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Abstract

Low frequency electrostatic waves are studied in magreef@smas for the case where the elec
tron temperature varies with position in a direction perpemar to the magnetic field. We analyse
guided waves with characteristic frequencies below theyaiotron and ion plasma frequencies for
the case where the ion cyclotron frequency is below the iasmph frequency. A particular feature
of low frequency electrostatic waves under these conditierthe existence of trapped waveguide
modes when the frequency is below the ion cyclotron freguenhile the modes are radiative for

higher frequencies. These conditions allow the formatioa iwew type of electrostatic shocks. The

results are illustrated by results fron)??D Particle-In-Cell (PIC) code.

Introduction

The existence of a waveguide mode for electrostatic ion stewaves is demonstrated in mag-
netised plasmas, for conditions where the electron tertyrerss striated along the magnetic field
lines. The waveguide mode is confined to frequencies belewdh cyclotron frequency. For a
frequency band between the ion cyclotron and the ion plasetuéncy we have a radiative mode,
escaping from the temperature striation. Based on simpligtaoz arguments, the formation and
propagation of an electrostatic shock is subsequently dstraied by Particle-In-Cell (PIC) simu-
lations for these conditions. In the classical Burgers’ nhatie shock represents a balance betwee
viscous dissipation and nonlinear wave steepening [9],taadormation can be understood as a
balance between the energy input by an external sourcea(@igton moving with velocity/) and
viscous dissipation, where the kinematic viscosity cogficis. It can furthermore be shown that
the shock thickness varies asv/U.

In principle, Burgers’ equation can apply for any continugissous fluid media, also plasmas. In
the electron temperature striated plasma, the dissipatechanism is replaced by radiation losses
of the harmonics generated by the wave steepening. Expatismesformed in the strongly magne-
tised plasma of the Risg Q-machine [1] demonstrated that émlemate electron to ion temperature
ratios, T, /T;, the strong ion Landau damping prohibited the formationhofcks. For large temper-
ature ratios, the ion Landau damping is reduced, and thexrgpassibility for forming steady state
nonlinear shock-like forms, propagating at a constantd;pqe In this experiment the energy drain
was nonlinear particle reflection by the electrostatic field

We present a novel mechanism of energy dissipation, namatdgts/e radiation of short wavelength

lon sound waves. We also demonstrate that electrostatokstoan form as a balance between thesg

losses and the standard nonlinear wave-steepening asaeisioy the nonlinear term in the “simple
wave” equationu /ot + udu/0z = 0 [2, 9]. Studies in two spatial dimensions are sufficient fo
llustrating the basic ideas, and the analysis of the pitgsaper is restricted to 2D.

Model Equations

Magnetised plasmas are considered here for conditionsenther electron temperatuie varies
In the direction perpendicular to an externally imposed bgemeous magnetic field [6, 3]. Such
conditions seem to occur often in nature for plasmas out ofliequm [7]. Here we have the ion
cyclotron frequency smaller than the ion plasma frequeirey,); < (2,,,. The relevant frequencies

are assumed to be so low that the electron component canelﬂettabe In local Boltzmann equilib-
rium at all times. We assume quasi-neutrality,~ n,. For a linearised fluid model of the present
problem we readily derive a basic equation in the form
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where is the electrostatic potential, related to the relativesttgrperturbations asy /7. = 1 =
on/ngy. Since we are here only interested in cases wiigré;>>1, we setl;=0 in Eq. (1). In the
cas€l.=constant, a linear dispersion relation is readily obtaifnech Eq. (1) by Fourier transform
with respect ta and:z; z. This dispersion relation contains two branches, onesfer ()., and one
for . < w <y, the latter containing also the ion cyclotron waves. Thee/\qampertieS may be
summarised by the angle between the group velocity and thie-wector. For very low frequencies,
w < (., these two vectors are almost perpendicular, while theglase to parallel when > ), .;.

In the limit k; — 0, the dispersion relation reduces(to’ — 2)(w? — k*C2) = 0 containing ion

sound waves and the electrostatic ion cyclotron resonance.
If we now let7.=T¢(x), with z being alongB andz be in the transverse direction, we can still
Fourier transform with respect to time and the/ariation. We denote the Fourier transformed

guantities bygb Normalising frequencies andpositions so that) = w /(. and¢é = 20, /Cy,
respectively, we obtain
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where~” = (w/k.)?(M/T}) is a normalised propagation speed, dnds a reference temperature.

