Chemistry

Quadratically Converging Control Sequence Optimisation Algorithms

Newton-GRAPE; Hessian Calculations & Regularisation

David L. Goodwin & Ilya Kuprov d.goodwin@soton.ac.uk

Spinach

QUAINT@Swansea, Wednesday 1st July 2015

Two equations...

$$\frac{\partial^2 J}{\partial c_{n_2}^{(k)} \partial c_{n_1}^{(k)}} = \langle \sigma | \hat{\mathcal{P}}_N \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial}{\partial c_{n_2}^{(k)}} \hat{\mathcal{P}}_{n_2} \cdots \frac{\partial}{\partial c_{n_1}^{(k)}} \hat{\mathcal{P}}_{n_1} \cdots \hat{\mathcal{P}}_2 \hat{\mathcal{P}}_1 | \psi_0 \rangle \quad (1)$$

$$\exp \begin{pmatrix} -i\hat{L}\Delta t & -i\hat{H}_{n_1}^{(k_1)}\Delta t & 0 \\ 0 & -i\hat{L}\Delta t & -i\hat{H}_{n_2}^{(k_2)}\Delta t \\ 0 & 0 & -i\hat{L}\Delta t \end{pmatrix} = \\ \begin{pmatrix} e^{-i\hat{L}\Delta t} & \frac{\partial}{\partial c_{n_1}^{(k_1)}} e^{-i\hat{L}\Delta t} & \frac{\partial^2}{\partial c_{n_1}^{(k_1)}\partial c_{n_2}^{(k_2)}} e^{-i\hat{L}\Delta t} \\ 0 & e^{-i\hat{L}\Delta t} & \frac{\partial}{\partial c_{n_2}^{(k_2)}} e^{-i\hat{L}\Delta t} \\ 0 & 0 & e^{-i\hat{L}\Delta t} & \frac{\partial}{\partial c_{n_2}^{(k_2)}} e^{-i\hat{L}\Delta t} \\ 0 & 0 & e^{-i\hat{L}\Delta t} \end{pmatrix} \quad (2)$$

01 Newton-Raphson method

02 GRAPE; gradient and Hessian

03 Van Loan's Augmented Exponentials

04 Regularisation

Abstract

We report an efficient algorithm for computing the full Hessian of the optimal control objective function in a large class of practically relevant cases, and use it to analyze the convergence properties of Newton-Raphson optimization methods using the full Hessian matrix.

Newton-Raphson method

The Newton-Raphson method

Taylor's Theorem

- ▶ Taylor series approximated to second order^[1].
 - If f is continuously differentiable

$$f(x+p) = f(x) + \nabla f(x+tp)^T p$$

Southampton

If f is twice continuously differentiable

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+\alpha p) p$$

- ▶ 1st order necessary condition: $\nabla f(x^*) = 0$
- ▶ 2nd order necessary condition: $\nabla^2 f(x^*)$ is positive semidefinite

^[1]B. Taylor. Inny, 1717, J. Nocedal and S. J. Wright. 1999.

The Hessian Matrix

The Newton step:
$$p_k^N = -\mathbf{H}_k^{-1} \nabla f_k$$

• $\nabla^2 f_k = \mathbf{H}_k$ is the Hessian matrix, one of second order partial derivatives^[2]:

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

- The steepest descent method results from the same equation when we set H to the identity matrix.
- Quasi-Newton methods initialise H to the identity matrix, then to approximate it from an update formula using a gradient history.
- The Hessian proper must be positive definite (an quite well conditioned) to make an inverse; an indefinite Hessian results in non-descent search directions.

^[2]L. O. Hesse. Chelsea, 1972.

GRAPE; gradient and Hessian

GRAPE gradient

- Maximise the fidelity measure, $J = \Re e \langle \hat{\sigma} | \exp_{(0)} \left[-i \int_{0}^{T} \hat{\hat{L}}(t) dt \right] | \hat{\rho}(0) \rangle$
- Optimality conditions, $\frac{\partial J}{\partial c_k(t)} = 0$ at a minimum, and the Hessian matrix should be positive definite
- Gradient found from forward and backward propagation

$$\frac{\partial J}{\partial c_n^{(k)}} = \langle \sigma | \, \hat{\mathcal{P}}_N \, \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial}{\partial c_n^{(k)}} \hat{\mathcal{P}}_n \cdots \hat{\mathcal{P}}_2 \, \hat{\mathcal{P}}_1 \, | \psi_0 \rangle$$

Southampton

Propagator over a time slice:

$$\hat{\hat{\mathcal{P}}}_n = \exp\left[-i\left(\hat{\hat{H}}_0 + \sum_k c_n^{(k)}\hat{\hat{H}}_k\right)\Delta t\right]$$

^[3]N. Khaneja et al. In: Journal of Magnetic Resonance 172.2 (2005), pp. 296 –305.

