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LINEAR CONGRUENCES SIMULTANEOUS CONGR CES ous NON- \R CONGR CES CHINESE REMAIND

THEOREM (5.6)

If d = gcd(a, n), then the linear congruence
ax = b mod (n)

has a solution if and only if d | b. If d does divide b, and if xg is
any solution, then the general solution is given by
n nt
X =x9+ —
0" d
where t € 7Z; in particular, the solutions form exactly d congruence
classes mod(n), with representatives

2n (d—=1)n

n
X = X0,X0 + =, X0 + ., X0 + d

d d’
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LINEAR CONGRUENCES

LEMMA (5.7)

A Let m|a,b,n, and let 8 = a/m, b’ = b/m and n" = n/m; then

ax = b mod (n) if and only if a'’x=b' mod (n')
B Let a and n be coprime, let m| a, b, and let a = a/m and
b = b/m; then
ax = b mod (n) if and only if a'’x = b’ mod (n)
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LINEAR CONGRUENCES

ALGORITHM FOR SOLUTION

f
© Calculate d = gcd(a, n) and use f' = 5
® Use a'x = b’ mod (')
- f
® Find m = gecd(a’,b') and use f" = 5
® Use a"x = b mod (')
@ If 2’/ = +1 then xg = £b”

® Else use b = b" + kn' so ged(a”,b"”) > 1 and return to step
4 with b instead of b”. Or use ca’x = cb” mod (n') in step
4, where the least absolute reside a”’ of ca” satisfies
‘a///| < |a//‘

".' Universty of
Bedfordshire



LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE ® Calculate d = gcd(a, n) and
use f/ = £
ged(10,14) = 2, d
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE
gcd(10,14) = 2,
5x = 3 mod (7), ® Use a'x = b/ mod (')
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE

ged(10,14) = 2,

5x = 3 mod (7),

ged(5,3) =1, ® Find m = gcd(d', b') and
use " = &
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE
gcd(10,14) = 2,
5x = 3 mod (7),
gcd(5,3) =1,
5x = 3 mod (7),
© Use a"x = b’ mod (')
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE
gcd(10,14) = 2,
5x = 3 mod (7),
gcd(5,3) =1,
5x = 3 mod (7),
5 £ 1,

@ If 2’ = +1 then xg = +b”
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE
ged(10,14) = 2,
5x = 3 mod (7),
gcd(5,3) =1,
5x = 3 mod (7),
5 £ 1,
10=3+(1x7)

gives 5x = 10 mod (7),
® Else use b = b" + kn' and

return to step 4. Or use
ca’x = cb” mod (n') and
return to step 4.
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE
ged(10,14) = 2,
5x = 3 mod (7),
ged(5,3) =1, ® Find m = gcd(d', b') and
5x = 3 mod (7), use f" = g

5 £ 41,

10=3+(1x7)

gives 5x = 10 mod (7),
gcd(5,10) = 5,
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE
ged(10,14) = 2,
5x = 3 mod (7),
gcd(5,3) =1,
5x = 3 mod (7),
5# £1, © Use a"x = b’ mod (')
10=3+(1x7)

gives 5x = 10 mod (7),
gcd(5,10) = 5,

x =2mod (7),
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE
ged(10,14) = 2,
5x = 3 mod (7),
gcd(5,3) =1,
5x = 3 mod (7),
5 £ 1,
10=3+(1x7)

/o _ /!
gives 5x = 10 mod (7), ® If a7 = &1 then xo = b

gcd(5,10) = 5,
x =2mod (7),
Xo = 2,
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LINEAR CONGRUENCES

EXAMPLE: 10x = 6 mod (14)

EXAMPLE

gcd(10,14) = 2,

5x = 3 mod (7),
gcd(5,3) =1,

5x = 3 mod (7),

5 £ 41,
10=3+(1x7)

gives 5x = 10 mod (7),

gcd(5,10) = 5,
x =2mod (7),
Xo = 2,

So the general solution has the form
x=2+T7t (t€Z) W



LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE ® Calculate d = gcd(a, n) and
use f/ = £
gcd(4,47) =1, d
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,
4x =13 mod (47), ® Use a'x = b/ mod (')
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

® Find m = gcd(d', b') and

n _ f
use f =g
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,
4x = 13 mod (47),

© Use a"x = b’ mod (')
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

@ If 2’ = +1 then xg = +b”
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

4 %12 =48 =1 mod (47)
x =12 x 13 mod (47)

@ Else use b = b" + kn' and
return to step 4. Or use
ca’x = cb” mod (n') and
return to step 4.
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

4 %12 =48 =1 mod (47)
x =12 x 13 mod (47)

x =3 x4 x 13 mod (47), @ If 2/ — 41 then xo = +b"
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

