Exercise

- Star: HD209458 with transiting planet
- Ephemeris (mid-transit): HJD(TT) 2453344.768245 + 3.52474859 E
- Telescope: William Herschel Telescope (WHT) on La Palma
- Note: not the Herschel space telescope
- Which night in 2014 is transit best observed?
- What is precise UTC of mid-transit?

Basic data :

V* V376 Peg -- Star showing eclipses by its planet

Other object types:	EP* () ,* (AG, AGKR, BD, GSC,HD, HIC, HIP, PPM, SAO, SKY\#, SPOCS, TYC, uvby $98, \mathrm{YZ}$) , V^{*} (V^{*}) , IR (2MASS)
ICRS coord. (ep=J2000) :	$220310.77207+185303.5430$ (Optical) [7.216 .7789] A 2007A $\&$ A...474..653V
FK5 coord. (ep=J2000 eq=2000) :	$220310.772+185303.54$ (Optical) [7.216 .7789] A 2007A\&A...474..653V
FK4 coord. (ep=B1950 eq=1950) :	$220048.07+183832.2$ (Optical) [41.63 39.09 90] A 2007A\&A...474..653V
Gal coord. (ep=J2000) :	076.7533-28.5269 (Optical) [7.21 6.77 89] A 2007A\&A...474..653V
Proper motions mas/yr [error ellipse]:	28.55-18.81 [0.77 0.82 0] A 2007A\&A...474..653V
Radial velocity / Redshift / cz :	$\mathbf{v}(\mathrm{km} / \mathrm{s})-14.69$ [0.09] / z () -0.000049 [0.000000] / cz -14.69 [0.09] (~) A 2002ApJS..141..503N
Parallaxes mas:	20.15 [0.80] A 2007A\&A...474..653V
Spectral type:	GOV C 2001MNRAS.328...45M
Fluxes (5) :	B 8.21 [0.02] D 2000A\&A...355L.. 27H
	v 7.63 [0.01] D 2000A\&A...355L. . 27 H
	J 6.591 [0.020] C 2003yCat.2246....OC
	H 6.37 [0.04] C 2003yCat. 2246....0C
	K 6.308 [0.026] C 2003yCat.2246....0C

- 2014 Aug 1 12:00 UT = JD 2456871.0
- 2014 Aug 31 12:00 UT = JD 2456901.0

Julian Date Convertier

Astronomical
Applications
Department
Data Services
Information
Center
Publications
Software
About AA
Sitemap
Search AA
Google" Custo
Search

Calendar date to Julian date
Year: $2014 \odot$ CE BCE
Month: August \uparrow Day: 1
Hour: 12 Minute: 0 Second: 0.0 Universal Time (UT1)
Compute Julian date

Julian date to Calendar date
Julian Date: 2456617.50000

Compute Calendar date

Notes

Julian dates (abbreviated JD) are simply a continuous count of days and fractions since noon Universal Time on January 1, 4713 BCE (on the Julian calendar). Almost

- 2014 Aug 1 12:00 UT = JD 2456871.0
- 2014 Aug 31 12:00 UT = JD 2456901.0
- Mid-transits
- HJD(TT) 2453344.768245 + 3.52474859 E
- HJD(UTC) 2453344.768245-0.000766 + 3.52474859 E
- HJD(UTC) $2453344.7674790+3.52474859$ E
- E=1000: HJD(UTC) 2456869.5160690 = 2014 July 31 00:23:08.4 UTC
- E=1001: HJD(UTC) 2456873.0408176
- $E=1002$: HJD(UTC) $2456876.5655662=2014$ August 07 01:34:25.2 UTC
- E=1003: HJD(UTC) 2456880.0903148
- \quad =1004: HJD(UTC) $2456883.6150634=2014$ August 14 02:45:41.2 UTC
- E=1005: HJD(UTC) 2456887.1398120
- E=1006: HJD(UTC) 2456890.6645605 = 2014 August 21 03:56:58.0 UTC
- E=1007: HJD(UTC) 2456894.1893091
- $E=1008:$ HJD(UTC) 2456897.7140577 = 2014 August 28 05:08:14.8 UTC
- E=1009: HJD(UTC) 2456901.2388063

staralt - July 30/31

Altitudes, Roque de los Muchachos Observatory $342.1184 \mathrm{E} 28.7606 \mathrm{~N}, 2326 \mathrm{~m}$ above sea level

staralt - Aug 6/7

Altitudes, Roque de los Muchachos Observatory $342.1184 \mathrm{E} 28.7606 \mathrm{~N}, 2326 \mathrm{~m}$ above sea level

staralt - Aug 13/14

Altitudes, Roque de los Muchachos Observatory $342.1 \mathrm{~T} 4 \mathrm{E} 28.7606 \mathrm{~N}, 2326 \mathrm{~m}$ above sea level

Answer

- 2014 August 07 01:34:25.2 UTC
- BUT, this is time at Sun centre (heliocentric)
- We really want time as observed

SLALIB -- Positional Astronomy Library

2.5-3

Programmer's Manual

Starlink User Note 67.70
P.T.Wallace

19 December 2005
CCLRC / Rutherford Appleton Laboratory Particle Physics \& Astronomy Research Council

Starlink Project

Retrieve hardcopy

SLA_ECOR - RV \& Time Corrns to Sun

ACTION:
Component of Earth orbit velocity and heliocentric light time in a given direction. CALL:

CALL sla_ECOR (RM, DM, IY, ID, FD, RV, TL)
GIVEN:
$R M, D M \mathbf{R}$ mean $[\alpha, \delta]$ of date (radians)
IY I year
ID I day in year ($=$ Jan 1 st)
$F D \quad \mathbf{R}$ fraction of day
RETURNED:
$R V \mathbf{R}$ component of Earth orbital velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$
$T L \mathbf{R}$ component of heliocentric light time (s)

- Abstract
- INTRODUCTION

Answer

- 2014 August 07 01:34:25.2 UTC
- BUT, this is time at Sun centre (heliocentric)
- We really want time as observed
- Heliocentric corrections is 396.3 s
- So uncorrected time is:
- 2014 August 07 01:27:48.7 UT (night of Aug 6)

