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Abstract

Low frequency electrostatic waves are studied in magnetised plasmas for the case where the elec-
tron temperature varies with position in a direction perpendicular to the magnetic field. We analyse
guided waves with characteristic frequencies below the ioncyclotron and ion plasma frequencies for
the case where the ion cyclotron frequency is below the ion plasma frequency. A particular feature
of low frequency electrostatic waves under these conditions is the existence of trapped waveguide
modes when the frequency is below the ion cyclotron frequency, while the modes are radiative for
higher frequencies. These conditions allow the formation of a new type of electrostatic shocks. The
results are illustrated by results from a21

2-D Particle-In-Cell (PIC) code.

Introduction

The existence of a waveguide mode for electrostatic ion acoustic waves is demonstrated in mag-
netised plasmas, for conditions where the electron temperature is striated along the magnetic field
lines. The waveguide mode is confined to frequencies below the ion cyclotron frequency. For a
frequency band between the ion cyclotron and the ion plasma frequency we have a radiative mode,
escaping from the temperature striation. Based on simple analytical arguments, the formation and
propagation of an electrostatic shock is subsequently demonstrated by Particle-In-Cell (PIC) simu-
lations for these conditions. In the classical Burgers’ model, the shock represents a balance between
viscous dissipation and nonlinear wave steepening [9], andthe formation can be understood as a
balance between the energy input by an external source (e.g.a piston moving with velocityU ) and
viscous dissipation, where the kinematic viscosity coefficient isν. It can furthermore be shown that
the shock thickness varies as∼ ν/U .
In principle, Burgers’ equation can apply for any continuousviscous fluid media, also plasmas. In
the electron temperature striated plasma, the dissipationmechanism is replaced by radiation losses
of the harmonics generated by the wave steepening. Experiments preformed in the strongly magne-
tised plasma of the Risø Q-machine [1] demonstrated that for moderate electron to ion temperature
ratios,Te/Ti, the strong ion Landau damping prohibited the formation of shocks. For large temper-
ature ratios, the ion Landau damping is reduced, and there isa possibility for forming steady state
nonlinear shock-like forms, propagating at a constant speed [4]. In this experiment the energy drain
was nonlinear particle reflection by the electrostatic field.
We present a novel mechanism of energy dissipation, namely selective radiation of short wavelength
ion sound waves. We also demonstrate that electrostatic shocks can form as a balance between these
losses and the standard nonlinear wave-steepening as described by the nonlinear term in the “simple
wave” equation∂u/∂t + u∂u/∂z = 0 [2, 9]. Studies in two spatial dimensions are sufficient for
illustrating the basic ideas, and the analysis of the present paper is restricted to 2D.

Model Equations

Magnetised plasmas are considered here for conditions where the electron temperatureTe varies
in the direction perpendicular to an externally imposed homogeneous magnetic field [6, 3]. Such
conditions seem to occur often in nature for plasmas out of equilibrium [7]. Here we have the ion
cyclotron frequency smaller than the ion plasma frequency,i.e.Ωci < Ωpi. The relevant frequencies
are assumed to be so low that the electron component can be taken to be in local Boltzmann equilib-
rium at all times. We assume quasi-neutrality,ne ≈ ni. For a linearised fluid model of the present
problem we readily derive a basic equation in the form
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whereψ is the electrostatic potential, related to the relative density perturbations aseψ/Te = η ≡
δn/n0. Since we are here only interested in cases whereTe/Ti≫1, we setTi=0 in Eq. (1). In the
caseTe=constant, a linear dispersion relation is readily obtainedfrom Eq. (1) by Fourier transform
with respect tot andx, z. This dispersion relation contains two branches, one forω < Ωci and one
for Ωci < ω < Ωpi, the latter containing also the ion cyclotron waves. The wave properties may be
summarised by the angle between the group velocity and the wave-vector. For very low frequencies,
ω ≪ Ωci, these two vectors are almost perpendicular, while they areclose to parallel whenω ≫ Ωci.
In the limit k⊥ → 0, the dispersion relation reduces to(ω2 − Ω2

ci)(ω
2 − k2C2

s) = 0 containing ion
sound waves and the electrostatic ion cyclotron resonance.
If we now let Te=Te(x), with z being alongB andx be in the transverse direction, we can still
Fourier transform with respect to time and thez-variation. We denote the Fourier transformed
quantities byψ̂. Normalising frequencies andx-positions so thatΩ ≡ ω/Ωci andξ ≡ xΩci/Cs,
respectively, we obtain
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whereγ2 ≡ (ω/kz)
2(M/T0) is a normalised propagation speed, andT0 is a reference temperature.

