The hidden population of AM CVn binaries in the SDSS

Philip Carter'

T. R. Marsh ${ }^{1}$, D. Steeghs ${ }^{1}$, P. J. Groot²,
G. Nelemans ${ }^{2}$, A. Rau ${ }^{3}$, C. M. Copperwheat ${ }^{1}$,
G. Roelofs ${ }^{4}$
${ }^{1}$ University of Warwick, ${ }^{2}$ Radboud University Nijmegen,
${ }^{3}$ MPE Garching, ${ }^{4}$ Harvard-Smithsonian CfA

3rd AM CVn workshop, Warwick, April 2012

Introduction

2003: 10 known members.

The Sloan Digital Sky Survey

The Sloan Digital Sky Survey

- Imaging of $>11000 \mathrm{deg}^{2}$ of sky.
- Spectroscopy of >1.6 million objects.

The Sloan Digital Sky Survey

- Imaging of $>11000 \mathrm{deg}^{2}$ of sky.
- Spectroscopy of >1.6 million objects.

Anderson et al. 2005

Anderson et al. 2008

Roelofs et al. 2005

The serendipitous SDSS AM CVns

The Sloan Digital Sky Survey

Population synthesis space density: $6.1 \times 10^{-6}-2.7 \times 10^{-5} \mathrm{pc}^{-3}$ (Nelemans et al. 2001)

Observed space density:
$1-3 \times 10^{-6} \mathrm{pc}^{-3}$
Expect > 50 AM CVns total in SDSS.

The Sloan Digital Sky Survey

SDSS spectroscopic completeness

The search for the hidden population

The search for the hidden population

- 2000 targets. Expected ~40 AM CVns.
- Low-resolution, low S/N ID spectra.

The search for the hidden population

- 2000 targets. Expected ~40 AM CVns.
- Low-resolution, low S/N ID spectra.
- 70\% complete.

The search for the hidden population

- 2000 targets. Expected ~40 AM CVns.
- Low-resolution, low S/N ID spectra.
- 70\% complete.
- 624 white dwarfs
- 108 quasars
- 29 CVs
- 6 new AM CVns.

The search for the hidden population

The 6 new AM CVns

The search for the hidden population

EW distribution

The search for the hidden population

EW distribution

Equivalent width - period relation

The sample

The sample

The sample

DB white dwarfs

The sample

other classes of white dwarf

The sample

subdwarfs

The sample

quasars

The sample

cataclysmic variables

The sample

Remaining targets

The sample

The sample

$$
g-r<-0.1
$$

UKIDSS

Reducing the sample

- GALEX UV all sky survey.
- FUV, NUV imaging of $\sim 26,000 \mathrm{deg}^{2}$

Reducing the sample

- GALEX UV all sky survey.
- FUV, NUV imaging of $\sim 26,000 \mathrm{deg}^{2}$
- 80\% of SDSS targets detected.

Reducing the sample

$$
n u v-u>4.34(g-r)+0.5
$$

$$
n u v-u<6.76(r-i)+1.85
$$

Summary

- The SDSS increased the number of known AM CVn binaries, and provided the first homogeneous sample allowing study of the population.
- Our spectroscopic survey of objects from the SDSS photometric database has so far uncovered a further 6 AM CVns.
- This indicates a lower space density than previously predicted; in order to understand how much lower we still need a larger, more complete sample.
- Using the knowledge we have already gained, and with the addition of GALEX fluxes, we can reduce the sample size by more than 40%.
- This should allow us to uncover the remaining AM CVns hiding in the SDSS photometric database.

