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Solution to Linear Equations - examples with numbers

The Problem
We could have the following Matrix
equation to be solved:2 4 3

3 5 6
1 3 −2

xy
z

 =

8
7
5


which could be represented as

Ax = b

Considering the interpretation,
opposite, this matrix equation could
also be written as1 3 −2

2 4 3
3 5 6

xy
z

 =

5
8
7


Notice that we have changed the
position of the rows in the
augmented matrix, and left the x
column matrix alone.

The interpretation of the opposite
matrix equation can be a set of
linear equations:

2x + 4y + 3z = 8

3x + 5y + 6z = 7

x + 3y − 2z = 5

It is worth noting that each
equation has no perticular
hierarchical ranking, The set of
equations could equally be arranged
in any order. i.e.

x + 3y − 2z = 5

2x + 4y + 3z = 8

3x + 5y + 6z = 7
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Finding the cofactors

One solution lay in using the inverse
the the matrix, A, to find x

Ax = b

A−1Ax = A−1b

x = A−1b

So this general method will need to
find an inverse of a matrix and then
perform a matrix multiplication.
The matrix of cofactors, described
as a signed version of a matrix of
minors, is

C =

 9 −3 −2
−28 12 4
17 −7 −2



The inverse of a matrix envolves
finding a matrix of cofactors, C.

c11 = (−1)1+1((4 · 6)− (5 · 3))

c12 = (−1)1+2((2 · 6)− (3 · 3))

c13 = (−1)1+3((2 · 5)− (3 · 4))

c21 = (−1)2+1((3 · 6)− (5 · −2))

c22 = (−1)2+2((1 · 6)− (3 · −2))

c23 = (−1)2+3((1 · 5)− (3 · 3))

c31 = (−1)3+1((3 · 3)− (4 · −2))

c32 = (−1)3+2((1 · 3)− (2 · −2))

c33 = (−1)3+3((1 · 4)− (2 · 3))
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Finding the adjoint and the determinant

The matrix of cofactors is

C =

 9 −3 −2
−28 12 4
17 −7 −2


but we require the adjoint of
A = adj(A) = CT , where the
transpose is simply the reflection of
the matrix about it’s diagonal:

adj(A) = CT =

 9 −28 17
−3 12 −7
−2 4 −2



The other ingredient in finding the
inverse is finding the determinant of
matrix A. Here we can use the
signed mionors of the top row of
matrix A which we have already
worked out, and we multiply them
by the elements in the top row, then
to be summed:

c11 = (−1)1+1((4 · 6)− (5 · 3))

c12 = (−1)1+2((2 · 6)− (3 · 3))

c13 = (−1)1+3((2 · 5)− (3 · 4))

det(A) = (9·1)+(−3·3)+(−2·−2) = 4
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Finding the inverse then using it

No we have the adjoint and the
determinant, we simply divide the
adjoint by the determinant to find
the inverse matrix:

A−1 =
adj(A)

det(A)

=
1

4

 9 −28 17
−3 12 −7
−2 4 −2


=

 2.25 −7 4.25
−0.75 3 −1.75
−0.5 1 −0.5



x = A−1b

=
1

4

 9 −28 17
−3 12 −7
−2 4 −2

 ·
5

8
7


xy
z

 =

−15
8
2


Therefore x = −15, y = 8, and
z = 2
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The Problem
We could have the following Matrix
equation to be solved:2 4 3

3 5 6
1 3 −2

xy
z

 =

8
7
5


which could be represented as

Ax = b

Considering the interpretation,
opposite, this matrix equation can
be augmented and written as1 3 −2 | 5

2 4 3 | 8
3 5 6 | 7


Notice that we have changed the
position of the rows in the
augmented matrix, and left the x
column matrix alone.

