CLASS DIAGRAMS

LECTURE # 6

.'.' Univorzyof
Bedfordshire

Department of Computer Science and Technology
University of Bedfordshire

Written by David Goodwin,
based on the lectures of Marc Conrad and
on the book Applying UML and Patterns (3’d ed.)
by C. Larman (2005).

MODELLING AND SIMULATION, 2012

OUTLINE CLASS DIAGRAMS

.,., Unversty of
Bedfordshire

CLASS DIAGRAM
ELEMENTS OF A CLASS DIAGRAM

MAKING CLASS DIAGRAMS
Example # 1

RELATIONSHIPS BETWEEN CLASSES
Visibility
Aggregation and Composition
Abstract classes

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire
CLASS DIAGRAM

CLASS DIAGRAM

STATIC MODELS AND DYNAMIC MODELS Crass D

.,.' Unversty of
Bedfordshire
CLASS DIAGRAM

» Class diagrams model the static behaviour of objects,
i.e.
» Attributes of objects
» Operation of objects
> Relationships between objects.

CLASS DIAGRANI EXAI\&PLE CLASS DIAGRAMS

{if creditRating is poor, then}

Customer

—

OrderLine Order
quantity * 1| number
price line price

items dispatch()

name
address

creditRating()

Corporate
customer

Personal
customer

Y V-
Bedfordshire
CLASS DIAGRAM

RATIONAL ROSE - EXAMPLE OF A CLASS

DIAGRAM

i Order Customer
rderLine
Q>ouantitI ineitems | nUMber “name
Q}q. y L ®price 1 ¥address
price 1. 1 0.*1
*dispatch() *creditRating()
Order--dispatch()- / T
Corporate Personal
check Customer Customer
creditRating first.

}

CLASS DIAGRAMS

Y V-
Bedfordshire
CLASS DIAGRAM

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

ELEMENTS OF A CLASS

DIAGRAM

ELEMENTS OF A CLASS DIAGRAM - CLASSES |

Il.' et
i Order Customer CEASS DIAGIAN
OrderLine
®quantity | lineitems znu_mber zggcr::zss
“price 1.0 4 P 0.* 1
“dispatch() “creditRating()
\ . - g A
Classes are the - 7/ \
fundamental _~"" Corporate Personal
elements __y Customer Customer
in a class diagram.
i T

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

ELEMENTS OF A
CLASS DIAGRAM

ELEMENTS OF A CLASS DIAGRAM -

STRUCTURE OF A CLASS

" Orderl ine | Order Customer
. ®
= Aclassis displayed as a box | ot
with three compartments: 1
= Name ‘qreditRating()
= attributes ya I/ \
= operations v
te Personal
check Customer | Customer
creditRating first.

}

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

ELEMENTS OF A
CLASS DIAGRAM

ELEMENTS OF A CLASS DIAGRAM -

STRUCTURE OF A CLASS

" Orderl ine | Order Customer
- ~ &
= A class is displayed as | lengrass
with three com ents: 1
= Name ‘qreditRating()
= attributes ya I/ \
= operations v
te Personal
check Customer | Customer
creditRating first.

}

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

ELEMENTS OF A
CLASS DIAGRAM

ELEMENTS OF A CLASS DIAGRAM -

STRUCTURE OF A CLASS

" Orderl ine | Order Customer
. ®
= Aclass is displayed as a box | ,aoane
with three compartments: 1
= Name ‘qreditRating()
= attributes ya I/ \
= operations v
te Personal
check Customer | Customer
creditRating first.

}

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

ELEMENTS OF A
CLASS DIAGRAM

ELEMENTS OF A CLASS DIAGRAM -

STRUCTURE OF A CLASS

" Orderl ine | Order Customer
T &
= Aclassis displayed as a box | ot
with three compartments: 1
= Name "‘qreditRating()
= attributes /) pd A
= operations v
te Personal
check Customer | Customer
creditRating first.

