The hidden population of AM CVn binaries in the SDSS

Philip Carter¹

T. R. Marsh¹, D. Steeghs¹, P. J. Groot², G. Nelemans², A. Rau³, C. M. Copperwheat¹, G. Roelofs⁴

¹University of Warwick, ²Radboud University Nijmegen, ³MPE Garching, ⁴Harvard-Smithsonian CfA

3rd AM CVn workshop, Warwick, April 2012

Introduction

2003: 10 known members.

- Imaging of >11000 deg² of sky.
- Spectroscopy of >1.6 million objects.

- Imaging of >11000 deg² of sky.
- Spectroscopy of >1.6 million objects.

Roelofs et al. 2005

The serendipitous SDSS AM CVns

Population synthesis space density: 6.1×10^{-6} - 2.7×10^{-5} pc $^{-3}$ (Nelemans et al. 2001)

Observed space density: 1 - 3 $\times 10^{-6}$ pc⁻³

 $\mbox{Expect} > 50$ AM CVns total in SDSS.

SDSS spectroscopic completeness

- \blacktriangleright 2000 targets. Expected ${\sim}40$ AM CVns.
- ► Low-resolution, low S/N ID spectra.

- ► 2000 targets. Expected ~40 AM CVns.
- Low-resolution, low S/N ID spectra.
- ► 70% complete.

- ► 2000 targets. Expected ~40 AM CVns.
- Low-resolution, low S/N ID spectra.
- ▶ 70% complete.

- 624 white dwarfs
- 108 quasars
- 29 CVs
- ▶ 6 new AM CVns.

The 6 new AM CVns

EW distribution

EW distribution

Equivalent width - period relation

DB white dwarfs

other classes of white dwarf

subdwarfs

quasars

cataclysmic variables

Remaining targets

g - r < -0.1;

UKIDSS

- GALEX UV all sky survey.
- ► FUV, NUV imaging of ~26,000 deg²

- GALEX UV all sky survey.
- ► FUV, NUV imaging of ~26,000 deg²
- ► 80% of SDSS targets detected.

nuv - u > 4.34(g - r) + 0.5,

nuv - u < 6.76(r - i) + 1.85,

Summary

- The SDSS increased the number of known AM CVn binaries, and provided the first homogeneous sample allowing study of the population.
- Our spectroscopic survey of objects from the SDSS photometric database has so far uncovered a further 6 AM CVns.
- This indicates a lower space density than previously predicted; in order to understand how much lower we still need a larger, more complete sample.
- Using the knowledge we have already gained, and with the addition of *GALEX* fluxes, we can reduce the sample size by more than 40%.
- This should allow us to uncover the remaining AM CVns hiding in the SDSS photometric database.