GRAPE Hessian Southampton

(block) diagonal elements

$$\frac{\partial^2 J}{\partial c_n^{(k)^2}} = \langle \sigma | \, \hat{\mathcal{P}}_N \, \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial^2}{\partial c_n^{(k)^2}} \hat{\mathcal{P}}_n \cdots \hat{\mathcal{P}}_2 \, \hat{\mathcal{P}}_1 \, | \psi_0 \rangle$$

non-diagonal elements

$$\frac{\partial^2 J}{\partial c_{n_2}^{(k)} \partial c_{n_1}^{(k)}} = \langle \sigma | \, \hat{\mathcal{P}}_N \, \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial}{\partial c_{n_2}^{(k)}} \hat{\mathcal{P}}_{n_2} \cdots \frac{\partial}{\partial c_{n_1}^{(k)}} \hat{\mathcal{P}}_{n_1} \cdots \hat{\mathcal{P}}_2 \, \hat{\mathcal{P}}_1 \, | \psi_0 \rangle$$

All propagators of the non-diagonal blocks have been calculated within a gradient calculation, and can be reused. Only need to find the diagonal blocks.

Van Loan's Augmented Exponentials

Efficient Gradient Calculation Augmented Exponentials

Among the many complicated functions encountered in magnetic resonance simulation context, chained exponential integrals involving square matrices A_k and B_k occur particularly often:

Southan

$$\int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \cdots \int_{0}^{t_{n-2}} dt_{n-1} \left\{ e^{A_{1}(t-t_{1})} B_{1} e^{A_{2}(t_{1}-t_{2})} B_{2} \cdots e^{A_{1}(t-t_{1})} B_{n-1} e^{A_{n}t_{n-1}} \right\}$$

- A method for computing some of the integrals of the general type shown in Equation of this type was proposed by Van Loan in 1978^[4] (pointed out by Sophie Schirmer^[5])
- Using this augmented exponential technique, we can write an upper-triangular block matrix exponential as

$$\exp\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{A} \end{pmatrix} = \begin{pmatrix} e^{\mathbf{A}t} & \int _{0}^{t} e^{\mathbf{A}(t-s)} \mathbf{B} e^{\mathbf{A}s} ds \\ \mathbf{0} & e^{\mathbf{A}t} \end{pmatrix} = \begin{pmatrix} e^{\mathbf{A}} & \int _{0}^{1} e^{\mathbf{A}(1-s)} \mathbf{B} e^{\mathbf{A}s} ds \\ \mathbf{0} & e^{\mathbf{A}} \end{pmatrix}$$

^[4]C. F. Van Loan. In: Automatic Control, IEEE Transactions on 23.3 (1978), pp. 395–404.

^[5] F. F. Floether, P. de Fouquieres and S. G. Schirmer. In: New Journal of Physics 14.7 (2012), p. 073023.

Efficient Gradient Calculation Augmented Exponentials

Find the derivative of the control pulse at a specific time point

set

$$\int_{0}^{1} e^{\mathbf{A}(1-s)} \mathbf{B} e^{\mathbf{A}s} ds = D_{c_n}(t) \exp\left(-i\hat{\hat{L}}\Delta t\right) \Rightarrow \mathbf{B} = -i\hat{\hat{H}}_n^{(k)}\Delta t$$

leading to an efficient calculation of the gradient element

$$\exp\begin{pmatrix}-i\hat{\hat{L}}\Delta t & -i\hat{\hat{H}}_{n}^{(k)}\Delta t\\\mathbf{0} & -i\hat{\hat{L}}\Delta t\end{pmatrix} = \begin{pmatrix}e^{-i\hat{\hat{L}}\Delta t} & \frac{\partial}{\partial c_{n}^{(k)}}e^{-i\hat{\hat{L}}\Delta t}\\\mathbf{0} & e^{-i\hat{\hat{L}}\Delta t}\end{pmatrix}$$

Efficient Hessian Calculation

Augmented Exponentials

 \blacktriangleright second order derivatives can be calculated with a 3×3 augmented exponential $^{[6]}$

set

$$\int_{0}^{1} \int_{0}^{s} e^{\mathbf{A}(1-s)} \mathbf{B}_{n_1} e^{\mathbf{A}(s-r)} \mathbf{B}_{n_2} e^{\mathbf{A}r} dr ds = D_{c_{n_1}c_{n_2}}^2(t) \exp\left(-i\hat{\hat{L}}\Delta t\right) \Rightarrow \mathbf{B}_n = -i\hat{\hat{H}}_n^{(k)} \Delta t$$

