Skip to main content Skip to navigation

Events in Physics

Show all calendar items

Theory Seminar: Ivan Coluzza (Vienna): Design of patchy polymers: biomimetic self-knotting chains

- Export as iCalendar
Location: PS1.28

We present a novel theoretical framework within which we are able to design new experimentally realisable materials with tuneable self-assembling properties.

Our work takes inspiration from the results obtained with our recently developed protein coarse graining procedure, namely the “Caterpillar” model [1,2]. Based on these results we postulated the “minimum valence principle" (MVP). According to the MVP in order for a generalised bead-spring system to be designable and foldable, it is sufficient for the chain to have a sequence of different isotropic interactions combined with directional interactions that further constrain the configurational space. Based on this principle we introduced an optimal set of modular sub-units, and the definition of a design procedure necessary to choose a string of the units that once bonded into a chain will spontaneously fold to a specific target structure [3-5].

We show that such structures can be highly non-symmetrical and posses interesting topological properties fully controllable by the sequence of beads along the chain.

Biomimetic patchy polymers represent a considerable step forward in the synthesis of novel materials, because they are based on a limited alphabet of particles that can be reused and assembled, practically, in an infinite number of combinations. Artificial modular self assembling systems such as this one are not available at the moment and the one we propose is the first of this kind.

[1] Coluzza, I. (2011). A coarse-grained approach to protein design: learning from design to understand folding. PloS one, 6(7), e20853. doi:10.1371/journal.pone.0020853

[2] Coluzza, I. (2013). Transferable coarse-grained potential for de novo protein folding and design. Submitted.

[3] Coluzza, I., & Dellago, C. (2012). The configurational space of colloidal patchy polymers with heterogeneous sequences. Journal of Physics: Condensed Matter, 24(28), 284111. doi:10.1088/0953-8984/24/28/284111

[4] Coluzza, I., van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2012). Design and folding of colloidal patchy polymers. Soft Matter. doi:10.1039/c2sm26967h

[5] Coluzza, I., van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2013). Sequence Controlled Self-Knotting Colloidal Patchy Polymers. Physical Review Letters, 110(7), 075501. doi:10.1103/PhysRevLett.110.075501

More…

Show all calendar items

Academic Leave Diary

Click here

 

Physics Days

Event listing

Research Group Events

Theory

CFSA

Astronomy

Particle Physics

Complexity

CSC

Condensed Matter Physics

.

Open Funder Deadlines


UKRI - Daphne Jackson Fellowship

Diamond Studentships 2024

.

UKRI Deadlines

Due to the implementation of a new UKRI funding system (TFS) there will be a fixed quarterly deadlines for some grants which would previously have been on open calls, this is to allow necessary system amendments and updates.

The first deadline after implementation will be 28th September 2023 and applies to those calls listed below:

EPSRC New Investigator Award

EPSRC Network Grant

EPSRC Post Doctoral Fellowship

EPSRC Open Fellowship

EPSRC Open Plus Fellowship

EPSRC Working with overseas scientists

EPSRC Standard research grant

EPSRC Discipline hopping in ICT

EPSRC Overseas travel grant