Critical Phenomena in a Heterogeneous Excitable System

Rachel Sheldon (MOAC DTC, University of Warwick)
Supervisor: Hugo van den Berg (Systems Biology, University of Warwick)

1. Aim of the Project

Modelling the changes in the muscular wall of the uterus in the days before labour. In particular, examining the excitation of a tightly coupled system of smooth muscle cells.

2. Background

- The muscular wall of the uterus only acquires the ability to expel a foetus in the final days before labour
- Smooth muscle cells start at a stable equilibrium. Sufficient input current is needed to excite the cell causing a voltage surge (Fig.1)
- Potential returns rapidly to equilibrium after applied current is removed (Fig.2)
- Myometrial cell synchrony is achieved by electrical conduction through connecting microfibrils
- The slow rise and fall of tension results in a contraction that lasts about a minute
- Cells are considered to obey FitzHugh-Nagumo dynamics:
 \[\frac{dv}{dt} = \frac{1}{\epsilon}(Av(1-v)(v-\alpha)-w-w_c) \]
 \[\frac{dw}{dt} = v - \gamma w - w_0 \]
- Simulations were run for cells in chains and lattices of an arbitrary size

3. Cell Chains

- Excite a cell with a ‘kick’
- Minimum kick needed to excite highlighted cell increases with coupling (Fig. 3)
- Maximum amplitude is consistent for all coupled cells
- There is a threshold coupling value for exciting coupled cells (Fig.4)

4. Cell Lattices

- Excite middle cell
- Minimum kick needed to excite highlighted cell increases with coupling (Fig.5) faster than for a cell chain
- Maximum amplitude is consistent for all coupled cells and comparable to a cell chain
- There is a threshold for exciting coupled cells (Fig.6) which is lower than for a cell chain

5. Conclusions

- The system has two states:
 - Local excitation which does not spread across the entire tissue
 - Global excitation where all cells are excited
- The phase transition from a locally excited state to a globally excited state has a coupling threshold and is instantaneous at this point
- Excited cells follow the same voltage pathway over time

6. Further Work

- Introduce variable coupling values between cells
- Remove resistor couplings at random and investigate the spread of excitation using percolation theory

7. References

Thank you to Hugo van den Berg for all his support during this project.