The interpretation of the opposite
matrix equation can be a set of
linear equations:

2x + 4y + 3z = 8

3x + 5y + 6z = 7

x + 3y − 2z = 5

It is worth noting that each
equation has no perticular
hierarchical ranking, The set of
equations could equally be arranged
in any order. i.e.

x + 3y − 2z = 5

2x + 4y + 3z = 8

3x + 5y + 6z = 7
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Proceed to reduced row Echelon form

We first want to eliminate the first
element of the second row. This is
done by subtracting some multiple
of the first row from the whole of
second row to give 0 as the first
element. Logically it can be seen
that the multiple will be
1st element 2nd row
1st element 1st row

. In this case it is 2
1
,

giving a row
[
2 6 −4 | 10

]
.

This row is subtracted from the
second row, element wise, to give a
new second row,[
0 −2 7 | −2

]
. We can then

form the new augement matrix:1 3 −2 | 5
0 −2 7 | −2
3 5 6 | 7



x + 3y − 2z = 5

2x + 4y + 3z = 8

3x + 5y + 6z = 7

We can look at the elimination of x
in the second equation by
multiplying the first equation by 2

2x + 6y − 4z = 10

Then we would subtract this new
equation from the second equation
to give:

x + 3y − 2z = 5

−2y + 7z = −2

3x + 5y + 6z = 7
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Proceed to reduced row Echelon form

Now want to eliminate the first
element of the third row. This is
done by subtracting some multiple
of the first row from the whole of
third row to give 0 as the first
element. Logically it can be seen
that the multiple will be
1st element 3rd row
1st element 1st row

. In this case it is 3
1
,

giving a row
[
3 9 −6 | 15

]
.

This row is subtracted from the
third row, element wise, to give a
new third row,[
0 −4 12 | −8

]
. We can

then form the new augement matrix:1 3 −2 | 5
0 −2 7 | −2
0 −4 12 | −8



x + 3y − 2z = 5

−2y + 7z = −2

3x + 5y + 6z = 7

We can look at the elimination of x
in the third equation by multiplying
the first equation by 3

3x + 9y − 6z = 15

Then we would subtract this new
equation from the second equation
to give:

x + 3y − 2z = 5

−2y + 7z = −2

−4y + 12z = −8
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Proceed to reduced row Echelon form

Finally we want to eliminate the
second element of the third row.
This is done by subtracting some
multiple of the second row from the
whole of third row to give 0 as the
second element. Logically it can be
seen that the multiple will be
2nd element 3rd row
2nd element 2nd row

. In this case it is
−4
−2

, giving a row[
0 −4 14 | −4

]
. This row is

subtracted from the third row,
element wise, to give a new third
row,

[
0 0 −2 | −4

]
. We can

then form the new augement matrix:1 3 −2 | 5
0 −2 7 | −2
0 0 −2 | −4



x + 3y − 2z = 5

−2y + 7z = −2

−4y + 12z = −8

We can look at the elimination of y
in the third equation by multiplying
the second equation by 2

−4y + 14z = −4

Then we would subtract this new
equation from the second equation
to give:

x + 3y − 2z = 5

−2y + 7z = −2

−2z = −4
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Proceed to reduced row Echelon form

1 3 −2 | 5
0 −2 7 | −2
0 0 −2 | −4


We can now find our answers by reading
off the last row to find z , then back
substitution to find y from the second
row, then back substitution again to find
x from the first row.

−2z = −4

z = 2

−2y + 7z = −2

−2y = −2− (7× 2)

y = 8

x + 3y − 2z = 5

x = 5− (3× 8)− (−2× 2)

x = −15

x + 3y − 2z = 5

−2y + 7z = −2

−2z = −4

We can now find our answers by reading
off the last equation to find z , then back
substitution to find y from the second
equation, then back substitution again to
find x from the first equation.

−2z = −4

z = 2

−2y + 7z = −2

−2y = −2− (7× 2)

y = 8

x + 3y − 2z = 5

x = 5− (3× 8)− (−2× 2)

x = −15
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The Problem
We could have the following Matrix
equation to be solved:2 4 3

3 5 6
1 3 −2

xy
z

 =

8
7
5


which could be represented as

Ax = b

Considering the interpretation,
opposite, this matrix equation can
be augmented and written as1 3 −2 | 5

2 4 3 | 8
3 5 6 | 7


Notice that we have changed the
position of the rows in the
augmented matrix, and left the x
column matrix alone.