Eq. (2) has the form of an eigenvalue equation (With” being the eigenvalue). F@F.(z) being
piecewise constant we can find exact solutions for Eq. (2). py¥¥sent some numerical solutions
in Fig. 1 for Gaussian variation af.(x). We find that in the low frequency limity, < €, the
waves are confined to the electron temperature striatiognegmonding to a discrete set of eigenval-

ues,y,,. For such Gaussian variationstf(x) the mode numbet: corresponds to the number of

Zero-crossings Oz/b\m(x). From,,, we can obtain the corresponding eigenmodes foiBhearallel
velocityuH. The value ofy depends relatively weakly dn. In Fig. 1 we note that the eigenfunctions

O

change only little in spite of the large changelinand the corresponding change in the eigenvalugs

IS also small. Only fof) close to unity do we see significant variations/if{=) and~. For shallow

temperature variations and narrow temperature ducts, we have enlgvtiest order mode(x).

For~ smaller tharil.(x) /T, minimum value there is a continuum of eigenvalues.

Forw > () ; the r.h.s. of Eq. (2) changes sign, and the nature of the eigenmodes changd!s tas
become free modes as seen in the left panel of Fig. 1. For unifprtme free modes degenerate to
two obliquely propagating plane waves.

We consider now the low frequency limit of the branch of dispersionioglatith w < €).;.. For
m>1, the waveguide modes can decay for ene/alue to modes with othern-values. Then=0
mode has no decay to other forward propagating modes, and will be the one censidee. For

this highest phase-velocity mode, with elgenmegez;) we expect wave-steepening to be the dom
Inant nonlinearity. The nonlinear terms couple the various modesvi® @oducts ofr-modes.

These can be expanded as, for mstalzigez;)wj( T) =2 4 quwq( r), where we assume that the set
¢m IS complete and orthonormal [5]. For the lowest order waveguide mode we ihgsaticular,

Cion = 22 Ui(x)

all higher order modes, and retain on}y, with () = ffooo {D\S(x)dw. For the Gaussian and similar
Te(x) studied here, we will havg) > ¢; forall j > 1, since@o IS the only eigenfunction that is posi-

tive everywhere. To lowest order in the low frequency limit weédnthe relatlorw/T =7 =~ “H/CS

between fluctuations in relative density and Bigarallel velocity. Our arguments concerning mode
structure apply to velocity variations as well. | | |
Considering the limit of time scales much larger than the ion cyatopreriod, we find the result
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with u = w(,¢), where(y originates from an expansion @t(x) in terms of (), and small
polarisation driftsL. B are ignored. The constant reference sound spe€g,isWe anticipate that

7 is not much different frong, since the form of/(x) is close tol.(x)—T:(co). The solutions
of Eqg. (3) have the well known steepening of the |n|t|al condition. acteristic time for wave
breaking is approximatelf/max{w (¢t = 0)}, whereL is the characteristic scale length of the ini-

tial perturbation and mabx(t = O)} IS the maximum value of the initial velocity perturbation. The

=0, (3)

model equation Eq. (3) assumee(x) and alsoy belng used whef > 0. This approximation is
acceptable for at least< () < 0.75, as seen from Fig. 1
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FIG. 1: Numerical solutions of Eq. (2), with.(§)/Ty=1—3D+D exp(—&*/W?), andW=5, D=1/4 for waveguide
modes (left panel) and free modes (right panel) with= 1.

If we Initialise the system with characteristic wavelengths esponding to frequencies < (2,
L.e. L > (C/Q., the short time evolution will be governed by Eq. (3), and we will havetehor
and shorter scales developing as for the usual breaking of wavesprblesss is arrested when the
characteristic length scales become of the order of the effeativearmor radius s /¢).;, when the
modes become radiating, and are no longer confined to the waveguide. Wegoaoplosnomeno-
logical expression for the process, written in Fourier space inmdnaoving withC'yy as
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where® denotes convolution an#t{ is Heaviside’s step function. The time scale,/D charac-

terises the time it takes for the energy to radiate out of the wasleguith diametef>. Physically

we argue that, within the present model, the waveform will steeenhibited until the shock width
becomes of the order of’s/C).;. At this width the harmonic frequencies will exce@gd to become

radiative and their energy will be lost.

