Optimal Control of Spin Systems

Southuantro

with Newton-Raphson Methods

David Goodwin, Ilya Kuprov.

Optimal Control - Gradient Ascent Pulse Engineering (GRAPE)

The evolution of a quantum system can be characterised by a Liouville $c_{n}^{(k)}$ equation with a vector representation of the density operator, $\frac{\partial}{\partial t}|\hat{\rho}(t)\rangle=-i \hat{\mathcal{L}}(t)|\hat{\rho}(t)\rangle$, having the general solution,

$$
|\hat{\rho}(t)\rangle=\exp _{(0)}\left(-i \int_{0}^{t} \hat{\mathcal{L}}(t) \mathrm{d} t\right)|\hat{\rho}(t)\rangle
$$

A practical Magnetic Resonance system can be split into two parts; that is beyond experimental control, $\hat{\hat{L}}_{0}$, and a set of controllable electromagnetic pulses $\left\{\hat{\mathcal{L}}_{k}\right\}$:

$$
\hat{\hat{\mathcal{L}}}(t)=\hat{\hat{\mathcal{L}}}_{0}+\sum_{k} c^{(k)}(t) \hat{\mathcal{L}}_{k}
$$

The problem is simplified if the control sequences $\left\{c^{(k)}(t)\right\}$ are assumed to be piecewise constant. For a piecewise constant Hamiltonian, we sequentially multiply each of the, discrete in time, propagators into the initial conditions:

$$
\hat{\hat{\mathcal{P}}}_{n}=\exp [-i(\hat{\hat{\mathcal{L}}}_{0}+\sum_{k} \underbrace{c^{(k)}\left(t_{n}\right)}_{\substack{\| \\ c_{n}^{(k)}}} \hat{\hat{\mathcal{L}}}_{k}) \Delta t]
$$

Simulation System

We prepare the Spinach software to find a pulse set to transfer magnetisation from ${ }^{1} \mathrm{H}$ atom to ${ }^{19} \mathrm{~F}$ atom with the following molecule

Interaction parameters of a
molecular group used in state transfer simulations on a system characterising the fragment of a
fluorohydrocarbon molecule
magnetic induction $=9.4$
Tesla).
In this case the set of control channels In this case the set of control channels
operators are $\left\{\hat{L}_{x}^{(H)}, \hat{L}_{y}^{(H)}, \hat{L}_{x}^{(C)}, \hat{L}_{y}^{(C)}, \hat{L}_{x}^{(F)}, \hat{L}_{y}^{(F)}\right\}$, It is useful to visualise the set of optimal
pulses by the population of their correlation subspaces and population of coherence local at each spin:

The Hessian Matrix is:

Symmetric,

Non-singular - one that is invertible,
Diagonally
dominant.

To regularise the Hessian, so it is non-singular and well conditioned, with we take the eigendecomposition of an augmented Hessian matrix:

$$
\mathbf{H}_{\text {aug }}=\left[\begin{array}{cc}
\delta^{2} \mathbf{H} & \delta \vec{g} \\
\delta \vec{g} & 0
\end{array}\right]=Q \wedge Q^{\dagger}
$$

where \vec{g} is the gradient, Λ is a diagonal matrix of eigenvalues and Q is a matrix of eigenvectors. We have introduced a constant δ, found iteratively; the region of a radius we trust to give a Hessian that is sufficiently positive definite.

$$
\begin{aligned}
& \lambda_{\text {min }}=\max [0,-\min (\Lambda)] \\
& \mathbf{H}_{\text {reg }}=Q\left(\Lambda+\lambda_{\min } \hat{l}\right) Q^{\dagger}
\end{aligned}
$$

The expression for fidelity, the overlap between the current state of the system ρ_{0} and the target state σ, is

$$
J=\operatorname{Re}\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\hat{\mathcal{P}}}_{N-1} \ldots \hat{\hat{\mathcal{P}}}_{2} \hat{\hat{P}}_{1}\left|\rho_{0}\right\rangle
$$

Since $\left\{c_{n}^{(k)}\right\}$ are vectors of finite dimension, we can use the standard
non-linear numerical optimisation to find the maximum of J in their
Since $\left\{c_{n}^{(k)}\right\}$ are vectors of finite dimension, we can use the standard
non-linear numerical optimisation to find the maximum of J in their space (it is useful to note that the maximum of J is the same as the minimum of $1-J$).

