrelation of the time series of
defaults, with t ′ being the lag variable. Defaults are clustered
iff ∞∑

t′=0
C (t ′) ≈

∫ ∞
0

C (t ′)dt ′ →∞. (6)
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Mathematical Statements

Theorem
Consider an exponential density function P(τ ;µ),
parametrized by µ ∈ R+. If µ is itself a random variable with a
density function ρ(µ), and ρ(µ) in a neighbourhood of 0 can
be expanded in a power series of the form
ρ(µ) = µν

n∑
k=0

ckµ
k + Rn+1(µ), where ν > −1, then the

leading order behaviour for τ →∞ of the aggregate
probability function is P̃(τ) ∝ τ−(2+ν+k), where k is the order
of the first non-zero term of the power series expansion of
ρ(µ) for µ→ 0+ (exhibits a power-law tail).
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Mathematical Statements

Proof.
The aggregate density can be viewed as the Laplace transform L [.] of the function
φ(µ) ≡ µW (µ), with respect to µ. Hence,

P̃(µ) ≡ L [φ(µ)] (τ) =
∫ ∞

0
φ(µ) exp(−µτ)dµ. (7)

Watson’s Lemma (Debnath and Bhatta, 2007):

Lµ [f (µ)] (τ) ∼
n∑

k=0

bk
Γ(a + k + 1)
τa+k+1 + O

( 1
τa+n+2

)
. (8)

Therefore,
P̃(τ) ∝

1
τk+ν+2 + O

( 1
τk+ν+3

)
. (9)
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Mathematical Statements

Autocorrelation

Theorem
Let Tn ∈ R+, n ≥ 0, be a sequence of i.d.d. random variables. Assume
that the probability density function P̃(Tn = τ) ∝ τ−α, for τ →∞.
Consider now the renewal process Sn =

n∑
i=0

Ti . Let Y (t) = 1[0,t] (Sn),

where 1A : R→ {0, 1} denotes the indicator function, satisfying

1A =
{

1 : x ∈ A
0 : x /∈ A

If 2 < α ≤ 3, then the autocorrelation function of Y (t), for t →∞
decays as

C (t′) ∝ t′2−α (10)
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Mathematical Statements

Proof.
A renewal process is ergodic:

C(t′) ∝ lim
K→∞

1
K

K∑
t=0

YtYt+t′ . (11)

The correlation function can then be expressed in terms of the aggregate density
(Procaccia and Schuster, 1983; Schuster and Just, 2006):

C(t′) =
t′∑
τ=0

C(t′ − τ)P̃(τ) + δτ,0. (12)

F{C(t′)}
f�1
∝

{
f a−3, 2 < a < 3
| log(f )|, a = 3
const., a > 3

. (13)
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Numerical results

Failure Function — Microscopic Level
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Numerical results

After Aggregation
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Numerical results

Clustering of Defaults

Asymmetric and Information Leads to Clustering of Defaults
An important effect of the emergent heavy-tail statistics
stemming from the heterogeneity of the market, is the absence
of a characteristic time-scale for the occurrence of defaults
(scale-free asymptotic behaviour).

Fitting the aggregate distribution we obtain
P̃(τ) ∼ τ−(7/3).
According to Theorem 2, the autocorrelation function
decays as,

C (t ′) ∼ t ′−1/3
. (14)

Results 21/33



Introduction The Model Results Conclusions References

Numerical results

Clustering of Defaults

Asymmetric and Information Leads to Clustering of Defaults
An important effect of the emergent heavy-tail statistics
stemming from the heterogeneity of the market, is the absence
of a characteristic time-scale for the occurrence of defaults
(scale-free asymptotic behaviour).

Fitting the aggregate distribution we obtain
P̃(τ) ∼ τ−(7/3).
According to Theorem 2, the autocorrelation function
decays as,

C (t ′) ∼ t ′−1/3
. (14)

Results 21/33



Introduction The Model Results Conclusions References

Numerical results

Autocorrelation Function
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Numerical results

Better Information for All
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Numerical results
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Numerical results

Non-Normal Returns
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Numerical results

Clustered Volatility
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Intermittency

Deterministic Description

All statistical properties of default events can be replicated by a
very simple deterministic map.

xt+1 = xt + uxz
t mod 1, z > 1. (15)

Characteristic behaviour: The evolution of xt is regular close to the
vicinity of 0 (marginally unstable fixed point) and chaotic away
from it ⇒ Random alternation between almost regular and chaotic
dynamics.

Regular motion → Laminar phase.
Chaotic motion → Turbulent phase.
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Intermittency

Deterministic Description II
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Intermittency

Deterministic Description III

The distribution of waiting times between transition from
the laminar to the turbulent phase follows a power-law
(Schuster and Just, 2006).

ρ(τ) ∝ τ−
z

z−1 , (16)
Also, the autocorrelation function of xt decays
algebraically

C (t ′) ∝ t ′
z−2
z−1 , 3/2 ≤ z < 2. (17)

Setting z = 7
4 , and mapping the:

HFs Active → Laminar phase.
Default events → Turbulent phase.

ρ(t) ∼ τ−7/3, C (t ′) = t ′−1/3 (18)
Results 29/33
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We assume that the heterogeneity of the agents stems
from the HFs’ different quality of the mispricing signals
they receive.
We show that the failure function of the HFs is
qualitatively different when observed on the micro and
the aggregate level.
We also show that the scale-free property of the emergent
statistics on the aggregate level is directly connected with
the clustering of defaults.
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Which is the Real Cause?

. . . A crucial part of my story is heterogeneity
between investors. . . But an important difference is
that I do not invoke any asymmetric
information. . . Of course, the asymmetric information
revolution in economics was a tremendous advance,
and asymmetric information plays a critical role in
many lender-borrower relationships; sometimes,
however, the profession becomes obsessed with
it. . . (Geanakoplos, 2010a)
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