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INTRODUCING DIFFERENTIAL EQUATIONS

e A differential equation is one that involves one or more derivatives of a
function

EXAMPLE

Say we have a toy train on a straight track, and x is the position of the train

along the track. If the train is moving then x will be a function of time, x(t).

If we apply a constant force (from constant electric power), F, to the train,

then its accelaration, being the second derivative of x, is equal to F/m, where

m is the mass of the train. Thus we have a simple differential equation:
d2x__ F

dt2  m
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INTRODUCTION

INTRODUCING DIFFERENTIAL EQUATIONS

® Although an integral can be seen as the area under a plotted curve
between two limits, it can also be viewed as the inverse of differentiation,
where differentiation can be seen as the gradient of a plotted curve at any
single point.

® The pneumonic is “add one to the power and divide by the new power”
for the integral of simple powers. Integration is accurate up to an
arbritrary constant of integration, which can be thought of as comming
from the y-intercept of the plot.

EXAMPLE

To find how x varies with time, we need to find the function x(t) that satisfies
the previous differential equation. Here we can integrate both sides of the
equation twice to recover x:

F
x(t) = %tQ + vot + X0

where vy and xg come from the constants of integration, and represent the
. . . . -y o . Tiversity of
initial velocity and initial position of the toy train. i
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VECTOR DIFFERENTIAL EQUATIONS

® We can change a second order differential equation into two first order
differential equations.

® To do this we need to introduce a second variable, and set this equal to
the first derivative.

EXAMPLE

We can define the velocity of the toy train as the derivative of the position of
the train, so we have two first order differential equations.

dx dv._ F

de " dt  m

We can now write this set of first order differential equations in “vector form".
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VECTOR DIFFERENTIAL EQUATIONS

EXAMPLE

Defining x = (x, v)" and A as the matrix

0 1
A= [F/mx O}
We can now write the set of equations in compact form

dx
x=—=A
X gt X

If the elements of the matrix A do not depend on x, then this equation would
be a linear first-order vector differential equation.
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VECTOR DIFFERENTIAL EQUATIONS

® We can consider a differential equation as involving the change in x at an

infinitesimal time-step dt

dx

—dt

dt

e \We can write differential equations in terms of dx and dt instead of using
the derivatives previously.

dx =

EXAMPLE
X 0 1] [x
g [v] - {F/mx O] [v} ok
or in the more compact notation
dx = Axdt

The infinitesimal increments dx, dt, etc., are called “differentials”, and so
writing differential equations in this way is often referred to as writing them in
“differential form".
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ASSIDE: THE EXPONENTIAL FUCNTION

The exponential function is the entire function defined by
exp(z) = €*
where e is the solution of the equation
X dt
1t
so that e = x = 2.718.... The exponential function has Maclaurin series

oo n

o= %

n=0
and satisfies the limit
. X\"
exp(x) = lim ) (1 + ;)

(n—o00
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AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.
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AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.

® This tells us that the value of x at time t + dt is the value at time t plus
dx
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AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.

® This tells us that the value of x at time t + dt is the value at time t plus
dx.

o x(t+ dt) = x(t) —yx(t)dt = (1 — v)x(t)
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SowiING DE

AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.

® This tells us that the value of x at time t + dt is the value at time t plus
dx.

o x(t+ dt) = x(t) —yx(t)dt = (1 — v)x(t)

e To solve this we note that to first order in dt (that is, when dt is very
small) e’ a1 4 ~dt. This comes from the definition of e
(ex: OOX”:]_—‘,—X-‘F%"'%T""%—F”")

n=0 nl
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AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.

® This tells us that the value of x at time t + dt is the value at time t plus
dx.

o x(t+ dt) = x(t) —yx(t)dt = (1 — v)x(t)

e To solve this we note that to first order in dt (that is, when dt is very
small) e’ a1 4 ~dt. This comes from the definition of e

o0 )(l7 X2 X3 X4

(=2 om=1tx+g+m+y+-)

e This changes our equation to x(t + dt) = e~ x(t), which tells us that
to move x from time t to t 4 dt we simple multiply x(t) by e™ 7%,
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AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.

® This tells us that the value of x at time t + dt is the value at time t plus
dx.

o x(t+ dt) = x(t) —yx(t)dt = (1 — v)x(t)

e To solve this we note that to first order in dt (that is, when dt is very
small) e’ a1 4 ~dt. This comes from the definition of e

o0 )(l7 X2 X3 X4

(=2 om=1tx+g+m+y+-)

e This changes our equation to x(t + dt) = e~ x(t), which tells us that
to move x from time t to t 4 dt we simple multiply x(t) by e™ 7%,

® To move two lots of dt we simple multiply this factor twice. To move to
some arbitrary time x(t 4 7) all we do is apply this relation repeatedly.
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AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.

® This tells us that the value of x at time t + dt is the value at time t plus
dx.

o x(t+ dt) = x(t) —yx(t)dt = (1 — v)x(t)

e To solve this we note that to first order in dt (that is, when dt is very
small) e’ a1 4 ~dt. This comes from the definition of e

o0 )(l7 X2 X3 X4

(=2 om=1tx+g+m+y+-)

e This changes our equation to x(t + dt) = e~ x(t), which tells us that
to move x from time t to t 4 dt we simple multiply x(t) by e™ 7%,

® To move two lots of dt we simple multiply this factor twice. To move to
some arbitrary time x(t 4 7) all we do is apply this relation repeatedly.

