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Optimal Control - Gradient Ascent Pulse Engineering (GRAPE)
The evolution of a quantum system can be characterised by a
Liouville equation with a vector representation of the density

operator, ∂
∂t |ρ̂(t)〉 = −i ˆ̂L(t) |ρ̂(t)〉, having the general solution,

|ρ̂(t)〉 = exp(0)

(
−i
∫ t

0

ˆ̂L(t) dt

)
|ρ̂(t)〉

A practical Magnetic Resonance system can be split into two

parts; that is beyond experimental control, ˆ̂L0, and a set of

controllable electromagnetic pulses
{

ˆ̂Lk

}
:

ˆ̂L(t) = ˆ̂L0 +
∑
k

c (k)(t) ˆ̂Lk

The problem is simplified if the control sequences
{
c (k)(t)

}
are

assumed to be piecewise constant. For a piecewise constant
Hamiltonian, we sequentially multiply each of the, discrete in time,
propagators into the initial conditions:

ˆ̂Pn = exp

[
−i

(
ˆ̂L0 +

∑
k

c (k)(tn)︸ ︷︷ ︸

=

c (k)
n

ˆ̂Lk

)
∆t

]

The expression for fidelity, the overlap between the current state of
the system ρ0 and the target state σ, is

J = Re 〈σ| ˆ̂PN
ˆ̂PN−1 . . .

ˆ̂P2
ˆ̂P1 |ρ0〉

Since
{
c (k)
n

}
are vectors of finite dimension, we can use the

standard non-linear numerical optimisation to find the maximum

of J in their space (it is useful to note that the maximum of J is
the same as the minimum of 1− J).
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Figure: Piecewise constant approximation in a GRAPE simulation

Hessians are normally so expensive that a significant body of work
exists on the subject of avoiding their calculation and recovering
second derivative information in an approximate way from the
gradient history. The recent BFGS-GRAPE algorithm is an
example of such approach. The fact that the Hessian is cheap
suggests that Newton-Raphson type algorithms with the control
sequence update rule at step s

cs+1 = cs −
[
∇2Js

]−1∇Js
formulated in terms of the gradient ∇J and the Hessian ∇2J of
the fidelity functional J (c) with a suitable line search procedure
are a natural next step. Newton-Raphson and quasi-Newton
methods rely on the necessary conditions for Taylor’s theorem and
use a local quadratic approximation:

∆J = J(cs+1)− J(cs) ≈ 〈∇Js|cs〉 + 1
2 〈cs| ∇

2Js |cs〉
The first order necessary condition requires any minimiser c̃ to be
a stationary point

∇J(c̃) = 0

Imposing this condition gives the control sequence update rule.
The second order necessary condition is

〈c| ∇2J(c̃) |c〉 > ε 〈c|c〉 ∀c ∈ RKN

where ε is a positive scalar, i.e. the Hessian ∇2J (c̃) must be
positive definite at c̃. This is evident above, in which a negative
Hessian eigenvalue would result in a step being performed up,
rather than down, the corresponding gradient direction. A
significant problem is that far away from a minimiser, the Hessian
is not actually expected to be positive definite. Small Hessian
eigenvalues are also problematic because they result in overly long
steps that can be detrimental because most fidelity functionals are
not actually quadratic.

Simulation Results
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Figure: Newton-Raphson methods and quasi-Newton methods with regularisation/conditioning. GRAPE optimal control for state transfer on a fragment of a
fluorohydrocarbon molecule. Simulation was run multiple times from different initial guesses of control pulses. Left, Iterate count. Right, Calculation count

Efficient Propagator Derivative Calculations
The numerical optimisation method simulated in the results
section above require a gradient calculation. This is reduced to:

J = 〈σ| ˆ̂PN
ˆ̂PN−1

ˆ̂PN−2
ˆ̂PN−3

ˆ̂PN−4 . . .
ˆ̂P3

ˆ̂P2
ˆ̂P1 |ρ0〉︸ ︷︷ ︸

(I) propagate forwards from source

∂

∂c
(k)
N−3

ˆ̂PN−3 (III) compute expectation
of the derivative

J =

(II) propagate backwards from target︷ ︸︸ ︷
〈σ| ˆ̂PN

ˆ̂PN−1
ˆ̂PN−2

ˆ̂PN−3
ˆ̂PN−4 . . .