Efficient Propagator Derivative Calculations

The numerical optimisation method simulated in the results section above require a gradient calculation. This is reduced to:

$$
J=\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\hat{\mathcal{P}}}_{N-1} \hat{\hat{\mathcal{P}}}_{N-2} \hat{\hat{\mathcal{P}}}_{N-3} \underbrace{\hat{\hat{\mathcal{P}}}_{N-4} \ldots \hat{\hat{\mathcal{P}}}_{3} \hat{\hat{\mathcal{P}}}_{2} \hat{\hat{\mathcal{P}}}_{1}\left|\rho_{0}\right\rangle}_{\text {(I) propagate forwards from source }}
$$

(II) propagate backwards from target

$$
J=\overbrace{\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\mathcal{P}}_{N-1} \hat{\mathcal{P}}_{N-2}} \hat{\mathcal{P}}_{N-3} \hat{\hat{\mathcal{P}}}_{N-4} \ldots \hat{\mathcal{P}}_{3} \hat{\mathcal{P}}_{2} \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
$$

The total cost of the gradient of J is therefore one forward simulation, one backward simulation and (n steps) $\times(k$ controls) derivatives of matrix exponentials with respect to scalar parameters. The expectation of first order derivatives is

Efficient calculation of the expectation of first order derivatives can be made utilising the work of C.Van Loan; using an augmented exponential in the following form

$$
\exp \left(\begin{array}{cc}
-i \hat{\mathcal{L}} \Delta t & -i \hat{\hat{\mathcal{L}}_{n}^{(k)}} \Delta t \\
\mathbf{0} & -i \hat{\hat{\mathcal{L}}} \Delta t
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \hat{\hat{\mathcal{L}}} \Delta t} & \frac{\partial}{\partial c_{n}^{(k)}} e^{-i \hat{\hat{L}} \Delta t} \\
\mathbf{0} & e^{-i \hat{\mathcal{L}} \Delta t}
\end{array}\right)
$$

extracting the derivative from the upper right block. In practice, the exponential is calculated using a two-point finite difference stencil with Krylov propagation. The Newton-Raphson method is a second order method, additionally requiring the explicit calculation of the Hessian matrix. This requires the expectation of the second order derivatives:

$$
\begin{gathered}
\left\langle\frac{\partial^{2} J}{\partial c_{n}^{2}}\right\rangle=\langle\sigma| \hat{\mathcal{P}}_{N} \ldots \hat{\mathcal{P}}_{n+1} \frac{\partial^{2} \hat{\mathcal{P}}_{n}}{\partial c_{n}^{2}} \hat{\mathcal{P}}_{n-1} \ldots \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle \\
\left\langle\frac{\partial^{2} J}{\partial c_{n} \partial c_{n+1}}\right\rangle=\langle\sigma| \hat{\mathcal{P}}_{N} \ldots \hat{\mathcal{P}}_{n+2} \frac{\partial \hat{\mathcal{P}}_{n+1}}{\partial c_{n+1}} \frac{\partial \hat{\mathcal{P}}_{n}}{\partial c_{n}} \hat{\mathcal{P}}_{n-1} \ldots \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
\end{gathered}
$$

$$
\left\langle\frac{\partial^{2} J}{\partial c_{m} \partial c_{n}}\right\rangle=\langle\sigma| \hat{\mathcal{P}}_{N} \ldots \hat{\hat{\mathcal{P}}}_{n+1} \frac{\partial \hat{\hat{\mathcal{P}}}_{n}}{\partial c_{n}} \hat{\mathcal{P}}_{n-1} \ldots \hat{\mathcal{P}}_{m+1} \frac{\partial \hat{\hat{\mathcal{P}}}_{m}}{\partial c_{m}} \hat{\hat{\mathcal{P}}}_{m-1} \ldots \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
$$

- Computation to scale with $O(n \times k)$ by storing propagators from gradient calculation.
-Problem now reduces to finding $n \times k$ second-order derivatives on the block diagonal of the Hessian with a 3×3 augmented exponential:

Kuprov; J. Mag. Res. 233, 107-112, (2013).
Floether, de Fouquieres, Schirmer;; New J. Phys. 14, 073023, (2012).
de Fouquuieres, Schirmer, Glaser, Kuprov; J. Mag. Res, 212, 412-417, (2011).
Hogben, Krystyniak, Charnock, Hore, Kuprov; J. Mag. Res. 208, 179-194, (2011).

Khaneja, Reiss, Kehlet, Schulte-Herbrouggen, Glaser; J. Mag. Res. 172, 296-305, (2005). Nocedal, Wright; Numerical optimization, (1999). Naffeld, Havel: Adv. App. Math. 16, 321-375, (1995). Van Loan; IEEE Trans. 23(3), 395-404, (1978).

