Optimal Control of Spin Systems:

Southamplon

A Modified Newton-Raphson Method (David Goodwin, Ilya Kuprov)

Optimal Control - Gradient Ascent Pulse Engineering (GRAPE)

The evolution of a quantum system can be characterised by a Liouville equation with a vector representation of the density operator, $\frac{\partial}{\partial t}\|\hat{\rho}(t)\rangle=-i \hat{\mathcal{L}}(t)\|\hat{\rho}(t)\rangle$, having the general solution,
-
s; that is beyond experimental control rollable electromagnetic pulses $\left\{\hat{\mathcal{L}}_{k}\right\}$
+ $\sum_{k} c^{(k)}$

assumed to be piecewise constant. For a piecewise constant Hamiltonian, we sequentially multiply each of the, discrete in tim of J in their space (it is useful to note that the maximum of J is propagators into the initial conditions

$$
\begin{aligned}
& \text { ss into the initial conditions: } \\
& \hat{\mathcal{P}}_{n}=\exp [-i(\hat{\hat{\mathcal{L}}}_{0}+\sum_{k} \underbrace{c^{(k)}\left(t_{n}\right)}_{\substack{\| \\
c_{n}^{(k)}}} \hat{\mathcal{L}}_{k}) \Delta t]
\end{aligned}
$$

The expression for fidelity, the overlap between the current state of the system ρ_{0} and the target state σ, is

$$
J=\operatorname{Re}\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\mathcal{P}}_{N-1} \ldots \hat{\mathcal{P}}_{2} \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
$$

Since $\left\{c_{n}^{(k)}\right\}$ are vectors of finite dimension, we can use the
standard non-linear numerical optimisation to find the maximum
the same as the minimum of $1-J$).

Figure: Piecewise constant approximation in a GRAPE simulation

Regularise the Hessian, so it is non-singular; take the eigendecomposition the Hessian matrix and add a multiple of the identity: $\quad\left[\nabla^{2} J\right]=\mathbf{Q} \wedge \mathbf{Q}^{-1}, \sigma=\max \left(0, \delta-\min \left(\Lambda_{i i}\right)\right)$ $\left[\nabla^{2} J\right]_{\mathrm{reg}}=\mathbf{Q}(\Lambda+\sigma \mathbf{1}) \mathbf{Q}^{-1}$
where δ is chosen to give a sufficiently positive definite Hessian. To condition the Hessian, we proceed as before, except the shifting is applied to an augmented Hessian:

$$
\left[\nabla^{2} J\right]^{\text {aug }}=\left(\begin{array}{cc}
\alpha^{2} \nabla^{2} J & \alpha \nabla J \\
\alpha \nabla J^{T} & \mathbf{0}
\end{array}\right)=\mathbf{Q} \Lambda \mathbf{Q}^{-1}, \sigma=\max \left(0,-\min \left(\Lambda_{i i}\right)\right)
$$

$$
\left[\nabla^{2} J\right]_{\text {reg }}^{\text {aug }}=\frac{1}{\alpha^{2}} \mathbf{Q}(\boldsymbol{\Lambda}+\sigma \mathbf{1}) \mathbf{Q}^{-1}
$$

where the scaling constant α is reduced until the condition number becomes acceptable, for example:

$$
\alpha_{r+1}=\phi \alpha_{r} \text { while } \frac{\min \left(\Lambda_{i i}\right)}{\max \left(\Lambda_{i i}\right)}>\frac{1}{\sqrt{\varepsilon}}
$$

where ε is machine precision and $\alpha_{0}=1$. The factor $0<\phi<1$ is used to iteratively decrease the condition number of the Hessian

The numerical optimisation method simulated in the results section above require a gradient calculation. This is reduced to:

$$
J=\langle\sigma| \hat{P}_{N} \hat{P}_{N-1} \hat{\mathcal{P}}_{N-2} \hat{P}_{N-3} \hat{\mathcal{P}}_{N-4} \ldots \hat{\mathcal{P}}_{3} \hat{P}_{2} \hat{P}_{1}\left|\rho_{0}\right\rangle
$$

(II) propagate backwards from target

$$
J=\overparen{\left\langle\sigma \hat{\mathcal{P}}_{N} \hat{\mathcal{P}}_{N-1} \hat{\mathcal{P}}_{N-2} \hat{\mathcal{P}}_{N-3} \hat{P}_{N-4} \ldots \hat{\hat{P}}_{3} \hat{P}_{2} \hat{P}_{1} \mid \rho_{0}\right\rangle}
$$

The total cost of the gradient of J is therefore one forward simulation, one backward simulation and (n steps) $\times(k$ controls) derivatives of matrix exponentials with respect to scalar

meters. The expectation of first order derivatives is

$$
\left\langle\frac{\partial J}{\partial c_{n=t}^{(k)}}\right\rangle=\langle\sigma| \hat{\mathcal{P}}_{N} \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial}{\partial c_{n=t}^{(k)}} \hat{\mathcal{P}}_{n=t} \cdots \hat{\mathcal{P}}_{2} \hat{\mathcal{P}}_{1}\left|\rho_{0}\right\rangle
$$

Efficient calculation of the expectation of first order derivatives can be made utilising the work of C.Van Loan; using an augmented exponential in the following form

$$
\exp \left(\begin{array}{cc}
-i \hat{\mathcal{L}} \Delta t & -i \hat{\mathcal{L}}(k) \\
\mathbf{0} & -i \hat{\mathcal{L}} \Delta t
\end{array}\right)=\left(\begin{array}{cc}
e^{-i \hat{\hat{L}} \Delta t} & \frac{\partial}{\partial c_{n}^{(k)}} e^{-i \hat{\hat{K}} \Delta t} \\
\mathbf{0} & e^{-i \hat{\mathcal{L}} \Delta t}
\end{array}\right)
$$

extracting the derivative from the upper right block. In practice, the exponential is calculated using a two-point finite difference
stencil with Krylov propagation. The Newton-Raphson method stencil with Krylov propagation. The Newton-Raphson method is calculation of the Hessian matrix. This requires the expectation of
the second order derivatives:

Computation to scale with $O(n \times k)$ by storing propagators from gradient calculation.
Problem now reduces to finding $n \times k$ second-order derivatives on the block diagonal of the Hessian with a 3×3 augmented exponential:

Nocedal. Wright: Numerical optimization. (1909)
Neffeld, Havel: Adv. App. Math. 16, 322-375, (1995)
Van Loan; IEEE Trans. 23(3), 395-404, (1978).

