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* [ he gravitational wave Galaxy

» Detector description

» Baseline and alternative configurations



* [ he gravitational wave signal from the Galactic
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* Individually resolvable means that the parameters

describing the binary can be obtained with reasonable

precision through data analysis (usually some kind of
matched filtering.




« | he confusion-limited foreground Is a result of signals from thousands of

binaries in each resolvable frequency bin.
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* |f the “chirp” of resolvable systems can be measured
and the system Is driven by gravitational radiation
alone, then the distance can be measured and the
chirp mass can be obtained.
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* [ he confusion-limited signal is dominant at low
frequencies (f<~3mHz).
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* [he foreground Is based mostly on the disk
population and so It IS anisotropic.
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* [ he spectrum of the foreground may provide

probe different star formation rates and different

evolutionary scenarios.



* Assuming space-based interferometric gravitational
wave detectors, different configurations have

different consequences on the ability to extract

information from both resolvable sources and the
confusion foreground.

* Nolses:

» Acceleration noise: Stray forces on the proof mass.

* Shot noise: Quantum fluctuations in light intensity.
* Position noise: Measurement and control noise.




* Motion of the detector influences sensitivity to
direction of the sources.

» Rotation of the detector
within its plane.

* Precession of the plane.

* Motion of the guiding

EERIEIRaThe detector

plane relative to the
stars.
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* Sensitivity curves are usually plots combining the
instrument noise and the transfer function along

with some sort of angle/orientation/polarization
averaging.

* [ his allows one to plot the absolute strain
amplitude of a suspected source and compare It

with the expected noise level.
» Can be misleading due to averaging.

* Require an assumed observation time (usually | or
/ years.)
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Full Signal PSD
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* Shorter armlengths:

* |ncrease acceleration noise

* Decrease shot noise
* Increase position noise

* Improve response at high frequencies



Approximative sensitivity
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| [SA-lIke orbits:

« Add annual rotation of the
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Figure 3.1.: The NGO orbits: The constellation is shown trailing the earth Earth by about 20° (or 5 x 10’ km) and is
inclined by 60° with respect to the ecliptic. The trailing angle will vary over the course of the mission duration from 10° to
25°. The separation between the S/C is 1 x 10° km.
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e Other heliocentric orbits:

* No precession of the orbital plane -> loss of
sensitivity pattern variation.

* Annual polarization phase remains.

* Annual Doppler phase remains.
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« Geocentric orbits

» Slight plane precession.

» Polarization phase variatio

armlength (through orbita

h]c [per root Hz]

20

N depends on

radius).

* Doppler phase variation is still one year.
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SUMMARY

» Gravrtational wave observations can explore the whole
Galaxy.

» Both individual sources and the unresolved foreground contain
useful information.

» Mission de-scopes have a variety of consequences on the
amount of science recoverable from DVWWD observations.
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GRAVITATIONAL WAVES

» Quadrupole Formula
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Figure 1.

B White dwarf donor
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Formation paths of AM CVn stars (see text). The known systems

(including the two candidates) are shown at their orbital period.
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AM CVn stars are among the expected 'verification
binaries' for a number of proposed space-based
oravitational wave missions. | will discuss the
expected characteristics of the detectable
bopulation of AM CVn stars and other white dwarf
pinary systems in relation to several proposed

MIssion concepts.
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