® Let us say that dt = 7/N for some large N.
X(t—|— 7-) — (e*’Ydt)NX(t) _ e*’YthX(t) _ efwx(t)
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AN ALTERNATIVE METHOD FOR SOLVING
DIFFERENTIAL EQUATIONS

® Consider the simple linear differential equation dx = —yxdt.

® This tells us that the value of x at time t + dt is the value at time t plus
dx.

o x(t+ dt) = x(t) —yx(t)dt = (1 — v)x(t)

e To solve this we note that to first order in dt (that is, when dt is very
small) e’ a1 4 ~dt. This comes from the definition of e

o0 )(l7 X2 X3 X4

(=2 om=1tx+g+m+y+-)

e This changes our equation to x(t + dt) = e~ x(t), which tells us that
to move x from time t to t 4 dt we simple multiply x(t) by e™ 7%,

® To move two lots of dt we simple multiply this factor twice. To move to
some arbitrary time x(t 4 7) all we do is apply this relation repeatedly.

® Let us say that dt = 7/N for some large N.
X(t—|— 7-) — (e*’Ydt)NX(t) _ e*’YthX(t) _ efwx(t)

® The equation solved above is the simplest linear differential equation.".‘ Universty of
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A LINEAR DIFFERENTIAL EQUATION WITH DRIVING

e Consider the simple differential linear equation with the addition of a
dx

“driving” term & = —yx + f(x) where f is any function of time.
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A LINEAR DIFFERENTIAL EQUATION WITH DRIVING

e Consider the simple differential linear equation with the addition of a
“driving” term & = —yx + f(x) where f is any function of time.

® To solve this we must first transform to a new variable ~(t), defined as
y(t) = x(t)e”. We have chosen this definition so that if x(t) was a
solution to dx = —vyxdt, then y would be constant.
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A LINEAR DIFFERENTIAL EQUATION WITH DRIVING

e Consider the simple differential linear equation with the addition of a

“driving” term & = —yx + f(x) where f is any function of time.

® To solve this we must first transform to a new variable ~(t), defined as
y(t) = x(t)e”. We have chosen this definition so that if x(t) was a
solution to dx = —vyxdt, then y would be constant.

® We now calculate the differential equation for y, giving dy = e"*f(t)dt.
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A LINEAR DIFFERENTIAL EQUATION WITH DRIVING

e Consider the simple differential linear equation with the addition of a

“driving” term & = —yx + f(x) where f is any function of time.

® To solve this we must first transform to a new variable ~(t), defined as
y(t) = x(t)e”. We have chosen this definition so that if x(t) was a
solution to dx = —vyxdt, then y would be constant.

® We now calculate the differential equation for y, giving dy = e"*f(t)dt.
® The solution is obtained by integratinf both sides of this equation giving

(1) = yo + / e f(s)ds

where we have defined the value of y at time t = 0 as yp.
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A LINEAR DIFFERENTIAL EQUATION WITH DRIVING

e Consider the simple differential linear equation with the addition of a

“driving” term & = —yx + f(x) where f is any function of time.

® To solve this we must first transform to a new variable ~(t), defined as
y(t) = x(t)e”. We have chosen this definition so that if x(t) was a
solution to dx = —vyxdt, then y would be constant.

® We now calculate the differential equation for y, giving dy = e"*f(t)dt.
® The solution is obtained by integratinf both sides of this equation giving

(1) = yo + / e f(s)ds

where we have defined the value of y at time t = 0 as yp.

® We can now find x(t)

t
x(t) = xe " +/ e 791 (s)ds
0
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A LINEAR DIFFERENTIAL EQUATION WITH DRIVING

® We can just as easily solve a linear equation when the coefficient v is a
function of time also. In this case we transform y(t) = x(t)e) where we
define

r(t) = /Oty(s)ds
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A LINEAR DIFFERENTIAL EQUATION WITH DRIVING

® We can just as easily solve a linear equation when the coefficient v is a
function of time also. In this case we transform y(t) = x(t)e) where we
define

r(t) = /Oty(s)ds

® The solution to this is then

t
x(t) = xpe " +/ "M ¢(5)ds
0
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SOLVING VECTOR LINEAR DIFFERENTIAL EQUATIONS

® We can usually solve a linear differential equation with more than one
variable
x = Ax

® This is done by transforming to a new set of variables, y = Ux, where U
is a matrix chosen so the equations for the new variables are “decoupled”
from each other.

® The equation for y is
y =Dy
where D is a diagonal matrix. For many square matrices A, there exists a

matrix U so that D is diagonal.

e This is the case when ATA = AAT, where A" is called the Hermitian
conjugate of A (if A were real, then AT = A7), defined as the transpose
of a the complex conjuagate of A.

® [f U exists then it is unitary, which means utu = uut = 1.

® The diagonal elements of D are called the eigenvalues of A.
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SOLVING VECTOR LINEAR DIFFERENTIAL EQUATIONS

e If D is diagonal then for each element of y, y, we have the simple
equation y, = Anyn, where A\, are the diagonal elements of D.

e This has the solution y,(t) = y»(0)e** so the solution for y is
y(t) = e”y(0)

e To get the solution for x(t) we use the fact that UTU = I, from which if
follows immediately that x = U'y, which leads us to the equation

x(t) = U'e” Ux(0)

® Further, it makes sense to define the exponential of any square matrix A

as
eAt _ UTeDtU

® Therefore, the natural definition of any function of a square matrix A is

f(A) = U'f(D)U
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SUMMARY

To summarise the above results, the solution to the vector differential equation

x = Ax

x(t) = e*x(0)
where

At — UtePty
We can also solve any linear vector differential equation with driving, just as we
did for thwe single variable linear equation.
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