}

CLASS DIAGRAMS

ELEMENTS OF A CLASS DIAGRAM - ROLES

AND ATTRIBUTES ll.! syt

ELEMENTS OF A
CLASS DIAGRAM

* OrderLine | Order Customer
Q}qOL::re]:;;lne line items “number ®name
= &nri &
®price I q Price « [gwqpaddress
“dispatch() / *creditRating()
‘17 A

A role name (will be —

implemented as a Primitive types
reference attribute Corporate T T Personal
in the Order class). Customer | | Customer

ELEMENTS OF A CLASS DIAGRAM -

OPERATIONS

i Order Customer
Q)qol:gI‘(?’Ihll’t_)llne line items Znumber ‘:n ame
®price x o q Pree 01 address
“dispatch() creditRating()

i /

= Operations (Methods)
= They refer to the behaviour of the object.

= Operations are implied by the sequence of
events in a sequence diagram.

:

sonal
tomer

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

ELEMENTS OF A
CLASS DIAGRAM

CLASS DIAGRAMS

ELEMENTS OF A CLASS DIAGRAM -

OPERATIONS & ATTRIBUTES Il.lgg;z:a;.s;

ELEMENTS OF A
CLASS DIAGRAM

i Order Customer
Q>Or(ajr(?’f'l’(_me line items Q’number Q’name
Q’glljice Y e f’price o+ 1 ‘address
*dispatch() *creditRating()

7

= Operations and Attributes can be T
private, protected or public. This is sonal
reflected by the symbols: +, #, -. fomey
RationalRose uses other symbols.

ELEI\/[ENTS OF A CLASS DIAGRAM - CLASS DIAGRAMS
PRIVATE /PUBLIC .,., _—

ELEMENTS OF A
CLASS DIAGRAM

" OrderLine Order Customer
derL I
ﬁ’Oura:trit ;- fine ite@;%umber “name
%q N < ®price —®address
price / 1 0.* 1

p. < TA!
& A ‘

= The RationalRose symbol

for private. Same as - AR —
e = The RationalRose symbol

for public. Same as
;:redltRatlng first. “+creditRating()”

/ *dispatch() ‘u’éred itRating()

A

ELEMENTS OF A CLASS DIAGRAM - CLASS DIAGRAMS
RELATIONSHIPS Y -

ELEMENTS OF A
CLASS DIAGRAM

OrderLine Order ~ Customer
Q’quantity line items znu_mber 7zn3dme
Q>price *1“* 1 price 0, 1" address

senperan *creditRatin
= There are four] types of ating()

£

relationships between classes: /\/T
= Association S

(unidirectional or bidirectional)/r Customer
= Generalisation (inheritance)

ELEMENTS OF A CLASS DIAGRAM - CLASS DIAGRAMS
ASSOCIATIONS Y -

ELEMENTS OF A
CLASS DIAGRAM

OrderLine N Order o Customer

®price 10 1.° 0.% 1
— E— *creditRatin
= Associations TR 0

= Associations are structural / T

relationships between objects of Personal

different types. A A G
= They show that knowledge of the

relationship needs to be

preserved for some duration.

ELEMENTS OF A CLASS DIAGRAM - ARROWS |E
ON ASSOCIATIONS Y -

ELEMENTS OF A
CLASS DIAGRAM

* OrderLine Order Customer
OrderLine

®quantity lineitems “number *name

&pri < %price —®address
price 1.5 1 0.% 1

& 1 LY rrerm g

= Arrows on Associations.
= The arrow on an association indicates a visibility
relationship. OrderLine is visible by Order.
= No arrow on an association means visibility in both

directions. Order knows about Customer and
Customer knows Order.

CLASS DIAGRAMS

ELEMENTS OF A CLASS DIAGRAM -

MULTIPLICITIES Il.lgmg.s;

ELEMENTS OF A
CLASS DIAGRAM

OrderLine N Order o Customer
®quantity line iterrs Q)m'!mber Q)name
®price 11 price 0 1 address
= Numbers on an association indicate th el
how many objects of a class are T
related to how many objects of Lrsonal
another class. \stomer
= They are called multiplicities.

ELEI\/[ENTS OF A CLASS DIAGRAM - CLASS DIAGRAMS
MULTIPLICITIES Y -

ELEMENTS OF A
CLASS DIAGRAM

[Order ~ Customer
OrderLine
®quantity line items “number \Q’name
Fpri N “price .- ®address
price 1. 1 0..*A1]
*di / ‘ * a .
di creditRating()
& A
= One Customer object can be T

associated to many Order objects. irsstg”mﬂr
But it can also be associated to no
Order object at all.