The interpretation of the opposite
matrix equation can be a set of
linear equations:

2x + 4y + 3z = 8

3x + 5y + 6z = 7

x + 3y − 2z = 5

It is worth noting that each
equation has no perticular
hierarchical ranking, The set of
equations could equally be arranged
in any order. i.e.

x + 3y − 2z = 5

2x + 4y + 3z = 8

3x + 5y + 6z = 7
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We first want to eliminate the first
element of the second row. This is
done by subtracting some multiple
of the first row from the whole of
second row to give 0 as the first
element. Logically it can be seen
that the multiple will be
1st element 2nd row
1st element 1st row

. In this case it is 2
1
,

giving a row
[
2 6 −4 | 10

]
.

This row is subtracted from the
second row, element wise, to give a
new second row,[
0 −2 7 | −2

]
. We can then

form the new augement matrix:1 3 −2 | 5
0 −2 7 | −2
3 5 6 | 7



x + 3y − 2z = 5

2x + 4y + 3z = 8

3x + 5y + 6z = 7

We can look at the elimination of x
in the second equation by
multiplying the first equation by 2

2x + 6y − 4z = 10

Then we would subtract this new
equation from the second equation
to give:

x + 3y − 2z = 5

−2y + 7z = −2

3x + 5y + 6z = 7
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Now want to eliminate the first
element of the third row. This is
done by subtracting some multiple
of the first row from the whole of
third row to give 0 as the first
element. Logically it can be seen
that the multiple will be
1st element 3rd row
1st element 1st row

. In this case it is 3
1
,

giving a row
[
3 9 −6 | 15

]
.

This row is subtracted from the
third row, element wise, to give a
new third row,[
0 −4 12 | −8

]
. We can

then form the new augement matrix:1 3 −2 | 5
0 −2 7 | −2
0 −4 12 | −8



x + 3y − 2z = 5

−2y + 7z = −2

3x + 5y + 6z = 7

We can look at the elimination of x
in the third equation by multiplying
the first equation by 3

3x + 9y − 6z = 15

Then we would subtract this new
equation from the second equation
to give:

x + 3y − 2z = 5

−2y + 7z = −2

−4y + 12z = −8
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We now want to find 1y in the
second row, so in this case we divide
the whole of the second row by −2
to give1 3 −2 | 5

0 1 −7/2 | 1
0 −4 12 | −8



We now want to find 0y in the third
row, so in this case we subtract the
−4 times the whole of the second
row from the whole of the third row
give 1 3 −2 | 5

0 1 −7/2 | 1
0 0 −2 | −4


then divide the whole of the third
row by −2 to give1 3 −2 | 5

0 1 −7/2 | 1
0 0 1 | 2


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We now want to find 0z in the
second row, so in this case we
subtract −7/2 times the third row
from the second row1 3 −2 | 5

0 1 0 | 8
0 0 1 | 2


We now want to find 0z in the first
row, so in this case we subtract the
−2 times the whole of the third row
from the whole of the first row give1 3 0 | 9

0 1 0 | 8
0 0 1 | 2



We now want to find 0y in the first
row, so in this case we subtract the
3 times the whole of the second row
from the whole of the first row give1 0 0 | −15

0 1 0 | 8
0 0 1 | 2


We can simply read off the answers
since the main matrix is an identity
matrix, giving x = −15, y = 8, and
z = 2.
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Forming an algorithm for Addition

• If we begin an algorithm construction, we identify the inputs and then
outputs, and identify how we create each element of the answer.

• For matrix addition I know there are going to be two inputs, i.e. two
matrices to add.

• Similarly I know there will be one output, since two matrices added
together will give one matrix.

• The answer will be a matrix of the same size as either of the inputs, so I
know I can make each element of the output by adding corresponding.

• If we remember the axioms of matrix addition, two matrices must be the
same size to be able to be added. It would be useful to contain an if else
statement to account for this.