Simulations

The nonlinear propagation of low frequency waves in the striatesinaas studied using%-D PIC

code [3]. Our PIC simulator assumes explicitly the electrons to bdélydgaltzmann distributed and
the resulting nonlinear Poisson equation is solved by iteration.
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FIG. 2: Electrostatic potential from a PIC simulation The electramperature enhancement is localised as a Gaussia

in the z-direction with7? ;... /T; = 50. w = Q,;7/5 in both cases whil€);/<2,,=1 (left panel) and?,;/<,,=0.05 (right
panel).

v;(z)dz. For alarge class of relevant electron temperature profiles we can igngre

We use a Gaussian variation fi(z) so thalTe(ioo)/T 1, while T,.(0)/T;>1, wherel;=constant.
The width of the electron striation is hefe= 40\ p Results for the Wavegwde and the free modes
are shown in Fig. 2. The properties are cIearIy different and consisitinthe Interpretation given
before. The waveguide mode remains inside the electron striation, whileghdrbguency free
modes disperse, consistent also with laboratory experimental resulfﬁk[é]observed damping is
not due to dissipation, but caused by wave energy dispersing in space. In osfephasise the
physical effects we discuss here, we consider only high temperature fatjd$>25, in order to
reduce the effects of linear as well as nonlinear Landau damping. We nbseitienigh temperature
ratios can actually be obtained in discharge plasmas under laboratory conf8iioRer nonlinear
waves described by a Korteweg-de Vries (KdV) equation, a shock formatiotios/ed by Airy-
type ripples, originating from the dispersion term in the KdV equation. Theseegs@k absent in
our results shown in Fig. 3. Likewise, at the high temperature ratio useg¢\werfind no ions being
reflected by the shock. A backward propagating rarefaction wave is thus of nercdmere.
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FIG. 3. Numerical simulation showing potential and densityn, during the formation and propagation of a shock
under the condition$./7; = 25, Q.;/Q,; = 1/2 anddn;/ny =~ 0.21. dn, is the actual detected density perturbation for
fully formed shock.

Fig. 3 illustrates the formation and propagation of a shock under the conditionsusly men-
tioned. The initial condition has an error function type spatial density taniawhere ions are
continuously injected at the boundaryat= 0 to maintain the energy input. We haVg/T; = 25,
Qi /Sy = 1/2 anddn;/ng ~ 0.21, wheredn; refers to the actual detected density perturbation a
the time where the shock is fully formed, and not to the initial imposed pertorbatihe standard
deviation of the parameters is estimated from fitting the shock profile wmibnéinear Levenberg-

Marquardt method.

Shock velocity U [J Shock thicknesa [C_/Q ]

! 20 .

T/T=25Q /Q =1/2
— TJT=75Q /0 =112

6r 1 I~ T/T=25Q /0 =1/4]
T/T=250Q /Q =1/2

5_,

4_,

0) 0.05 0.1 0.15 0.2 0.25 0) 0.05 0.1 0.15 0.2 0.25

0 ni/nO o ni/nO

FIG. 4. Shock velocityU (left panel) and shock thickness (right panel), shown for different combinations of the
parameter§, /T;, . /€2, anddon; /ny.

Fig. 4 presents the shock thicknessnd velocityU for various combinations df. /T; andf); /<2,

as a function obn;/ng. For small or moderate values &f;/ny we find a nearly linear relationship

with A andU. For very largein;/ny we find signs of a saturation. We do not expect this limit to be
well-covered by any theoretical model.

Discussion

The present results depend critically on the assumptiortifat: €2,,. We have studied the other
limit, considering a case with.,; = 2(),,;. In this limit all modes are confined to the striation, and

relaxing the assumption of quasi-neutrality the wave steepening is inhibitem lspund wave dis-
persion as described by a KdV equation [9]. For this case we observed themeeat of Airy-type
dispersive ripples which spread out with time, and in this sense no stestdyshbck was formed.
More generally we can formulate a modified KdV-equation using Eg. (4) as bakis.equation
will contain a non-local term, which accounts for the radiation losses.
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