ELEI\/[ENTS OF A CLASS DIAGRAM - CLASS DIAGRAMS
MULTIPLICITIES Y -

ELEMENTS OF A
CLASS DIAGRAM

OrderLine - Order | . Customer
number name

quantity (Ime iterms & &
®pri @ : price 0. 1 address

*dispatch() *creditRating()

7 :
; f //
= One Order object can have many I

OrderLine objects, but must have at jistomer
least one.

ELEMENTS OF A CLASS DIAGRAM -

GENERALISATION

= Generalisation

If two or more classes
have some common
attributes and methods,
these attributes and
methods can be collected

er Customer
er ®name

KX ®address
ch() *creditRating()

/

) A
and placed in a super m—) T

class (parent class).

Generalisation reflects the
inheritance relationship
known from C++ and
Java.

//
/

Corporate
Customer

Personal
Customer

CLASS DIAGRAMS

".' Unversiy of
Bedfordshire

ELEMENTS OF A
CLASS DIAGRAM

CLASS DIAGRAMS

ELEMENTS OF A CLASS DIAGRAM -

</

CONSTRAINTS W
i Order Customer CLASS DIAGRAM
OrderLine
Squantity lneiers g1UTPEr IETE
Ny : ®price . . Yaddress
price 1.7 1 0.1
*dispatch() ‘creditRating()

/,

~|m Constraints
Order--dispatch()’

{ <= . A constraint is attached
check to an element. It has
creditRating first. semantic influence on

} the element.

ELEMENTS OF A CLASS DIAGRAM - CLASS DIAGRAMS
CONSTRAINTS Y

ELEMENTS OF A
CLASS DIAGRAM

: Order Customer

OrderLine

®quantity | lineiterms Znu_mber ange

®price e price 0. 1 address

*dispatch() *creditRating()
| Pre-condition
Order--dispatch()’ = The condition of an operation
before being executed.

check = Post-condition
creditRating first. = The expected consequence of
} an operation.

CLASS DIAGRAMS

ELEMENTS OF A CLASS DIAGRAM -

CONSTRAINTS AND NOTES ll.lggm‘;x.f;

ELEMENTS OF A
CLASS DIAGRAM

OrderLine «|® In RationalRose
®quantity lineiters "\ constraints and notes
“price 1. 1.7 use the same symbol (a

*d rectangle with a flipped
" corner attached by a

L
Ve

Ora=aRnaEn() dotted line).
{ = However notes have no
ErEE semantical meaning.

creditRating first.
}

CLASS DIAGRAMS

ELEMENT OF A CLASS DIAGRAM - NOTES

AND CONSTRAINTS Il.lmg:;

ELEMENTS OF A
CLASS DIAGRAM

Good Nation Evil Enemy
&pstars &pweapons of mass destruction
& stripes S
/ $attack()
Enemy-attack()
gfsttUN e e Misinterpreting constraints
} as simple notes may lead
to major problems

CLASS DIAGRAMS

.,., Unversty of
Bedfordshire

MAKING CLASS DIAGRAMS

HOW TO MAKE A CLASS DIAGRAM. CLASS DIAGRAMS

.,., Unversty of
Bedfordshire

1. Identify all the classes participating in the software
solution (from the sequence diagrams). Dlcius

MAKING CLASS

Draw them in a class diagram.
Identify the attributes.
Identify the methods (from the sequence diagram).

AN

Add associations, generalisations, aggregations and
dependencies.

6. Add other stuff (roles, constraints, ...)

CLASS DIAGRAMS

CLASS DIAGRAMS AND INTERACTION

DIAGRAMS Il.! syt

MAKING CLASS

» In practice class diagrams and interaction diagrams are A AL
usually created in parallel.

» Many classes, methods, etc. may be sketched out in a
class diagram prior to drawing a sequence diagram.

» A “light” version of a class diagram containing only
attributes but no messages is also known as a
conceptual model.

» Sometimes a conceptual model is used instead of an
analysis model in the system engineering process.

