

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Angular Momentum and Stability: Double White Dwarfs as Progenitors of AM CVn

Jeremy F. Sepinsky

The University of Scranton

Kyle Kremer & Vassiliki Kalogera Northwestern University & CIERA

Third International Workshop on AM CVn stars April 16–20, 2012

Outline

- Angular Momentum is DWD
- J.F. Sepinsky
- Motivation & Background
- Model
- Results
- Conclusions & Future Work
- Appendix

- Motivation & Background
- 2 Ballistic Model Revisited
- 3 Results and Analysis
- 4 Conclusions & Future Work

Outline

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

1 Motivation & Background

2 Ballistic Model Revisited

3 Results and Analysis

Background

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Motivation

Exploring the possibility of Double White Dwarfs as a formation channel for AM CVn

Problems

- Double White Dwarfs (DWDs) are small enough and H-poor enough, but the mass transfer (MT) process does not appear to be dynamically stable
- A fact which largely amounts to angular momentum losses during MT

Background

An (incomplete) history of the DWD formation channel

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Paczynski (1967)

Suggests semi-detached dwarfs can explain the newly discovered AM CVn

Pringle & Webbink (1975), Tutukov & Yungleson (1979)

Examine gravitational radiation as a method to induce MT in close binaries

TODAY

40 million years from now

60 million years from now

61 million years from now

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Image credit: NASA/GSFC/D.Berry

Eventually MT Occurs

Gravitational waves decrease $J_{\rm orb}$

Where $\zeta(M_D) = d \log R_L/d \log M_D \approx -1/3$ * Assumes all *J* from stream returned to the orbit

Background, cont'd Skipping a few years...

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Nelemans et al. (2001)

- Noted that for DWD, the accretor is large compared to the binary separation
- Ballistic trajectories of Lubow & Shu (1975) would cause direct impact of the stream onto the accretor
- No disk means its harder to return angular momentum
 (J) back to the orbit.

 $J_{\mathrm{stream}}
ightarrow J_{\mathrm{Spin},\mathrm{A}}$

Image credit Andrzej Krolak via einstein-online.info

This is a problem because...

see, e.g., Nelemans et al. (2001); Marsh, Nelemans, and Steeghs (2004)

* Assumes the average *J* of a ballistic particle is removed from the orbit.

This is a problem because...

see, e.g., Nelemans et al. (2001); Marsh, Nelemans, and Steeghs (2004)

* Assumes the average J of a ballistic particle is removed from the orbit. (r_h from Lubow & Shu (1975) ; Verbunt & Rappaport (1988))

But now we have tides Marsh, Nelemans, and Steeghs (2004)

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Tides return *J* to the orbit from the accretor on a timescale τ_A

$$\dot{J}_{
m tides,A} = rac{kM_AR_A^2}{ au_A}(\Omega_A - \Omega_{
m orb})$$

So our orbital angular momentum changes like

Angular Momentum Balance

 $\dot{J}_{
m orb} = \dot{J}_{GW} + \dot{J}_{MT} + \dot{J}_{
m tides}$

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 雪 ▶ ◆ 句 ▶

But now we have tides Marsh, Nelemans, and Steeghs (2004)

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Tides return *J* to the orbit from the accretor on a timescale τ_A

$$\dot{J}_{ ext{tides}, ext{A}} = rac{kM_{A}R_{A}^{2}}{ au_{A}}(\Omega_{A}{-}\Omega_{ ext{orb}})$$

So our orbital angular momentum changes like

Angular Momentum Balance

$$\dot{J}_{
m orb} = \dot{J}_{GW} + \sqrt{GM_Ar_ha}\dot{M_D} + rac{kM_AR_A^2}{ au_A}(\Omega_A - \Omega_{
m orb})$$

◆□ ◆ ▲ ● ◆ ▲ ● ◆ ▲ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

White Dwarf Stability Marsh, Nelemans, and Steeghs (2004)

Outline

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Motivation & Background

2 Ballistic Model Revisited

3 Results and Analysis

Angular Momentum and Mass Transfer Lubow & Shu (1975), Verbunt & Rappaport (1988), Nelemans et al. (2001)

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

$\triangle J$ due to Mass Transfer

- Mass, *M_P*, ejected from *L*₁ with some velocity *v*, removing *J* from orbit
- Which changes over the path of the mass
- $\langle J_P
 angle
 ightarrow \Delta J_{MT}
 ightarrow \sqrt{GM_AR_h}M_P$
- Upon accretion: $\Delta J_{\text{spin},A} = J_P$

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Angular Momentum and Mass Transfer Lubow & Shu (1975), Verbunt & Rappaport (1988), Nelemans et al. (2001)

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

But...

J_P is not constant
 J_P at impact is not equal to
 ⟨*J_P*⟩

Angular Momentum and Mass Transfer

Lubow & Shu (1975), Verbunt & Rappaport (1988), Nelemans et al. (2001)

• Angle of impact matters

Impact Angle

 Oblique impacts will change both the Spin and Orbital Angular Momentum of the accretor

Motivation & Background Model Results Conclusions & Future Work Appendix

New (Basic?) Model

Our Method

Rigid Spheres Conserving Both Linear and Angular Momentum Sepinsky et al. (2010)

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Our Method

Rigid Spheres Conserving Both Linear and Angular Momentum Sepinsky et al. (2010)

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

What Changes After One Orbit?

