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Random variables and mutually exclusive
events

• Probability theory is used to describe a situation in which we do not know
the precise value of a variable, but may have an idea of the likelihood
that it wil have one of a number of possible values.

• let us call the unknown quantity X , referred to as a random variable.

• We describe the likelihood X will have one of all the possible values as
the probability, 0 < X < 1.

• The various values of X , and of any random variable, are an example of
mutually exclusive events.

• The total probability that one of two or more mutually exclusive events
occurs is the sum of the probabilities for each event
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Random variables: roll of dice.

• The sum of the
probabilities for all the
mutually exclusive possible
values must always be
unity.

• If a die is fair, then all the
possible values are equally
likely, therefore the
probability for each event
is 1/6.

• in this example, x is a
discrete random variable.

If we want to know the probability for X , being
the roll of a die, being in the range from 4 to
6, we sum all the probabilities for the values
from 4 to 6, illustrated in the figure 1.1 above.



Random Independ. Depend. Correlat. Add Transform Distribut. Character. Gaussian

Continuous random variables

• If X could take the value of any real number, then we say X is a
continuous random variable.

• If X is a continuous random variable, the probability is now a function of
x , where x ranges over the values of X .

• This type of probability is called a probability density, denoted P(x).

• The probability for X to be in the range x = a to x = b is now thw area
under P(x) from x = a to x = b

Prob(a < X < b) =

∫ b

a

P(x)dx

• Thus, the integration (area under the curve) of P(x) over the whole real
number line (from −∞ to ∞) must be untiy, since X must take on one
of these values. ∫ ∞

−∞
P(x)dx = 1
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Statistical definitions

• The average of X , also known as the mean, or expectation value, of X is
defined by

〈X 〉 ≡
∫ ∞
−∞

P(x)xdx

• If P(x) is symmetric about x = 0, then it is not difficult to see that the
mean of X is zero.

• If the density is symmetric about any other point then the mean is the
value at this point.

• The varience of X is defined as

VX ≡
∫ ∞
−∞

P(x)(x − 〈X 〉)2dx = 〈X 2〉 − 〈X 〉2

• The standard deviation of X , denoted by σX and defined as the square
root of the varience, is a measure of how broad the probability density for
X is - that is, how much we expect X to deviate from the mean value.
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The Gaussian

• An important example of a probaability density is the Gaussian, given by

P(x) =
1√

2πσ2
e
− (x−µ)2

2σ2

• The mean of this Gaussian is 〈X 〉 = µ and the variance is V (x) = σ2.

• A plot of this probability density is shown in the figure 1.2 below.
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Independence

• Two random variables are referred to as independent if neither of their
probability densities depends on the value of the other variable.

• The probability that two independent random events occur is the product
of their probabilities.

• This is true for discrete and continuous independent random variables.

• In the case of continuous independent random variables we speak of the
joint probability density.

P(x , y) = PX (x)PY (y)

• We can take this further and ask what the probability that X falls within
the interval [a, b] and Y falls in the interval [c, d ]. This is∫ b

a

∫ d

c

P(x , y)dydx =

∫ b

a

PX (x)dx

∫ d

c

PY (y)dy

• It is also worth noting that when two variables are independent, then the
expectation value of their probuct is simply the product of their
expectation values

〈XY 〉 = 〈X 〉〈Y 〉
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Dependent random variables

• Two random variables are referred to as dependent if their joint
probability density, P(x , y), does not factor into the product of their
respective probability densities.

• To obtain the probability density for one variable alone (say X ), we
integrate the joint probability density over all values of the other variable
(in this case Y ).

• For each value of X , we want to know the total probability summed over
all the mutually exclusive values that Y can take.

• In this context, the probability densities for a single variable are referred
to as the marginals of the joint density.

• If we know nothing about Y , then our probability density for X is just the
marginal

PX (x) =

∫ ∞
−∞

P(x , y)dy

• If X and Y are dependent, adn we learn the value of Y , then in general
this will change our probability density for X (and vice versa). The
probability density for X given that we know that Y = y , is written
P(x | y) and is referred to as the conditional probability density for X
given Y .
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Dependent random variables

• To see how to calculate this conditional probability, we note first that
P(x , y) with y = a gives a relative probability for different values of x
gievn that Y = a.

• To obtain the conditional proability density for X given that Y = a, all
we have to do is divide P(x , a) by its integral over all values of x . This
ensures that the integral of the conditional probability is unity

P(x | y) =
P(x , y)∫∞

−∞ P(x , y)dx

• If we substitute

PY (y) =

∫ ∞
−∞

P(x , y)dx

into this equation for the conditional probability we have

P(x | y) =
P(x , y)

PY (y)

• Further than this, we also see

P(x , y) = P(x | y)PY (y)

• Generally when two random variables are dependent 〈XY 〉 6= 〈X 〉〈Y 〉
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Correlations and correlation coefficients

• The expectation value of the product of two random variables is called
the correlation of the two variables.

• Item the correlation is a measure of how correlated two variables are.

