SIMULATIONS AND RADIATIVE DIAGNOSTICS OF TURBULENCE AND WAVE PHENOMENA IN THE MAGNETISED SOLAR PHOTOSPHERE

> S. SHELYAG ASTROPHYSICS RESEARCH CENTRE QUEEN'S UNIVERSITY, BELFAST

INTRODUCTION

- 3D radiative MHD simulations of photosphere
- Radiative diagnostics and observations
- Acoustic properties of MBPs
- How do the waves look like?

CODE I (MURAM)

- We start from realistic simulations
- MURAM code: non-grey radiative transport, ionisation, 3D MHD

3D GEOMETRY

SIMULATION 200G

Continuum I

Magnetic field

SIMULATION 200G

Continuum I

Magnetic field

G-BAND

G-band is a spectral band 429.5-431.5 nm covered by absorption lines of CH molecules

G-band bright points (GBPs)

G-BAND DIAGNOSTICS

From thermodynamic and magnetic parameters in the simulation we compute this:

WHY ARE GBPS BRIGHT?

G-BAND INTENSITY

ROSA INSTRUMENT

field of view is 60" x 60", with a spatial resolution of ~0.1" <u>http://star.pst.qub.ac.uk/rosa</u> If you are interested in making use of ROSA you should contact Mihalis Mathioudakis, David Jess or Gareth Dorrian for information and advice.

ROSA OBSERVATIONS VS SIMULATIONS

Observations

Simulations

AREA DF OF MBPS

ROSA observation 200G simulation 100G simulation

Data analysis by Philip Crockett

ACOUSTIC PROPERTIES OF GBPS

- Sun is not static, it makes difficult to study acoustic properties

need to construct a static model which is as close as possible to the real GBP

AVERAGE MBP BZ PROFILE

averaging Bz(z) of magnetic bright points (selected on B and G-band intensity)

SELF-SIMILAR MAGNETIC FIELD

AVERAGE MBP STRUCTURE

G-BAND INTENSITY IN MBP

Average, thus less bright. However, brighter than granules

HOW DO THE WAVES LOOK LIKE FOR ME?

Interestingly, plasma Va > Cs is below continuum formation layer

HOW THE WAVES LOOK LIKE FOR AN OBSERVER

Continuum oscillations

Due to partial evacuation of the flux tube in MBP the oscillations in continuum are more pronounced and non-linear

6302.5A STOKES PROFILES

Stokes V amplitude at x=0 is lower than at x=250 km. 6302.5A FeI line is bad for strong magnetic field measurements due to saturation.

STOKES V OSCILLATIONS

Stokes V filter amplitude

Area asymmetry

Oscillation amplitudes are of the order of 25% for filter and 2% for asymmetry and are certainly observable

CONCLUSIONS

- MHD simulations are a great thing
- We are able to make a "what if" case and show the observational consequences
- Being able to predict is important
- Most important: comparison of simulations with observations is only valid when it is done with properties of radiation