1 . IDENTIFY ASSES CLASS DIAGRAMS

.,., Unversty of
Bedfordshire

> We investigate the “return item” Use Case of the
Recycling machine.

» From the sequence diagram we find the following
classes:

» Customer Panel
Deposit item receiver
Receipt basis
Deposit item

Receipt printer

Can, Bottle, Crate

vVvyvYyVvyy

1. USE CASE OF RECYCLE MACHINE CLASS DIAGRAMS

Y V-
Bedfordshire

Making Reservation

Customer

2. DRAW THEM IN A CLASS DIAGRAM CrLAsS DIAGRAMS

Customer Panel

Receipt basis

Deposit item

Deposit item receiver

Receipt printer

Can

Bottle

Crate

Y V-
Bedfordshire

3. IDENTIFY ATTRIBUTES CrLASS DIAGRAMS

» Classes which contain data are in the Deposit item

hierarchy.

» For checking & classifying an item we need the weight
and size of a Can, Bottle, and Crate.
» For collecting the data at the Receipt basis each
Deposit Item gets a number and a value.

Underlined atteributes
show class (static)
variables.

@

Deposit item

“&number

®value

i

Can

Bottle

Sweight
*size

®size

Sweight

‘,., Unversty of
Bedfordshire

4. IDENTIFY METHODS CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

» The return item use case suggests the following two
methods for the Customer Panel:
» itemReceived(slot : Integer)

» printReceipt()
» Following the sequence of events in the sequence
diagram we obtain then:
» Deposit item receiver: classifyltem(),
createReceiptBasis(), printReceipt()
» Receipt basis: addltem(), computeSum(),
» Receipt printer: print().
» We don't show accessor and modifier methods in order
to keep the diagram simple.

5. ADD ASSOCIATIONS

» Associations show navigability between classes

Customer panel

Deposit item receiver

‘itemReceived(slot : Integer)

—=

*classifyltem(slot : Integer) : Deposit item
‘*createReceiptBasis()

o ;
printReceipt() *printReceipt()
_— / N\
L / N
Receipt basis Deposit item Receipt printer
*addltem(item : Deposit Item) »®number *print()
*computeSum() ®value —_—
/f 4
Can | | Bottle
®weight | |“weight
Fsize size

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

RELATIONSHIPS BETWEEN

CLASSES

RELATIONSHIPS BETWEEN CLASSES CLASS DIAGRAMS

Y V-
Bedfordshire

> There are four possible relationships between classes.
.. RELATIONSHIPS
» Association BETWEEN CLASSES
Dependency
Generalisation
Aggregation

v vy

RELATIONSHIPS BETWEEN CLASSES CLASS DIAGRAMS

.,., Unversty of
Bedfordshire

» There are four possible relationships between classes.
» Association

Dependency

Generalisation

H RELATIONSHIPS

= Association and
dependency are in
the context of
visibility.

v vyy

RELATIONSHIPS BETWEEN CLASSES CLASS DIAGRAMS

.,.' Unversiy of
Bedfordshire

» There are four possible relationships between classes.
» Association

Dependency

Generalisation

H RELATIONSHIPS
Aggregation

= Generalisation and
aggregation may be
considered as
special versions of
association.

v vyy

VISIBILITY CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

» Why do we consider visibility?

» Object Oriented design is about sending messages
between objects.

» For an object A to send a message to an object B, B
must be visible to A.

» Example: The Deposit Item Receiver cannot send a
message to the Printer, if it is not visible for the
Deposit Item Receiver

VISIBILITY CLASS DIAGRAMS

Il.' o
> There are four types of visibility:
» Attribute visibility - B is a (reference) attribute to A.
» Parameter visibility - B is a parameter of a method of A.

v

Locally declared visibility - B is declared as a local
object in a method of A.
Global visibility - B is in some way globally visible.

v

ATTRIBUTE VISIBILITY CLASS DIAGRAMS

Il.‘ o
» Attribute visibility from A to B exists when B is a
(reference) attribute of A.
> It persists as long as A and B exist.

> It is a very common form of visibility in object-oriented
systems.

> In the implementation usually A has a reference (Java)
or a pointer (C++) variable of B.