ˆ̂P3
ˆ̂P2

ˆ̂P1 |ρ0〉

The total cost of the gradient of J is therefore one forward
simulation, one backward simulation and (n steps)× (k controls)
derivatives of matrix exponentials with respect to scalar

parameters. The expectation of first order derivatives is〈
∂J

∂c
(k)
n=t

〉
= 〈σ| ˆ̂PN

ˆ̂PN−1 · · ·
∂

∂c
(k)
n=t

ˆ̂Pn=t · · · ˆ̂P2
ˆ̂P1 |ρ0〉

Efficient calculation of the expectation of first order derivatives
can be made utilising the work of C.Van Loan; using an
augmented exponential in the following form

exp

(
−i ˆ̂L∆t −i ˆ̂L(k)

n ∆t

0 −i ˆ̂L∆t

)
=

e−i
ˆ̂L∆t ∂

∂c
(k)
n

e−i
ˆ̂L∆t

0 e−i
ˆ̂L∆t


extracting the derivative from the upper right block. In practice,
the exponential is calculated using a two-point finite difference
stencil with Krylov propagation. The Newton-Raphson method is
a second order method, additionally requiring the explicit
calculation of the Hessian matrix. This requires the expectation of

the second order derivatives:〈
∂2J

∂c2
n

〉
=〈σ| ˆ̂PN · · · ˆ̂Pn+1

∂2 ˆ̂Pn

∂c2
n

ˆ̂Pn−1 · · · ˆ̂P1 |ρ0〉〈
∂2J

∂cm∂cn

〉
=〈σ| ˆ̂PN · · · ˆ̂Pn+1

∂ ˆ̂Pn

∂cn
ˆ̂Pn−1 · · · ˆ̂Pm+1

∂ ˆ̂Pm

∂cm
ˆ̂Pm−1 · · · ˆ̂P1 |ρ0〉

I Computation to scale with O(n × k) by storing propagators
from gradient calculation.

I Problem now reduces to finding n × k second-order
derivatives on the block diagonal of the Hessian with a 3× 3
augmented exponential:

exp

−i ˆ̂L∆t −i ˆ̂L(k)
n ∆t 0

0 −i ˆ̂L∆t −i ˆ̂L(k)
m ∆t

0 0 −i ˆ̂L∆t

 =


e−i

ˆ̂L∆t ∂

∂c
(k)
n

e−i
ˆ̂L∆t 1

2
∂2

∂c
(k)
n ∂c

(k)
m

e−i
ˆ̂L∆t

0 e−i
ˆ̂L∆t ∂

∂c
(k)
m

e−i
ˆ̂L∆t

0 0 e−i
ˆ̂L∆t
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Simulation System
We prepare the Spinach software to find a pulse set to transfer
magnetisation from 1H atom to 19F atom with the following
molecule:

Interaction parameters of a molecular
group used in state transfer
simulations on a system characterising
the fragment of a fluorohydrocarbon
molecule (magnetic induction = 9.4
Tesla). In this case the set of control
channels operators are{
L̂(H)
x , L̂(H)

y , L̂(C )
x , L̂(C )

y , L̂(F )
x , L̂(F )

y

}
.
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Visualise the set of optimal pulses by the population of their
correlation subspaces and population of coherence local at each
spin:

Regularise the Hessian, so it is non-singular; take the
eigendecomposition the Hessian matrix and add a multiple of the
identity: [

∇2J
]

= QΛQ−1, σ = max(0, δ −min(Λii))[
∇2J

]
reg

= Q(Λ + σ1)Q−1

where δ is chosen to give a sufficiently positive definite Hessian.
To condition the Hessian, we proceed as before, except the
shifting is applied to an augmented Hessian:[
∇2J

]aug
=

(
α2∇2J α∇J
α∇JT 0

)
= QΛQ−1, σ = max(0,−min(Λii))[

∇2J
]aug

reg
=

1

α2
Q(Λ + σ1)Q−1

where the scaling constant α is reduced until the condition
number becomes acceptable, for example:

αr+1 = φαr while
min(Λii)

max(Λii)
>

1√
ε

where ε is machine precision and α0 = 1. The factor 0 < φ < 1 is
used to iteratively decrease the condition number of the Hessian


