

Faculty of Science Institute for Astronomy and Astrophysics

Spectral Modeling of AM CVn stars

Kim Gehron Thorsten Nagel, Klaus Werner

Third International Workshop on AM CVn stars 16. – 20. April 2012 Warwick, United Kingdom

Overview

- Modeling of NLTE Accretion Disks
- Non-Stationary vs. Stationary Disks
 → structure
 - → spectra
- Preliminary results
- Future Prospects

Accretion Disk Code

- Assumptions:
 - → geometrically thin a-disk (Shakura & Sunyaev 1973)
 - \rightarrow axial symmetry
- Division of disk in concentric rings
 Division of disk in concentric rings
 - \rightarrow plane-parallel radiating slides
- ◆ Calculate vertical structure and synthetic spectrum
 → with AcDc (Accretion Disk Code, Nagel et al. 2004)

Modeling of NLTE Accretion Disks

Effective Temperature
$$T_{\text{eff}} = \left[\frac{3GM_1\dot{M}}{8\pi\sigma R^3}\left(1 - \sqrt{\frac{R_1}{R}}\right)\right]^{1/4}$$

- Radial distribution of effective temperature
- Stationary model

Column mass depth
$$m(z) = \int_z^\infty
ho(z') \, \mathrm{d} z'$$

Relationship to geometrical depth

Modeling

- Equations of radiative equilibrium
- Equations of hydrostatic equilibrium
- NLTE Populations numbers of the atomic level
- Radiation transfer equation
- Particle number and charge conversation

Input

- Mass and radius of central object
- Mass-accretion rate
- Radial extension of accretion disk
- Reynolds number
- Chemical abundance
- Atomic data
- Irradiation

Stationary vs. Non-Stationary

SDSS J141118.31+481257.6

- Long-period AM CVn star
- Low mass-transfer rate system
- Orbital Period: 46 ± 2 minutes (Groot et al. 2007)
- Mass of central object: 0.9 solar masses
- Radius of central object: 6720 kilometer
 - → mass-radius-relation

Stationary vs. Non-Stationary

Features of Stationary Disks

- Constant mass-accretion-rate all over the disk
 - \rightarrow higher temperature to the innermost rings
 - \rightarrow lower temperature to the outermost rings

- Changing effective temperature
 - \rightarrow hot midplane for the innermost rings

Stationary vs. Non-Stationary

Features of Non-Stationary Disks

- Changing mass-accretion-rate
 - \rightarrow low mass-accretion at the inside
 - \rightarrow high mass-accretion at the outside

- Equal effective temperature all over the disk
 - \rightarrow different rings look alike

Faculty of Science Institute for Astronomy and Astrophysics

Faculty of Science Institute for Astronomy and Astrophysics

3rd Workshop on AM CVn Stars

SD vs NSD: Structure

Comparison radial structure

- Stationary Disk:
 - \rightarrow hot midplane
 - \rightarrow higher temperatures to the innermost rings
- Non-Stationary Disk:
 - \rightarrow characteristic vertical temperature structure
 - \rightarrow lower temperatures to the outermost rings

SD vs NSD: Ringspectra

3rd Workshop on AM CVn Stars

SD vs NSD: Ringspectra

Comparison ring spectra

- Stationary Disks
 - \rightarrow strong emission lines to the radial outside
 - \rightarrow weak absorption lines to the radial inside
- Non-stationary Disks
 - \rightarrow strong emission lines all over the disk
 - \rightarrow all rings look alike

Faculty of Science Institute for Astronomy and Astrophysics

3rd Workshop on AM CVn Stars

Faculty of Science Institute for Astronomy and Astrophysics

3rd Workshop on AM CVn Stars

Comparison

- Strength of emission lines alters with outside boundary
 - \rightarrow alteration of radiating area
- Shape of emission lines alters with outside boundary
 - → alteration of velocity is big enough

- outside boundary at 94 080 km - outside boundary at 67 200 km

3rd Workshop on AM CVn Stars

Non-Stationary: Object

SDSS J155252.48+320150.9

- Long-period AM CVn star
- Low mass-transfer rate system
- Orbital Period: 56.272 ± 0.005 minutes (Roelofs et al. 2007)
- Mass of central object: 1.0 solar masses (Roelofs et al. 2007)
- Spectral twin to J141118.31+481257.6

Future Prospects

Extension of previous work

- Application to other objects
 - \rightarrow low mass-transfer rate systems
 - \rightarrow AM CVn candidates
- Determination of abundances
 - \rightarrow include more elements (iron group)
 - \rightarrow upper limit of various abundances
 - \rightarrow Determination of genesis scenario

Future Prospects

Helium Dwarf Nova

- Non-stationary disk
 - \rightarrow application to low state
- Stationary disk
 - \rightarrow application to high state
- Crossover from stationary to non-stationary disk