1 Input(A,B), Output(C)

2 To form the answer we must index every element of the answer, i.e. two
for loops, looping the elements in rows and then columns

3 A message appears when matrices aren’t the same size, and additon is
not possible.
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Forming an algorithm for Addition

function C=Matrix add(A,B)
% and this will form the first line of the function

for row=1:row max
for col=1:col max
%code to find resulting matrix C, element by element

end
end

if size(A)˜=size(B)
message='matrices are different sizes'

else
% do the code to find the answer

end
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Forming an algorithm for Addition

The next stage would be to find all the variables and constants we have used in
the basic construction blocks of the algorithms so far, then explicitly define
them, calculate them, or pre-allocate their structure. Make sure not to
overwrite the inputs, and make sure to define the ouput somewhere, here I will
pre-allocate it’s structure with a view to performing a calculation within a for
loop. Also, there is no use defining all the variables used, if the algorithm is not
able to perform it’s function, so I would make sure to define them after the else
part of the if statement, when we know we can perform the addition.

row max=size(A,1); %A or B could have been used since
col max=aize(A,2); %we know they are the same size
C=zeros(row max,col max); %pre−define the answer

Finally, we put the blocks of code together in the correct places and correct
order to form our algorithm. Also, we must explicitly calculate the answer
within the nested for loops. Since the answer is complete when we have looped
over all rows and all columns, there is no need to perform further operations on
it. Make sure to suppress outputs with ; when we dont want the operation
printed to screen.



Solution to Linear Equations - examples with numbers

Algorithm for Addition

function C=Matrix add(A,B)

if size(A)˜=size(B)
message='matrices are different sizes'

else
row max=size(A,1);
col max=aize(A,2);
C=zeros(row max,col max);
for row=1:row max
for col=1:col max

C(row,col)=A(row,col)+B(row,col);
end

end
end
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Forming an algorithm for Multiplication

• Algorithm for multiplication would have similar building blocks as
addition, so we start with that code.

• If the inputs are A(i , k) and B(j , i), since the rows in A must be the same
as the columns in B, we know the answer will be of size C(j , k).

• If we remember the axioms of matrix multiplcation, The order of
multiplication is important. We will leave this to the user of the code to
notice.

1 Input(A,B), Output(C)

2 To form the answer we must index every element of the inputs to form
the answer i.e. three for loops

3 A message appears when matrices aren’t cannot be multiplied.
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Forming an algorithm for Multiplication

function C=Matrix mult(A,B)
% and this will form the first line of the function

for i=1:i max %rows of A and columns of B
for j=1:j max %rows of C and B
for k=1:k max %columns of C and A

%code to find resulting matrix C, element by element
end

end
end

if size(A,1)˜=size(B,2)
message='matrices cannot be multiplied'

else
% do the code to find the answer

end
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Forming an algorithm for Multiplication

The next stage would be to find all the variables and constants we have used in
the basic construction blocks of the algorithms so far, then explicitly define
them, calculate them, or pre-allocate their structure.

i max=size(A,1); %A or B could have been used
j max=aize(B,1); %since rows in A = cols in B
k max=aize(A,2);
C=zeros(j max,k max); %pre−define the answer

Finally, we put the blocks of code together in the correct places and correct
order to form our algorithm. Also, we must explicitly calculate the answer
within the nested for loops. I must self-reference C to find the answer. To do
this I must have pre-defined C , and I do it because there is more than one
operation for each element of C , specifically i operations per element of C .
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Algorithm for Addition

function C=Matrix mult(A,B)

if size(A,1)˜=size(B,2)
message='matrices cannot be multiplied'

else
i max=size(A,1); %or size(B,2) would work
j max=aize(B,1);
k max=aize(A,2);
C=zeros(j max,k max);
for i=1:i max %rows of A and columns of B
for j=1:j max %rows of C and B

for k=1:k max %columns of C and A
C(j,k)=C(j,k)+(A(i,k)*B(j,i));

end
end

end
end



Solution to Linear Equations - examples with numbers

Outline

1 Solution to Linear Equations - examples with
numbers
Method of inverses
Gaussian Elimination
Gauss-Jordan Elimination

2 Forming an algorithm for Addition

3 Forming an algorithm for Multiplication

4 Forming an algorithm to find Cofactor



Solution to Linear Equations - examples with numbers

Forming an algorithm to find Cofactor

• Finding a cofactor of an element of a matrix is a different structure to
additon or multiplication of matrices

• We will have one input, square matrix A, and one output, a number being
the cofactor c.

