Spectroscopic Analysis of the Helium Nova V445 Puppis #### Sally Macfarlane UCT Astronomy Department, ACGC; Radboud University Nijmegen, IMAPP 3rd AM CVn Workshop, University of Warwick The helium nova V445 Puppis observed in March 2007 using the NACO adaptive optics instrument on the VLT. (Woudt 2009) #### V445 Puppis as a helium nova Top Panel: Infrared colour evolution of V445 Puppis (corrected for Galactic foreground extinction). Lower panel: Near-infrared light curves of V445 Puppis before, during and after outburst. # Expanding shell of V445 Pup Evolving nova shell of V445 Puppis obtained with NAOS/CONICA on the VLT. (Woudt et al. 2009) #### Thesis Aim To reduce and analyse multi fibre data of the helium nova V445 Puppis for spatial kinematic modelling, leading to a clear picture of the expansion of the helium nova. #### Thesis Aim To reduce and analyse multi fibre data of the helium nova V445 Puppis for spatial kinematic modelling, leading to a clear picture of the expansion of the helium nova. #### **RESULT:** An excess of oxygen at the extremes of the nova shell! # Observations # Integral Field Spectroscopy Divides the field in two dimensions Telescope Spectrograph Spectrograph Spectra must not overlap focus input output → less information density in datacube Lenslet Pupil magery array Datacube slit Fibre **Fibres** array slit **Image** Micro-3 slicer mirrors Only the image slicer retains spatial information within each slice/sample → high information density Both designs maximise the spectrum length and allows in datacube Both designs maximise the spectrum length and allows more efficient utilisation of detector surface. CfÅl Durham # The Magellan Telescopes Credit: Giant Magellan Telescope - Carnegie Observatories The 6.5-m Magellan telescopes at Las Campanas Observatory situated in La Serena, Chile. Credit: http://occult.mit.edu/observatories Final Mapping of the IMACS IFU. (Schmoll, 2004) - -2000 fibres dispersed over an object field and background field - each field is 5 by 7 square arcseconds, separated by ~1' - sampled at 0.2" per fibre element - Covers wavelength regime: - ~400nm to ~900nm. IMACS IFU #### Reduction Procedure - BIAS SUBTRACTION & TRIMMING - COSMIC RAY SUBTRACTION - APERTURE EXTRACTION, TRACE FITTING, FLATFIELDING, THROUGHPUT CORRECTION - WAVELENGTH CALIBRATION - SKY SUBTRACTION 1. Trimming & Bias Subtraction 2. Cosmic Ray Subtraction 4. Wavelength Calibration #### 5. Sky Subtraction CCD 4 CCD 3 CCD 2 CCD 1 # Results #### V445 Puppis Spectrum 2006 #### V445 Puppis Spectrum 2006 | | He I
λ7065
2006 | В | С | D | [OII]
\(\lambda 7320/7330 \) 2006 | В | С | D | |--|-----------------------|----|---|----------|---------------------------------------|----|----|----------| | | | * | | | | ** | | | | | Е | F | G | Н | Ē | F | G | Н | | | | | | | ** | ** | | | | | | J. | К | L | 1- | J | К | L | | | • | | | | | | | 4 | | | M | N | 0 | P | М | N | 0 | Р | | - | | • | • | | * | ** | ** | ww | | | Q | R | S | T | Q | R | S | Т | | A STATE OF THE PARTY PAR | | | | N
E • | MA | Ne | | N
E ← | He I [O II] He I [O II] # An Excess of Oxygen? Spatially-resolved velocity profiles of the emission line [O III] 5007 (left panels) and the [O II] 7320/7330 doublet (right panels) Spatially-resolved velocity profiles of the emission line [O III] 5007 (left panels) and the [O II] 7320/7330 doublet (right panels) ## Spatio-kinematic Modelling # Origin of Excess? Bow shocks or Ionisation Fronts? #### **Bow Shocks?** - due to <u>highly collimated outflows</u> in the nova shell. - V445 Pup has: - An initially very narrow waist. - two high speed knots associated with an excess of [O II] and [O III] - comparable to 1D hydro-dynamical planetary nebulae models (Schönberner et al. 2005, Raga et al. 2008) - Some PNe have jet structures called FLIERS (fast low ionisation emission regions) - similar to recurrent nova RS Ophiuci ## Evidence of shock? ### **Ionisation Front?** • extreme velocities do not represent the bulk motion of the ejecta or of the knots (Schönberner et al. 2005) # Future Analysis - results can be used in hydrodynamic simulations of axis-symmetric planetary nebulae - multi-wavelength observations when the equatorial dust disc is clear and the nova remnant is observable will help determine the source of the excess oxygen.