ATTRIBU VISIBILITY - EXAMPLE # 1 CLASS DIAGRAMS

Customer panel

(

‘itemReceived(slot : Integer)

p

\ Deposit item receiver

yssifyltem(slot . Integer) . Deposit item

S : eateReceiptBasis()
printReceipt() *printReceipt()
g i
o L ‘ Py %
e \
Receipt basis/ Deposit item Receipt printer
*addltem(item : Dep@(ltem) T ®number *print()
“ —"value

Panel.

—1m Deposit item receiver is
referenced by the Customer

7
Bottle
weight

“size

[Taze |

University of
Bedfordshire

VISIBILITY

ATTRIBUTE VISIBILITY _ EXAMPLE # 2 CLASS DIAGRAMS

OrderLine [] line_items;

OrderLine u Order o Customer
Squantity (" netem "UTOE s
®price N price 0. 1 address

*dispatch() ‘creditRating()

= The role name already suggests a B

name for the reference in the

|mplementat|on, e.g. (Java) = a—

= public class Order { Customer

‘,., Unversty of
Bedfordshire

VISIBILITY

PARAMETER VISIBILITY Crass Dacravs

.,.‘ Unversty of
Bedfordshire

» Parameter visibility exists when B is passed as a
parameter to a method of A.

> It is a relatively temporary visibility because it persists
only in the scope of the method.

> It is common to transform parameter visibility into
attribute visibility (see example).

PARAMETER VISIBILITY - EXAMPLE (s Dracravs
ll.l eyt

= Parameter visibility (example):

= Deposit item is passed as a parameter in
the addItem method of the Receipt basis.

= The parameter /fem will then become an
attribute of Receipt basis.

Customer panel . / Deposit item receiver
StemReceived(slot - Integer) %/ﬁsswyltem_(slot :_Integer): Deposit item
o ! createReceiptBasis()

priiiRee / *printReceipt()
" / N
N / Ny
Receipt basis Deposit item Receipt printer
\’addltem(item : Deposit Item) 1+ ¥number *print()
*computeSum() } 7 ®value
A
Bottle
Sweight
size

LOCALLY DECLARED VISIBILITY CLASS DIAGRAMS

.,., Unversty of
Bedfordshire

» Locally declared visibility from A to B exists wehn B is
declared as a local object within a method of A.

» Two common means:
» Create a new local instance and assign it to a local
variable.

» Assign the return object from a method invocation to a
local variable.

LOCALLY DECLARED VISIBILITY _ EXAMPLE CLASS DIAGRAMS

= The classifyItem()
method generates an
instance of Deposit item

Deposit item receive\

(Can, Bottle or Crate,
depended of the slot)

A *classifyltem(slot : Integer) : Depghit item

ateRec_eiptBasis()

and returns it. “prifits . -
= In this method the
Deposit item is locally Deposit item Receipt printer
visible. 7.% number *print()
®value
AR
can || Bottle Crate
Sweight | | “weight :\@gm
fsize 'size size

.,.‘ Unversty of
Bedfordshire

VISIBILITY

GLOBAL VISIBILITY CLASS DIAGRAMS
Il.‘ me

> Global visibility from A to B exists when B is global to
A. In object oriented systems it is the least common
form of visibility.
> Global visibility can be implemented via

> the return value of a class (static) method.
> the return value of a non-member function (C++).
» as a public static attribute in Java.

GLOB VISIBILITY - EXAl\/IPLE CLASS DIAGRAMS

= As the printer is unique
in the system and may

be used also by other

Deposit item receiver

classes than Deposit
item receiver (e.g. in

N *classifyltem(slot : Integer) : Deposit item
| *createReceiptBasis()

the daily report use “printReceipt) -
case) we can design it |
as a global object. ;- Receipt printer
e s N0
7
Can Bottle
Sweight | | “weight
®size 'size

.,.‘ Unversty of
Bedfordshire

VISIBILITY

VISIBILITY’ ASSOCIATION & DEPENDENCY CrLAsS DIAGRAMS

.,.‘ Ynverstyof
fordshire
» Attribute visibility between classes is always considered
as an association. UML uses a solid arrow to denote
associations:
>

» Parameter, local, and global visibility is considered as a
dependency. UML uses as dashed arrow for
dependencies:

REVISED EXAMPLE: CrLASS DIAGRAMS
Il. o

Customer panel . Deposit item receiver
SitemReceived(slot - Integer) L ‘classifyltem_(slot :_Integer) : Deposit item
*printReceipt() ‘crgateReqelptBa&s()

P P printReceipt()
— A \

Receipt basis Deposit item Receipt printer
*addltem(item : Deposit Item) 1> number *print()
*computeSum() " ®value

A4 X
Bottle
“weight

size

(GGENERALISATION Crass Dacravs
Il.‘ eyt

‘itemRe]
*printReg

= Generalisation -- used to refer to inheritance
in OOSD, that is, a subclasses inherits
attributes and methods from a superclass,
and in turn, a superclass is a more general
form of subclasses.

e /
— ¥

Deposit item

3

1 Ynumber
" [®value
PR "
Can Bottle

Tweight | |“weight
@size “size

7
S

AGGREGATION AND
COMPOSITION

AGGREGATION AND COl\/IPOSITION CLASS DIAGRAMS

» Aggregation is a kind of association used to model
whole-part relationships between things - A “has a"
relationship. The whole is generally called the
composite (the parts have no standard name)

» Aggregation is shown with a hollow or filled diamond:

» Composite Aggregation:

» Shared Aggregation:

Car Engine

» Aggregation is a property of an association role (as
multiplicity, name, multiplicity)

.,.‘ Unversty of
Bedfordshire

AGGREGATION AND

COMPOSITION

COMPOSITE AGGREGATION VS. SHARED CLASS DIAGRAMS
AGGREGATION Wl

» Composite aggregation (also known as composition)
means that the composite solely owns the part.

» Shared aggregation means that the part may be in
many composite instances.

AGGREGATION AND

COMPOSITION

Car &> Engine

WHEN TO SHOW AGGREGATION‘? CLASS DIAGRAMS

Il.'ggm.f;
» Show aggregation when:
» The lifetime of the part is bound within the lifetime of
the composite.
» There is an obvious whole-part physical or logical
assembly.
» Some properties of the composite propagate to the G CRECAHONAND
parts.
» Operations applied to the composite propagate to the
parts.

» Rule of thumb: If in doubt, leave it out.

ION (EXAMPLE)

= The Deposit item may be considered as
part of a composite Receipt basis.

Customer panel

Deposit item receiver
“classifyltem(slot : Integer) : Deposit item

‘itemReceived(slot : Integer) e))
*printReceipt() .;rrierf'ttssgz't'f;'sas's()
~ z \ \

Receipt basis Deposit item Receipt printer
*addltem(item : Deposit Item) Qﬁa’number *print()
*computeSum() " ®value

71
Bottle
Sweight

size

CLASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

EGATION AND

COMPOSITION

ABSTRACT CLASSES & INTERFACES CrLASS DIAGRAMS

‘,., Unversty of
Bedfordshire

> If every member of a type T must also be a member of
a subtype, then type T is called an abstract type, and
the type name is italicised in the class diagram

> If an abstract type is implemented in software as a class
during the design phase, it will usually be represented
by an abstract class, meaning that no instances may be
created for the class.

ABSTRACT CLASSES

» An abstract method is one that is declared in an
abstract class, but not implemented; in the UML it is
also notated with italics.

» Classes containing only abstract methods are known as
interfaces (denoted by a dotted generalisation arrow).

ABSTR T CLASSES CrASS DIAGRAMS

.,.‘ Unversty of
Bedfordshire

= Deposit item may be considered as an abstract class
as it only exists as a Can, Bottle, or Crate. Therefore
Deposit item is Jtalized.

Deposit item receiver
N Pclassifyltem(slot : Integer) : Deposit item
.createReceiptBasis()

Customer panel
.itemReceived(sIot : Integer)

. . .
lGNEE) - printReceipt()
— } L ABSTRACT CLASSES
Receipt basis Deposit item Receipt printer
additem(item : Deposit ltem) 07 3™ number ™ orint()
computeSum() -

weight
size

	Class Diagram
	Elements of a class diagram
	Making class diagrams
	Example # 1

	Relationships between classes
	Visibility
	Aggregation and Composition
	Abstract classes

