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1. Introduction

Nonthermal particles are omnipresent in various plasma environ-
ments, such as the solar wind [1, 2, 3] and the solar corona [4].
Plasmas containing these type of particles are generally charac-
terised by a high energy trail non-Maxwellian distribution named
kappa distribution [5, 6, 7]. The parameter κ determines the high
energy power law index and approaches a Maxwellian distribution
when κ→∞ as shown in the following figure [8].

Figure 1. Comparison of generalized Lorentzian distributions for the spectral

index of κ = 2, 6 and 25, with the corresponding Maxwellian distribution κ =∞.

Localized modulated-envelope structures are generated due to
nonlinear self interactions of the carrier wave in such plasmas.

The scope of this study is to trace, from first principles, the
influence of superthermality on modulated-amplitude electron
acoustic (EA) wavepackets propagating in a plasma containing
superthermal electrons in the background.

2. A Fluid model for electron acoustic waves

We consider a three-component collisionless unmagnetized plasma
consisting of:
* (species 1) inertial electrons (charge −e and mass me),
* (species 2) kappa distributed inertialess hot electrons (charge −e
and mass me), and
* (species 3) stationary ions (charge qi = Zie and mass mi).

The number density nc, the mean velocity uc of cold electrons is
governed by the continuity, momentum equation and the system
potential Φ is obtained from Poisson’s equation

∂nc
∂t

+ ∇ · (ncuc) = 0, (1)

∂uc
∂t

+ (uc · ∇)uc =
e

me
∇Φ , (2)

∇2Φ = 4πe

[
nc + nho

(
1− eΦ

(κ− 3
2)kBTh

)−κ+1
2
− Zini0

]
.(3)

We adopt a kappa distribution for the hot electrons

nh = nh0

[
1− eΦ

(κ− 3
2)kBTe

]−κ+1/2

;

where the index “0” denotes the equilibrium number density values.

The one dimensional normalized form of Eqs. (1) - (3) reads:

∂n

∂t
+
∂(nu)

∂x
= 0, (4)

∂u

∂t
+ u

∂u

∂x
=
∂φ

∂x
, (5)

∂2φ

∂x2
≈ β(n− 1) + c1φ + c2φ

2 + c3φ
3, (6)

Normalization:
n = nc/nc0, u = uc/v0, φ = Φ/Φ0, t = t ωpeh, x = x/λDh,

where λDh =
(
kBTh/4πnh0e

2
)1/2

, ω−1
peh = (4πnh0e

2/me)
−1/2,

v0 ≡ (kBTh/me)
1/2.

The cold-to-hot electron density ratio is expressed by

β = nc0/nh0 .

The influence of the parameters β (hot electron con-
centration) and κ (superthermality) on EAW charac-
teristics is the focus of the investigation that follows.

The coefficients entering Poisson’s equation [Eq. (6)] are

c1 =
κ− 1/2

κ− 3/2
, c2 =

(κ− 1/2)(κ + 1/2)

2(κ− 3/2)2
,

c3 =
(κ− 1/2)(κ + 1/2)(κ + 3/2)

6(κ− 3/2)3
.

3. Perturbative analysis

Reductive perturbation technique: consider small deviations from
the equilibrium state S(0) = (0, 0, 1)T , i.e.

S = S(0) + Σ∞n=1ε
nS(n)

where ε� 1 is a (real) smallness parameter. We assume that

S(n) = Σ∞l=−∞S
(n)
l (X,T )eil(kx−ωt) ,

where the condition S
(n)
−l = S

(n)
l

∗
holds, for reality. The wave

amplitude is thus allowed to depend on the stretched (slow ) co-
ordinates of space and time as Xn = Σnε

nx and Tn = Σnε
nt,

respectively, where n = 1, 2, 3, ....., distinguished from the (fast)
carrier variables x (≡ X0) and t (≡ T0).
Substituting the above expressions into Eqs. (4) - (6) provides the
familiar EAW dispersion relation and the amplitude correspond-
ing to the first harmonics in order ε for equations n = 1, l = 1,

ω2 =
k2β

k2 + c1
, n

(1)
1 =

k2 + c1

β
φ

(1)
1 , u

(1)
1 = −k

ω
φ

(1)
1 .

4. Multi-harmonic solution up to order ∼ ε2

The equations for n = 2, l = 1 provide the compatibility condition

∂φ
(1)
1

∂T1
+ vg

∂φ
(1)
1

∂X1
= 0 ,

where the group velocity vg is defined as

vg =
dω

dk
=
ω3c1

k3β
.