Eq. (2) has the form of an eigenvalue equation (with1/γ2 being the eigenvalue). ForTe(x) being
piecewise constant we can find exact solutions for Eq. (2). Wepresent some numerical solutions
in Fig. 1 for Gaussian variation ofTe(x). We find that in the low frequency limit,ω < Ωci, the
waves are confined to the electron temperature striation, corresponding to a discrete set of eigenval-
ues,ψ̂m. For such Gaussian variations ofTe(x) the mode numberm corresponds to the number of
zero-crossings of̂ψm(x). Fromψ̂m we can obtain the corresponding eigenmodes for theB-parallel
velocityu‖. The value ofγ depends relatively weakly onΩ. In Fig. 1 we note that the eigenfunctions
change only little in spite of the large change inΩ, and the corresponding change in the eigenvalues
is also small. Only forΩ close to unity do we see significant variations inψ̂0(x) andγ0. For shallow

temperature variations and narrow temperature ducts, we have only the lowest order modeψ0(x).
Forγ smaller thanTe(x)/T0 minimum value there is a continuum of eigenvalues.
Forω > Ωci the r.h.s. of Eq. (2) changes sign, and the nature of the eigenmodes changes aswell, to
become free modes as seen in the left panel of Fig. 1. For uniformTe, the free modes degenerate to
two obliquely propagating plane waves.
We consider now the low frequency limit of the branch of dispersion relation with ω < Ωci. For
m>1, the waveguide modes can decay for onem-value to modes with otherm-values. Them=0
mode has no decay to other forward propagating modes, and will be the one considered here. For
this highest phase-velocity mode, with eigenmodeψ̂0(x), we expect wave-steepening to be the dom-
inant nonlinearity. The nonlinear terms couple the various modes to give products ofx-modes.
These can be expanded as, for instance,ψ̂i(x)ψ̂j(x) =

∑
q ζqijψ̂q(x), where we assume that the set

ψ̂m is complete and orthonormal [5]. For the lowest order waveguide mode we have,in particular,
ζj00 =

∫ ∞
−∞ ψ̂2

0(x)ψ̂j(x)dx. For a large class of relevant electron temperature profiles we can ignore

all higher order modes, and retain onlŷψ0, with ζ0 ≡
∫ ∞
−∞ ψ̂3

0(x)dx. For the Gaussian and similar

Te(x) studied here, we will haveζ0 > ζj for all j ≥ 1, sinceψ̂0 is the only eigenfunction that is posi-
tive everywhere. To lowest order in the low frequency limit we have the relationeψ̂/Te = η̂ ≈ û‖/Cs

between fluctuations in relative density and theB-parallel velocity. Our arguments concerning mode
structure apply to velocity variations as well.
Considering the limit of time scales much larger than the ion cyclotron period, we find the result
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with u‖ = u‖(z, t), whereζT originates from an expansion ofTe(x) in terms ofψ̂m(x), and small
polarisation drifts⊥ B are ignored. The constant reference sound speed isCs0. We anticipate that
ζT is not much different fromζ0, since the form of̂ψ0(x) is close toTe(x)−Te(∞). The solutions
of Eq. (3) have the well known steepening of the initial condition. The characteristic time for wave
breaking is approximatelyL/max{u‖(t = 0)}, whereL is the characteristic scale length of the ini-
tial perturbation and max{u‖(t = 0)} is the maximum value of the initial velocity perturbation. The

model equation Eq. (3) assumesψ̂0(x) and alsoγ0 being used whenΩ > 0. This approximation is
acceptable for at least0 ≤ Ω < 0.75, as seen from Fig. 1.
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FIG. 1: Numerical solutions of Eq. (2), withTe(ξ)/T0=1−1

2
D+D exp(−ξ2/W 2), andW=5, D=1/4 for waveguide

modes (left panel) and free modes (right panel) withγ2 = 1.