4 x 12 =48 =1 mod (47)
x =12 x 13 mod (47)
x =3 x4 x 13 mod (47),

"o _ i
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

4 %12 =48 =1 mod (47)
x =12 x 13 mod (47)

x =3 x4 x 13 mod (47),
x =3 x 52 mod (47),

x =3 x 5 mod (47),

@ If 2" = +1 then xg = +b”
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

4 %12 =48 =1 mod (47)
x =12 x 13 mod (47)

x =3 x4 x 13 mod (47),
x =3 x 52 mod (47),

x =3 x 5 mod (47),

x = 15 mod (47),

@ If 2" = +1 then xg = +b”
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

4 %12 =48 =1 mod (47)
x =12 x 13 mod (47)

x =3 x4 x 13 mod (47),
x =3 x 52 mod (47),

x =3 x 5 mod (47),

x = 15 mod (47),

xo = 15,

@ If 2" = +1 then xg = +b”
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LINEAR CONGRUENCES

EXAMPLE: 4x = 13 mod (47)

EXAMPLE
ged(4,47) =1,

4x = 13 mod (47),
4 £ +1,

4 %12 =48 =1 mod (47)
x =12 x 13 mod (47)

x =3 x4 x 13 mod (47),
x = 3 x 52 mod (47),

x =3 x 5 mod (47),

x = 15 mod (47),

xo = 15,

So the general solution has the form
x=15+47t (t€Z) W



LINEAR CONGRUENCES

EXERCISES

For each of the following congruences, decide whether a solution
exists, and if it does exist, find the general solution:

® 3x =5 mod (7)

® 12x = 15 mod (22)
® 19x = 42 mod (50)
© 18x = 42 mod (50)
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SIMULTANEOUS LINEAR CONGRUENCES

CHINESE REMAINDER THEOREM

THEOREM (5.8)

Let ny, no, ..., ni be positive integers, with gcd(n;, nj) =1
whenever | # j, and let a1, ap, ..., ax be any integers. Then the
solutions of the simultaneous congruences

x = a; mod (ny), x =aymod (n2), ... x=a,mod (nk)

form a single congruence class mod(n), where n = niny ... ng.

o

Let ¢; = n/nj, then ¢cix = 1 mod (n;) has a single congruence class
[di] of solutions mod(n;). We now claim that

Xp = a1a1d1 + axcrdy + - - - + agcidi simultaneously satisfies the
given congruences.
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SIMULTANEOUS LINEAR CONGRUENCES

(QUESTIONS

EXAMPLE

Solve the following simultaneous congruence:
x =2 mod (3), x =3 mod (5), x =2 mod (7)
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5 SIMULTANEOUS LINEAR CONGRUENCES SIMULI

(QUESTIONS

EXAMPLE

Solve the following simultaneous congruence:

x =2 mod (3), x =3 mod (5), x =2 mod (7)

We have n1 =3, np =5, n3 =7,

so n = 105.

c1 =35, o =21, cg = 15.

d=-1d =1 d3=1.

xo = (2x35x—1))+(3%21x1))+(2x15x1)) = —70+63+30 = 23.
So the solutions form the congruence class [23] mod (105), that is,
the general solution x = 23 + 105t where t € Z.
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SIMULTANEOUS NON-LINEAR CONGRUENCES

SIMULTANEOUS NON-LINEAR CONGRUENCES

It is sometimes possible to solve simultaneous congruences by
Chinese Remainder Theorem when the congruences aren't all
linear. We must inspect the non-linear congruences to give
multiple simultaneous linear congruences.
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5 LINEAR CONGRUENCES SIMULTANEOUS NON-LINEAR CONGRUENCES CHINESE REMAI

AN EXAMPLE

EXAMPLE

Consider the simultaneous congruences

x*=1mod (3) x =2mod (4)
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CES  SIMULTANEOUS NON-LINEAR CONGRUENCES CHINESE REMAIND

AN EXAMPLE
EXAMPLE
Consider the simultaneous congruences
x*=1mod (3) x =2mod (4)

By inspection we find x> = 1 mod (3) can be written as
x = £v/1 mod (3).



S SIMULTANEOUS LINEAR CONGRUENCES SIMULTANEOUS NON-LINEAR CONGRUENCES CHINESE REMAIND

AN EXAMPLE

EXAMPLE

Consider the simultaneous congruences
x*=1mod (3) x =2mod (4)

By inspection we find x> = 1 mod (3) can be written as
x = £v/1 mod (3).
So this first congruence can be x =1 or — 1 mod (3).