Highlighted momenta changes are not included in the standard model

Angular Momenta

- Donor Orbital Angular Momentum → Changes in size/shape of orbit
- Accretor Orbital Angular Momentum → Changes in size/shape of orbit
- Accretor Spin Angular Momentum → Sink of Angular Momentum; Source of Tidal Angular Momentum
- Donor Spin Angular Momentum → Source of Angular Momentum; Sink of Tidal Angular Momentum

Highlighted m

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

What Changes After One Orbit?

Highlighted momenta changes are not included in the standard model

Angular Momenta

- Donor Orbital Angular Momentum \rightarrow Changes in size/shape of orbit
- Accretor Orbital Angular Momentum \rightarrow Changes in size/shape of orbit
- Accretor Spin Angular Momentum → Sink of Angular Momentum; Source of Tidal Angular Momentum
- Donor Spin Angular Momentum → Source of Angular Momentum; Sink of Tidal Angular Momentum

Angular Momentum Balance

$$\dot{J}_{
m orb} = \dot{J}_{GW} + \dot{J}_{MT} + \dot{J}_{
m tides,A} + \dot{J}_{tides,D}$$

Ballistic Numerical Integrations Consistent with Lubow & Shu (1975)

Solid Line: where r_{min} from Lubow & Shu (1975) equals the Accretor Radius γ_{QQ}

Outline

A	ηgι		
Mom			
)WC	D	

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Motivation & Background

2 Ballistic Model Revisited

3 Results and Analysis

4 Conclusions & Future Work

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Calculations

- Eject a ballistic particle from the L₁ of the Donor WD, conserving Linear and Angular Momentum
- Numerically integrate the trajectory, conserving total momentum and energy
- For direct impact: Accrete the ballistic particle, conserving angular and linear momentum of the donor
- Calculate the total changes in the orbital and spin angular momentum of each component

Angular Momentum Changes The Orbital Angular Momentum can Increase!

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Model

Results

Appendix

Comparison with Previous Work Magenta: Average particle orbital angular momentum from Verbunt &

Rappaort (1988)

Solid Line: where r_{min} from Lubow & Shu (1975) equals the Accretor Radius γ_{QC}

Solid Line: where r_{min} from Lubow & Shu (1975) equals the Accretor Radius γ_{QC}

Solid Line: where r_{min} from Lubow & Shu (1975) equals the Accretor Radius γ_{QQ}

Solid Line: where r_{min} from Lubow & Shu (1975) equals the Accretor Radius γ_{QC}

Assuming Donor Remains Synchronous

Assuming Donor Remains Synchronous

Outline

- Angular Momentum is DWD
- J.F. Sepinsky
- Motivation & Background
- Model
- Results
- Conclusions & Future Work
- Appendix

- Motivation & Background
- 2 Ballistic Model Revisited
- 3 Results and Analysis
- 4 Conclusions & Future Work

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Conclusions & Future Work

Conclusions

- Conservation of angular momentum during ejection and accretion change the spin of each star, as well as their orbital angular momentum
- The resultant change in the total angular momentum can be significantly different than the standard model and may *increase* the orbital angular momentum of the system
- This may affect the stability of mass transfer and may significantly change the survivability of DWD into AM CVn

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Conclusions & Future Work

Future Work

The new rates of change of orbital angular momentum bring up three important areas of future work

- How do the new momenta changes affect the instantaneous stability?
- What does the long term, steady-state system look like?
- What role does an asynchronous donor play in the evolution of the system?

Conclusions & Future Work

Future Work

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

The new rates of change of orbital angular momentum bring up three important areas of future work

- How do the new momenta changes affect the instantaneous stability?
- What does the long term, steady-state system look like?
- What role does an asynchronous donor play in the evolution of the system?

Thank you! Any Questions?

The Equations

On Ejection (For more details see Sepinsky et al. (2010)

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Shift in the Center of mass:

$$\Delta \vec{R}_D = -\frac{M_P}{M_D - M_P} \left(\vec{R}_P - \vec{R}_D \right) \tag{1}$$

Shift in the Linear Momentum:

$$\Delta \vec{V}_D = -\frac{M_P}{M_D - M_P} \left(\vec{V}_P - \vec{V}_D \right) \tag{2}$$

Change in Spin Angular Momentum:

$$\Delta J_{\rm Spin,D} = -\frac{M_D M_P}{M_D - M_P} \left[\left(\vec{R}_P - \vec{R}_D \right) \times \left(\vec{V}_P - \vec{V}_D \right) \right] \quad (3)$$

The Equations

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Then A Numerical Integration Occurs...

The Equations

On Accretion (For more details see Sepinsky et al. (2010)

Angular Momentum is DWD

J.F. Sepinsky

Motivation & Background

Model

Results

Conclusions & Future Work

Appendix

Shift in the Center of mass:

$$\Delta \vec{R}_A = \frac{M_P}{M_A + M_P} \left(\vec{R}_P - \vec{R}_A \right) \tag{1}$$

Shift in the Linear Momentum:

$$\Delta \vec{V}_{A} = \frac{M_{P}}{M_{A} + M_{P}} \left(\vec{V}_{P} - \vec{V}_{A} \right)$$
(2)

Change in Spin Angular Momentum:

$$\Delta J_{\rm Spin,A} = \frac{M_A M_P}{M_A + M_P} \left[\left(\vec{R}_P - \vec{R}_A \right) \times \left(\vec{V}_P - \vec{V}_A \right) \right] \quad (3)$$