We obtain the expression for the amplitudes corresponding to the
first, second and zeroth harmonics to order ∼ ε, the solution:

φ ' εφ
(1)
1 ei(kx−ωt) + ε2

[
φ

(2)
0 + φ

(2)
2 e2i(kx−ωt)

]
+O(ε3) ,

and similar expressions for n, u.

→ Harmonic generation (in n, u, φ)!

5. Nonlinear Schrödinger (NLS) equation for φ
(1)
1 :

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+ Q |ψ|2ψ = 0 . (7)

where

• ψ ≡ φ
(1)
1 (ζ, τ ).

• ζ = X1 − vgT1, τ = T2.

•Dispersion coefficient: P = 1
2ω
′′(k) = −3

2
ω5c1
k4β2.

•Nonlinearity coefficient: Q→ long expression omitted here.

6. Modulational instability (MI) of ES wavepacket

• Plane wave solution of (7): ψ = ψ0 exp(iQ|ψ0|2τ );

• Linear analysis: set ψ̃ = ψ̃0 + ε ψ̃1,0 cos (k̃ζ − ω̃τ );

•Dispersion relation (for an amplitude perturbation):

ω̃2 = P k̃2 (P k̃2 − 2Q|ψ̃1,0|2) ; (8)

• If PQ < 0 then: stability;

• If PQ > 0 then instability occurs for k̃cr = (2Q/P )1/2 | ψ̃1,0 | ;

•Modulational instability growth rate: Γκ = αx

(
2βα − x

2

)1/2

;

where Γκ = Im|ω̃|/(Q∞|ψ̃1,0|2), α = P/P∞, β = Q/Q∞, and

x = k̃/(Q∞/P∞)1/2|ψ̃1,0|.
•The sign of the product PQ determines the stability profile.

7. Parametric analysis

7.1 The critical wavenumber

The wavenumber threshold kcr (for instability) is depicted versus
– superthermality (via κ) for different density ratio β values (left
panel), and
– the density ratio β, for different κ (right panel).
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Figure 2. Left panel: β=0.25 (green); 1 (magenta); 2.5 (red); and 4 (blue).

Right panel: κ=3 (green); 4 (magenta); 8 (red); and 100 (blue).

7.2 Wavelength dependence of MI

The conditions for instability can be inferred from the diagrams:
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Figure 3. Left & right panels: green for κ = 3.5; magenta for κ = 5; red for

κ = 7; and blue for κ = 100. Here, we have assumed β = 0.5.

7.3 Bright versus dark envelope solitons

(Envelope solitons): Two types of (analytical) localized solutions:
Bright-type solitons (for P/Q > 0) and
dark solitons (for P/Q < 0):
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Figure 4. Left panel: Bright-type modulated wavepackets (for P/Q > 0). Right

panel: Dark-type modulated wavepackets (for P/Q < 0).

We depict the ratio P/Q versus k for β = 0.5 (left panel), and
versus β for k = 3 (right panel).
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Figure 5. P/Q > 0 (P/Q < 0) provide the region where bright (dark, re-

spectively) type solitons may occur. Also, modulational instability occurs for

P/Q > 0 only (see above). Curves: green for κ = 3.5, magenta for κ = 5, red

for κ = 7, and blue for κ = 100 (Maxwellian!).

7.4 Superthermality (via κ) and electron composition
(via β) effect

The effect of superthermality on the MI growth rate has been anal-
ysed by considering k = 3.2 and β = 0.5 (left panel). The effect
of β on the MI growth rate for representative parameter values
k = 4.5, κ = 8 is depicted in the region 0.25 ≤ β ≤ 4 (right
panel), where EAW may survive Landau damping [9]
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Figure 6. Left panel: κ = 3.5 (green); 5 (magenta); 7 (red); and 100 (blue) for

β = 0.5. Right panel: green for β = 0.5; magenta for 1; red for 2; blue for 4.

8. Summary

• The MI wavenumber threshold kcr decreases (leading to a wider
stability window and bright solitons) in the presence of more
superthermal electrons (via β) for fixed κ.

• Short carrier wavelengths (wavenumber above the MI threshold
kcr) lead to a bright type envelope solitary structures, while on
the other hand large wavelengths lead to a dark type soliton;

•A higher concentration of superthermal electrons (above a β
threshold, see Fig. 5b) gives rise to bright solitons (and enables
modulational instability).

• Increasing superthermality provides a wider stable region (for
fixed β; see Fig. 5a);

• The instability growth rate depends on β and κ dramatically.
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