ULTANEOUS LINEAR CONGRUENCES SIMULTANEOUS NON-LINEAR CONGRUENCES CHINESE REMAIND

AN EXAMPLE

EXAMPLE
Consider the simultaneous congruences

x*=1mod (3) x =2mod (4)

By inspection we find x> = 1 mod (3) can be written as
x = £v/1 mod (3).
So this first congruence can be x =1 or — 1 mod (3).

x =1mod (3) and x =2 mod (4)

or
x =2mod (3) and x =2 mod (4)



ULTANEOUS LINEAR CONGRUENCES SIMULTANEOUS NON-LINEAR CONGRUENCES CHINESE REMAIND

AN EXAMPLE
EXAMPLE
Consider the simultaneous congruences
x*=1mod (3) x =2mod (4)

By inspection we find x> = 1 mod (3) can be written as
x = £v/1 mod (3).
So this first congruence can be x =1 or — 1 mod (3).

x =1mod (3) and x =2 mod (4)

or
x =2mod (3) and x =2 mod (4)

Giving solutions x = ++/4 mod (12) which is x?> = 4 mod (12).



SIMULTANEOUS NON-LINEAR CONGRUENCES

THEOREM (5.9)

Let n = ny...ng where the integers n; are mutually coprime, and
let f(x) be a polynomial with integer coefficients. Suppose that for
each i =1,..., k there are N; congruence classes x € Z,, such
that f(x) = 0 mod (n;). Then there are N = Nj ... Ny classes

X € Zp such that f(x) = 0 mod (n).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

Start with f(x) = x> — 1. We aim to find the number of classes
x € Z, satisfying x> = 1 mod (n).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

Start with f(x) = x> — 1. We aim to find the number of classes

x € Z, satisfying x> = 1 mod (n).

If we set n = p€, where p is prime, if p > 2 then p¢ divides (x — 1)
or (x+ 1), giving x = £1.
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SIMULTANEOUS NON-LINEAR CONGRUENCES

Start with f(x) = x> — 1. We aim to find the number of classes

x € Z, satisfying x> = 1 mod (n).

If we set n = p€, where p is prime, if p > 2 then p¢ divides (x — 1)
or (x+ 1), giving x = £1.

If p€ = 2 or 4, there are one of two classes of solutions.
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SIMULTANEOUS NON-LINEAR CONGRUENCES

Start with f(x) = x> — 1. We aim to find the number of classes

x € Z, satisfying x> = 1 mod (n).

If we set n = p€, where p is prime, if p > 2 then p¢ divides (x — 1)
or (x+ 1), giving x = £1.

If p€ = 2 or 4, there are one of two classes of solutions.

If p€ = 2¢ > 8, there are four classes of solutions given by x = £1
and x =2¢"1 £+1.
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SIMULTANEOUS NON-LINEAR CONGRUENCES

Start with f(x) = x> — 1. We aim to find the number of classes

x € Z, satisfying x> = 1 mod (n).

If we set n = p€, where p is prime, if p > 2 then p¢ divides (x — 1)
or (x+ 1), giving x = £1.

If p€ = 2 or 4, there are one of two classes of solutions.

If p€ = 2¢ > 8, there are four classes of solutions given by x = £1
and x =2¢"1 £+1.

Let n be a prime power factorisation ny ... ng, where n; = p;’ for
each e; > 1.
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SIMULTANEOUS NON-LINEAR CONGRUENCES

Start with f(x) = x> — 1. We aim to find the number of classes

x € Z, satisfying x> = 1 mod (n).

If we set n = p€, where p is prime, if p > 2 then p¢ divides (x — 1)
or (x+ 1), giving x = £1.

If p€ = 2 or 4, there are one of two classes of solutions.

If p€ = 2¢ > 8, there are four classes of solutions given by x = £1
and x =2¢"1 £+1.

Let n be a prime power factorisation ny ... ng, where n; = p;’ for
each e; > 1.

If k is the number of distinct primes dividing n, we find

2K+ if n =0 mod (8)
N =< 2k=1 if n=2mod (4)
2k otherwise
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Bedfordshire



SIMULTANEOUS NON-LINEAR CONGRUENCES

EXAMPLE

EXAMPLE
consider the congruence

x> —1 =0 mod (60)

Here n = 60 = 22 x 3 x 5 is the prime-power factorisation, then
k = 3 and there are 2K = 8 classes of solutions, namely
x =41,411, 419,429 mod (60).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

EXERCISES

How many classes of solutions are there for each of the following
congruences?

©® x> —1=0mod (168).

® x>+ 1= 0mod (70).

® x>+ x+1=0mod (91).

© x3+1=0mod (140).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

EXERCISES

How many classes of solutions are there for each of the following
congruences?

©® x> —1=0mod (168).

Answer: N = 2% = 16 since 168 = 23 x 3 x 7
® x>+ 1= 0mod (70).
® x>+ x+1=0mod (91).

© x3+1=0mod (140).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

EXERCISES

How many classes of solutions are there for each of the following
congruences?

©® x> —1=0mod (168).