Giving the efficient Hessian element calculation

$$\exp \begin{pmatrix} -i\hat{\hat{L}}\Delta t & -i\hat{\hat{H}}_{n_{1}}^{(k_{1})}\Delta t & 0\\ 0 & -i\hat{\hat{L}}\Delta t & -i\hat{\hat{H}}_{n_{2}}^{(k_{2})}\Delta t\\ 0 & 0 & -i\hat{\hat{L}}\Delta t \end{pmatrix} = \\ \begin{pmatrix} e^{-i\hat{\hat{L}}\Delta t} & \frac{\partial}{\partial c_{n_{1}}^{(k_{1})}}e^{-i\hat{\hat{L}}\Delta t} & \frac{\partial^{2}}{\partial c_{n_{1}}^{(k_{1})}\partial c_{n_{2}}^{(k_{2})}}e^{-i\hat{\hat{L}}\Delta t}\\ 0 & e^{-i\hat{\hat{L}}\Delta t} & \frac{\partial}{\partial c_{n_{2}}^{(k_{2})}}e^{-i\hat{\hat{L}}\Delta t}\\ 0 & 0 & e^{-i\hat{\hat{L}}\Delta t} \end{pmatrix}$$

[6] T. F. Havel, I Najfeld and J. X. Yang. In: Proceedings of the National Academy of Sciences 91.17 (1994), pp. 7962–7966, I. Najfeld and T. Havel. In: Advances in Applied Mathematics 16.3 (1995), pp. 321–375.

Overtone excitation Simulation

Southampton

- Excite ¹⁴N from a state $\hat{T}_{1,0} \rightarrow \hat{T}_{2,2}$.
- Solid state powder average, with objective functional weighted over the crystalline orientations (rank 17 Lebedev grid - 110 points).
- Nuclear quadrupolar interaction.
- ▶ 400 time points for total pulse duration of $40\mu s$

Overtone excitation Comparison of BFGS and Newton-Raphson

Regularisation

- BFGS (using the DFP formula) is guaranteed to produce a positive definite Hessian update
- The Newton-Raphson method does not:

$$p_k^N = -\mathbf{H}_k^{-1} \nabla f_k$$

- Properties of the Hessian matrix:
 - 1. Must be symmetric: $\frac{\partial^2}{\partial c^{(i)}\partial c^{(j)}} = \frac{\partial^2}{\partial c^{(j)}\partial c^{(i)}}$; not if control operators commute
 - 2. Must be sufficiently positive definite; non-singular; invertible.
 - 3. The Hessian is diagonally dominant.

Regularisation

Avoiding Singularities

- Common when we have negative eigenvalues, regularise the Hessian to be positive definite^[7].
- Check eigenvalues performing an eigendecomposition of the Hessian matrix:

$$\mathbf{H} = Q\Lambda Q^{-1}$$

Add the smallest negative eigenvalue to all eigenvalues, then reform the Hessian with initial eigenvectors:

$$\begin{split} \lambda_{\min} &= \max\left[0, -\min(\Lambda)\right] \\ \mathbf{H}_{\mathrm{reg}} &= Q(\Lambda + \lambda_{\min}\hat{I})Q^{-1} \end{split}$$

TRM Introduce a constant δ ; region of a radius we trust to give a sufficiently positive definite Hessian.

$$\mathbf{H}_{\rm reg} = Q(\Lambda + \delta \lambda_{\rm min} \hat{I}) Q^{-1}$$

However, if δ is too small, the Hessian will become ill-conditioned.

RFO The method proceeds to construct an augmented Hessian matrix

$$\mathbf{H}_{\mathsf{aug}} = \begin{bmatrix} \delta^2 \mathbf{H} & \delta \vec{g} \\ \delta \vec{g} & \mathbf{0} \end{bmatrix} = Q \Lambda Q^{-1}$$

^[7]X. P. Resina. PhD thesis. Universitat Autónoma de Barcelona, 2004.

State transfer

$$F$$

• Controls :=
$$\left\{ \hat{\hat{L}}_x^{(H)}, \hat{\hat{L}}_y^{(H)}, \hat{\hat{L}}_x^{(C)}, \hat{\hat{L}}_y^{(C)}, \hat{\hat{L}}_x^{(F)}, \hat{\hat{L}}_y^{(F)} \right\}$$

valid vs. invalid parametrisation of Lie groups.

State transfer Comparison of BFGS and Newton-Raphson I

State transfer Comparison of BFGS and Newton-Raphson II

Southampton

- Hessian calculation that scales with O(n) computations.
- Efficient directional derivative calculation with augmented exponentials
- better regularisation and conditioning
- infeasible start points?
- Different line search methods?
- forced symmetry of a Hessian