Skip to main content Skip to navigation

Events in Physics

Show all calendar items

Myrta Gruening, Queens Belfast

- Export as iCalendar
Location: PS1.28

yambo: An ab initio tool for excited state calculations

A detailed description on how electronic systems interact with electro-magnetic radiation is the starting point for understanding numerous phenomena in Physics, Chemistry, Biology and for developing new technologies (e.g. photovoltaics cells). Ab-initio numerical simulations are increasingly used to support, interpret and guide experimental works. In particular, approaches based on Many-Body perturbation theory such as the GW approximation and the Bethe–Salpeter equation are becoming a standard tool in the calculations of quasiparticle energies (related to direct and inverse photoelectron measurements) and the macroscopic dielectric function (related to e.g optical absorption or electron-energy loss experiments). yambo [1] is an ab initio code for
calculating quasiparticle energies and optical properties of electronic systems within the framework of many-body perturbation theory and time-dependent density functional theory. Quasiparticle energies are
calculated within the GW approximation for the self-energy. Optical properties are evaluated either by solving the Bethe–Salpeter equation or by using the adiabatic local density approximation. yambo is a plane-wave code that, although particularly suited for calculations of periodic bulk systems, has been applied to a large variety of physical systems. yambo relies on efficient numerical techniques devised to treat systems with reduced dimensionality, or with a large number of degrees of freedom. The code has a user-friendly command-line based interface, flexible I/O procedures and is interfaced to several publicly available density functional ground-state codes.


After a quick review of the theoretical approaches I will present the basic features of Yambo as well as some more advanced ones and showcase typical applications. Finally I will give an overview of recent or in-progress developments (e.g. yambo for HPC, real-time implementation, etc...)

[1] A. Marini, C. Hogan, M.G. and D. Varsano Comp. Phys. Comm. 180, 1392 (2009)

Show all calendar items

Academic Leave Diary

Click here

 

Physics Days

Event listing

Research Group Events

Theory

CFSA

Astronomy

Particle Physics

Complexity

CSC

Condensed Matter Physics

.

Open Funder Deadlines


UKRI - Daphne Jackson Fellowship

Diamond Studentships 2024

.

UKRI Deadlines

Due to the implementation of a new UKRI funding system (TFS) there will be a fixed quarterly deadlines for some grants which would previously have been on open calls, this is to allow necessary system amendments and updates.

The first deadline after implementation will be 28th September 2023 and applies to those calls listed below:

EPSRC New Investigator Award

EPSRC Network Grant

EPSRC Post Doctoral Fellowship

EPSRC Open Fellowship

EPSRC Open Plus Fellowship

EPSRC Working with overseas scientists

EPSRC Standard research grant

EPSRC Discipline hopping in ICT

EPSRC Overseas travel grant