Answer: N = 2* =16 since 168 =23 x 3 x 7
® x>+ 1= 0mod (70).

Answer: N=1x2x0=0since70=2x5x7
® x>+ x+1=0mod (91).

© x3+1=0mod (140).
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SIMULTANEOUS NON-LINEAR CONGRUENCES

EXERCISES

How many classes of solutions are there for each of the following
congruences?

©® x> —1=0mod (168).
Answer: N = 2% =16 since 168 =23 x 3 x 7
® x>+ 1= 0mod (70).
Answer: N =1x2x0=0since70=2x5x%x7

® x>+ x+1=0mod (91).
Answer: N =2 x 2 =4since 91 =7 x 13

© x3 +1=0mod (140).

".' Universty of
Bedfordshire



SIMULTANEOUS NON-LINEAR CONGRUENCES

EXERCISES

How many classes of solutions are there for each of the following
congruences?

©® x> —1=0mod (168).
Answer: N = 2% =16 since 168 =23 x 3 x 7
® x>+ 1= 0mod (70).
Answer: N =1x2x0=0since70=2x5x%x7

® x>+ x+1=0mod (91).
Answer: N =2 x 2 =4since 91 =7 x 13

© x3 +1=0mod (140).
Answer: N=1x1x3=3since140=22x5x7
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CHINESE REMAINDE
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® CHINESE REMAINDER THEOREM - AN EXTENSION
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5 CHINESE REMAINDE

CHINESE REMAINDER THEOREM - AN EXTENSION

THEOREM (5.10)

Let n = ny,...,ng be positive integers, and let ay,...,ax be any
integers. Then the simultaneous congruences

x = a; mod (ny),...,x = ax mod (nk)

have a solution x if and only if gcd(n;, nj) divides aj — aj whenever
i # j. When this condition is satisfied, the general solution forms a
single congruence class mod(n), where n is the least common
multiple of ny, ..., ng.
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CHINESE REMAINDE

EXERCISES

Determine which of the following sets of simultaneous congruences
have solutions, and when they do, find the general solution:

® x =1 mod (6), x =5 mod (14), x = 4 mod (21).

® x =1mod (6), x =5 mod (14), x = —2 mod (21).

® x = 13 mod (40), x =5 mod (44), x = 38 mod (275).

© x°> =9 mod (10), 7x = 19 mod (24), 2x = —1 mod (45).
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CHINESE REMAINDE

EXERCISES

Determine which of the following sets of simultaneous congruences
have solutions, and when they do, find the general solution:

® x =1 mod (6), x =5 mod (14), x = 4 mod (21).
Answer: No Solutions, since 5 # 4 mod (7)

® x =1mod (6), x =5 mod (14), x = —2 mod (21).

® x =13 mod (40), x =5 mod (44), x = 38 mod (275).

© x°> =9 mod (10), 7x = 19 mod (24), 2x = —1 mod (45).
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CHINESE REMAINDE

EXERCISES

Determine which of the following sets of simultaneous congruences
have solutions, and when they do, find the general solution:

® x =1 mod (6), x =5 mod (14), x = 4 mod (21).
Answer: No Solutions, since 5 # 4 mod (7)

® x =1mod (6), x =5 mod (14), x = —2 mod (21).
Answer: x = 19 mod (42)

® x =13 mod (40), x =5 mod (44), x = 38 mod (275).

© x°> =9 mod (10), 7x = 19 mod (24), 2x = —1 mod (45).
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CHINESE REMAINDE

EXERCISES

Determine which of the following sets of simultaneous congruences
have solutions, and when they do, find the general solution:

® x =1 mod (6), x =5 mod (14), x = 4 mod (21).
Answer: No Solutions, since 5 # 4 mod (7)

® x =1mod (6), x =5 mod (14), x = —2 mod (21).
Answer: x = 19 mod (42)

® x =13 mod (40), x =5 mod (44), x = 38 mod (275).
Answer: x = 1413 mod (2200)

© x*> =9 mod (10), 7x = 19 mod (24), 2x = —1 mod (45).
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CHINESE REMAINDE

EXERCISES

Determine which of the following sets of simultaneous congruences
have solutions, and when they do, find the general solution:
® x =1 mod (6), x =5 mod (14), x = 4 mod (21).
Answer: No Solutions, since 5 # 4 mod (7)
® x =1mod (6), x =5 mod (14), x = —2 mod (21).
Answer: x = 19 mod (42)
® x =13 mod (40), x =5 mod (44), x = 38 mod (275).
Answer: x = 1413 mod (2200)
© x*> =9 mod (10), 7x = 19 mod (24), 2x = —1 mod (45).
Answer: The congruences are equivalent to
x =3 or 7 mod (10), x = 13 mod (24) and x = 22 mod (45),
with solution x = 157 mod (360)
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