• For a measure of how mutually dependent two variables are we divide the
correlation by the square root of the product of the variances

CXY ≡
〈XY 〉√

V (X )V (Y )

where CXY is called the correlation coefficient of X and Y .

• If the means of X and Y are not zero, we can remove these when
calculating the correlation coefficient and preserve its properties, we can
find in general the correlation coefficient as

CXY ≡
〈(X − 〈X 〉)(Y − 〈Y 〉)〉√

V (X )V (Y )
=
〈XY 〉 − 〈X 〉〈Y 〉√

V (X )V (Y )
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Correlations and correlation coefficients

• The quantity 〈XY 〉 − 〈X 〉〈Y 〉 is called the covariance of X and Y and is
zero if X and Y are independent.

• The correlation coefficient is zero if X and Y are independent.

• The correlation coefficient is unity if X = cY (c being some positive
constant).

• If X = −cY , then the correlation coefficient is −1, and we say that the
two variables are perfectly anti-correlated.

• The correlation coefficient provides a rough measure of the mutual
dependence of two random variables, and is one that is relatively easy to
calculate.
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Adding random variables together

• The proability density for Z = X + Y is given by

PZ (z) =

∫ ∞
−∞

PX (s − z)PY (s)ds ≡ PX ∗ PY

which is called the convolution of PX and PY , and is denoted by another
function “∗”.

• The mean and the variance are defined as follows, for X = X1 + X2

〈X 〉 = 〈X1〉+ 〈X2〉
VX = V1 + V2

where the two events are independent.

• The notion that averaging the results of a number of independent
measurements producing a more accurate results is an important one
here. If we sum the avereges of a number of experiments, N, the mean
will not change, however, because we are dividing each of the variable by
N, the variance goes down by 1/N2.

• Because it is the variances that add together, the variance of the sum is
V /N. Thus the variance gets smaller as we add more results together.

• The uncertainty of the results is the standard deviation, and the standard
deviation of the average is σ/

√
N
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Transformation of a random variable

• If we know the probability density for a random variable X , then it can be
useful to know how to calculate the probability density for some random
variable Y , that is a function of X . This is referred to as a transformation
of a random variable.

• Consider the case where Y = aX + b for constants a and b.

1 The probability density will be stretched by a factor a.
2 The probability density will be shifted a distance of b.
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Transformation of a random variable

• More generally, if Y = g(X ), then we determine the probability density
for Y by changing the variables as shown below.

• We begin by writing the expectation value of a function Y , f (Y ), in
terms of P(x).

〈f (Y )〉 =

∫ x=b

x=a

P(x)f (g(x))dx

where a and b are the upper and lower limits on the values X can take.

• Now we transform this into an integral over the values of Y

〈f (Y )〉 =

∫ y=g(b)

y=g(a)

P(g−1(y))

(
dx

dy

)
f (y)dy

=

∫ y=g(b)

y=g(a)

P(g−1(y))

g ′(g−1(y))
f (y)dy
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Transformation of a random variable

• We now identify the function that multiplies f (y) inside the integral over
y as the probability density.

• The probability density for y is therefore

Q(y) =
P(g−1(y))

|g ′(g−1(y))|

• One must realise that this expression for Q(y) only works for functions
that map a single value of x to a single value of y (invertable functions),
because in the change of variables we assumed that g was invertable.
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The distribution function

• The probability distribution function, which we call D(x), of a random
variable X is defined as the probability that X is less than or equal to x

D(x) = Prob(X ≤ x) =

∫ x

−∞
P(z)dz

• In addition, the fundamental theorem of calculus tells us that

P(x) =
dD(x)

dx
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The characteristic function

• Another useful definition is that of the characteristic function, χ(s).

• The function is defined as the fourier transform of the probability density.

• The Fourier transform of a function P(x) is another function given by

χ(s) =

∫ ∞
−∞

P(x)e isxdx

• One use of the Fourier tansform is that it has a simple inverse, allowing
one to perform a transformation on χ(s) to get back P(x). This inverse
transform is

P(x) =
1

2π

∫ ∞
−∞

χ(s)e−isxds

• If we have two functions F (x) and G(x), then the fourier tansform of their
convolution is simple the product of their respective fourier transforms.

• We now have an alternative way to find the probability density of the sum

of two random variables:

1 Convolve their two densities.
2 Calculate the characteristic functions for each, multiply these

together, and then take the inverse Fourier transform.
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The multivariate Gaussian

• It is possible to have a probability density for N variables, in which the
marginal densities for each of the variables are all Gaussian, and where all
the variables may be correlated.

• Defining a column vector of N random variables, x = (x1, x2, . . . , xN)T ),
the general form of the multivariate Gaussian is

P(x) =
1√

(2π)Ndet[Γ]
exp[−1

2
(x− µ)TΓ−1(x− µ)]

where mu is the vector of the means of the random variables, and Γ is
the matrix of covariances of the variables,

Γ = 〈XXT 〉 − 〈X〉〈X〉T = 〈XXT 〉 − µµT

• Note that the diagonal elements of Γ are the variances of the individual
variables.
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