1. DC-SIGN
- Membrane protein found in dendritic cells (DCs).
- Forms tetramer with long repeating neck region and carbohydrate recognition domain (CRD).
- Binds to mannose rich pathogens like HIV to present to T-cells for destruction.
- However, HIV instead infects T-cell, and infection spreads to lymph nodes.
- Understanding of DC-SIGN could lead to prophylactic treatment of HIV.

2. Solid-State NMR (SSNMR)
- Good for obtaining atomic level information on structure & dynamics of molecules.
- Detects resonant frequencies of different isotopes as their nuclear spins precess in a large magnetic field.
- Signal depends on chemical environment of individual isotopes, so can assign peaks by identifying effect of nearby atoms.
- No inherent size limitations due to molecular tumbling as in solution state NMR, so can look at large proteins.
- Usually use hydrated crystals, so small scale motions present, but no overall tumbling as in solution state.
- Requires homogenous sample, but membrane proteins notoriously hard to crystallise.
- Used 2 new innovations to look at DC-SIGN: Fast MAS and Ultracentrifugation.

3. Fast Magic Angle Spinning (MAS)
- Spinning the sample removes anisotropic dipolar coupling contributions, except those along the axis of rotation.
- By spinning at 54.7°, even these are removed due to $3\cos^2\theta - 1$ dependence of dipolar coupling, giving narrower lines.
- In the solid state, relaxation of transverse magnetisation in the rotating frame (T_2^*) has incoherent contribution due to slow motions and coherent contribution due to static interactions.
- Fast MAS removes the coherent contribution (indicated by the plateau) enabling measurement of slow motions.

- Requires a small diameter rotor (here 1.3 mm) which holds up to 2 mg of hydrated sample.

4. Ultracentrifugation (UC)
- Ultracentrifugation of highly concentrated solutions results in sediments recently shown to yield highly resolved SSNMR spectra comparable to crystalline samples.
- Provides way of obtaining homogenous solid sample of large proteins which are hard to crystallize.
- Previous work mainly done on rounded molecules; part of this work is a feasibility test for elongated molecules.

5. Results – Combining State of the Art Preparation Method and SSNMR Technique
- DC-SIGN segment used weighed 156,000 kDa (residues 62–404, corresponding to neck region and CRD) and was sparsely labeled with 13C on the backbone of each Alanine residue (26 residues in total in 12 distinguishable chemical environments).
- Spectra show narrow line widths, averaging 37.2 Hz, which is comparable to spectra from crystalline samples, and indicate highly ordered structure and very homogenous sample.
- J-coupling (140 Hz H-13C coupled spectra, indicating high nanosecond mobility of molecule despite ordered structure.

Summary:
- A combination of sparse labeling, ultracentrifugation and fast MAS yields high quality spectra comparable to ones using crystalline samples.
- This has been shown for a large 156 kDa elongated protein, extending the state of the art and paving a way for further studies.

6. References

7. Acknowledgments
- Thanks to my supervisor, Józef Lewandowski, and also Dan Mitchell, Steven Brown and Jonathan Lamley.
- Thanks to MOAC and EPSRC for funding.
- Background image © Chris Becker.