• If we remember the axioms of matrix cofactors, the matrix must be
square, so we should test this at the start of the algorithm. If we didn’t,
it would produce an error from the compiler, out of matrix bounds, or
something similar, it may even crash the software in certain circumstances
(i.e. if we made an executable the program would break at the error. If it
were in a queue system like distributed computing, it may cause memory
leakage and keep trying to execute.)

1 Input(A), Output(c)

2 To form the answer we must find the minor and loop until the minor is a
2× 2

3 A message appears when matrix isn’t square.
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Forming an algorithm for to find Cofactor

function c=Matrix mult(A)
% and this will form the first line of the function

if size(A,1)˜=size(A,2)
message='matrix isnt square so cofactors arent defined'

else
% do the code to find the answer

end
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Forming an algorithm for to find Cofactor

Finding the minor would be simple, finding the minor reduced to 2× 2 requires
more thinking. The minor of a certain element A(i , j) would be found by
finding four separate matrices and concatenating them. The easiest way is to
find them separately.

if i˜=1
if j˜=1

M 11=A(1:i−1,1:j−1);
else

M 11=A(1:i−1,1);
end

elseif j˜=1
M 11=A(1,1:j−1);

else
M 11=[];

end

which is the upper left matrix elements, where we have defined the the four
possible outcomes and defined as the null matrix if we are finding the minor of
the first element in A.
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Forming an algorithm for to find Cofactor

The lower right element is the next eaisest to find, and is found in a similar way:

if i˜=i max
if j˜=j max

M 22=A(i+1:i max,j+1:j max);
else

M 22=A(i+1:i max,1);
end

elseif j˜=j max
M 22=A(1,j+1:j max);

else
M 22=[];

end

which is the upper left matrix elements, where we have defined the the four
possible outcomes and defined as the null matrix if we are finding the minor of
the last element in A.
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Forming an algorithm for to find Cofactor

The upper right element is found in a similar way:

if i˜=1
if j˜=j max

M 12=A(1:i−1,j+1:j max);
else

M 12=A(1:i−1,1);
end

elseif j˜=j max
M 12=A(1,j+1:j max);

else
M 12=[];

end
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Forming an algorithm for to find Cofactor

The lower left element is found in a similar way:

if i˜=i max
if j˜=1

M 21=A(i+1:i max,1:j−1);
else

M 21=A(i+1:i max,1);
end

elseif j˜=1
M 21=A(1,1:j−1);

else
M 21=[];

end
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Forming an algorithm for to find Cofactor

Now we have found the four matrices that make up the minor matrix, we
concatinate them to form a single matrix, M:

M=[M 11 M 12 ; M 21 M 22];

It would be useful to contain all this code in a stand-alone function, for if we
want to use it multiple times in another larger code:



function M=Minor mat(A,i,j)
i max=size(A,1);
j max=size(A,2);
if i˜=1
if j˜=1

M 11=A(1:i−1,1:j−1);
else

M 11=A(1:i−1,1);
end

elseif j˜=1
M 11=A(1,1:j−1);

else
M 11=[];

end
if i˜=i max
if j˜=j max

M 22=A(i+1:i max,j+1:j max);
else

M 22=A(i+1:i max,1);
end

elseif j˜=j max
M 22=A(1,j+1:j max);

else
M 22=[];

end

if i˜=1
if j˜=j max

M 12=A(1:i−1,j+1:j max);
else

M 12=A(1:i−1,1);
end

elseif j˜=j max
M 12=A(1,j+1:j max);

else
M 12=[];

end
if i˜=i max

if j˜=1
M 21=A(i+1:i max,1:j−1);

else
M 21=A(i+1:i max,1);

end
elseif j˜=1

M 21=A(1,1:j−1);
else

M 21=[];
end
M=[M 11 M 12 ; M 21 M 22];
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