If we initialise the system with characteristic wavelengths corresponding to frequenciesω ≪ Ωci,
i.e. L ≫ Cs/Ωci, the short time evolution will be governed by Eq. (3), and we will have shorter
and shorter scales developing as for the usual breaking of waves. Thisprocess is arrested when the
characteristic length scales become of the order of the effective ion Larmor radiusCs/Ωci, when the
modes become radiating, and are no longer confined to the waveguide. We propose a phenomeno-
logical expression for the process, written in Fourier space in a frame moving withCs0 as
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where⊗ denotes convolution andH is Heaviside’s step function. The time scaleCs0/D charac-
terises the time it takes for the energy to radiate out of the waveguide with diameterD. Physically
we argue that, within the present model, the waveform will steepen uninhibited until the shock width
becomes of the order of2Cs/Ωci. At this width the harmonic frequencies will exceedΩci to become
radiative and their energy will be lost.

Simulations

The nonlinear propagation of low frequency waves in the striated plasma is studied using a21
2-D PIC

code [3]. Our PIC simulator assumes explicitly the electrons to be locally Boltzmann distributed and
the resulting nonlinear Poisson equation is solved by iteration.
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FIG. 2: Electrostatic potential from a PIC simulation The electrontemperature enhancement is localised as a Gaussian
in thex-direction withTe,max/Ti = 50. ω = Ωpiπ/5 in both cases whileΩci/Ωpi=1 (left panel) andΩci/Ωpi=0.05 (right
panel).

We use a Gaussian variation forTe(x) so thatTe(±∞)/Ti=1, whileTe(0)/Ti>1, whereTi=constant.
The width of the electron striation is hereD = 40λDi. Results for the waveguide and the free modes
are shown in Fig. 2. The properties are clearly different and consistentwith the interpretation given
before. The waveguide mode remains inside the electron striation, while the high frequency free
modes disperse, consistent also with laboratory experimental results [6]. The observed damping is
not due to dissipation, but caused by wave energy dispersing in space. In order toemphasise the
physical effects we discuss here, we consider only high temperature ratios,Te/Ti≥25, in order to
reduce the effects of linear as well as nonlinear Landau damping. We note that such high temperature
ratios can actually be obtained in discharge plasmas under laboratory conditions[8]. For nonlinear
waves described by a Korteweg-de Vries (KdV) equation, a shock formation isfollowed by Airy-
type ripples, originating from the dispersion term in the KdV equation. These ripples are absent in
our results shown in Fig. 3. Likewise, at the high temperature ratio used here, we find no ions being
reflected by the shock. A backward propagating rarefaction wave is thus of no concern here.
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FIG. 3: Numerical simulation showing potentialφ and densityni during the formation and propagation of a shock
under the conditionsTe/Ti = 25, Ωci/Ωpi = 1/2 andδni/n0 ≈ 0.21. δni is the actual detected density perturbation for
fully formed shock.

Fig. 3 illustrates the formation and propagation of a shock under the conditions previously men-
tioned. The initial condition has an error function type spatial density variation, where ions are
continuously injected at the boundary aty = 0 to maintain the energy input. We haveTe/Ti = 25,
Ωci/Ωpi = 1/2 andδni/n0 ≈ 0.21, whereδni refers to the actual detected density perturbation at
the time where the shock is fully formed, and not to the initial imposed perturbation. The standard
deviation of the parameters is estimated from fitting the shock profile with anonlinear Levenberg-
Marquardt method.
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FIG. 4: Shock velocityU (left panel) and shock thickness∆ (right panel), shown for different combinations of the
parametersTe/Ti, Ωci/Ωpi andδni/n0.

Fig. 4 presents the shock thickness∆ and velocityU for various combinations ofTe/Ti andΩci/Ωpi
as a function ofδni/n0. For small or moderate values ofδni/n0 we find a nearly linear relationship
with ∆ andU . For very largeδni/n0 we find signs of a saturation. We do not expect this limit to be
well-covered by any theoretical model.

Discussion

The present results depend critically on the assumption thatΩci < Ωpi. We have studied the other
limit, considering a case withΩci = 2Ωpi. In this limit all modes are confined to the striation, and
relaxing the assumption of quasi-neutrality the wave steepening is inhibited byion sound wave dis-
persion as described by a KdV equation [9]. For this case we observed the development of Airy-type
dispersive ripples which spread out with time, and in this sense no steady state shock was formed.
More generally we can formulate a modified KdV-equation using Eq. (4) as basis.This equation
will contain a non-local term, which accounts for the radiation losses.
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