
Patterns and Testing
Lecture # 7

Department of Computer Science and Technology
University of Bedfordshire

Written by David Goodwin,
based on the lectures of Marc Conrad and Dayou Li

and on the book Applying UML and Patterns (3rd ed.)
by C. Larman (2005).

Modelling and Simulation, 2012



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Outline

Patterns
Intoduction
Responsibilities

Knowing/Doing
Good/bad design

GRASP
Creator
Expert
Low Coupling
Controller
High Cohesion

CRC cards

Testing
purpose
Stratagies
Unit Testing
Integration Testing
System Testing
Testing Procedure
Large Software
Management

Package Diagrams



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Patterns



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Introduction

I An object-oriented system is composed of objects
sending messages to other objects.

I The quality of the overall design depends on which
object is doing what.

I That is, the quality depends on how we assign
responsibilities to the objects.

I Problem: Define “good quality”.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

There are two types of
Responsibilities.

I Knowing
I about private

encapsulated data
I about related objects
I about things it can

derive or calculate

I Doing
I doing something itself
I initiating action in

other objects
I controlling and

coordinating activities
in other objects



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Example: the Recycling machine -
Knowing and Doing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Example: the Recycling machine -
Knowing and Doing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Example: the Recycling machine -
Knowing and Doing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Example: the Recycling machine -
Knowing and Doing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Example: the Recycling machine -
Knowing and Doing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Example: the Recycling machine -
Knowing and Doing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Example: the Recycling machine -
Knowing and Doing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Good design/Bad design

I Consider the following alternative design of the
recycling machine.

I A class responsible for printing and holding the data of
bottle and crate.

I The can class is also responsible for customer input and
computing the sum.

I One more class doing all the rest of the tasks.

I Is this a good design?



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Good design/Bad design

I Our feeling says that the previous example is not a good
design.

I Is it possible to give this “feeling” a more solid, more
objective, more traceable, and more comprehensible
foundation?

I Answer: Yes, by using patterns.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns

I GRASP stands for General Responsibility Assignment
Software Patterns.

I GRASP can be used when designing interaction
(sequence) diagrams and class diagrams.

I GRASP try to formalize “common sense” in object
oriented design.

I They do not usually contain “new” ideas. They try to
codify existing knowledge and principles.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

The GRASP patterns

I Creator

I Expert

I Low Coupling

I Controller

I High Cohesion

I Polymorphism

I Pure Fabrication

I Indirection

I Protected Variations



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
CREATOR: Problem

I Who should be responsible for creating a new instance
of some classes?

I The creation of objects is one of the most common
activities in OO systems.

I It is useful to have a general principle for the
assignment of responsibilities.

I Assigned well, the design can support low coupling,
increased clarity, encapsulation, and resusability.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
CREATOR: Solution

I Assign class B the responisbility to creat an instance of
class A if one of these is true:

I B aggregates A.
I B contains A.
I B records instances of A objects.
I B closely uses A objects.
I B has the initializing data that will be passed to A when

it is created.

I B is a creator of A objects

I if more than one option applied, usually chose
“aggregates or contains”



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
CREATOR: Discussion

I The creation of objects is one of the most common
activities in an object-oriented system.

I This pattern is useful to find out who should be
responsible for creating objects.

I The last point (B has initializing data of A) is actually
an example of the Expert pattern (B is an expert with
respect to creating A).

I In an Aggregation the lifetime of the part is usually the
same as the lifetime of the whole. So the idea that the
whole creates the part is straightforward.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
CREATOR: Example



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
EXPERT: Problem

I What is a general principle of assigning responsibilities
to objects?

I When interactions between objects are defined, we
chose assignment of responsibilities to software classes.

I Chosen well, systems tend to be easier to understand,
maintain and extend.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
EXPERT: Solution

I Assign a responsibility to the information expert - the
class that has the information necessary to fulfill the
responsibility.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
EXPERT: Discussion

I Expert is the basic guiding principle in object-oriented
design.

I Expert leads to designs where a software object does
those operations which are normally done to the
real-world thing it represents (“Do it Myself”)

I Real-world example:
I When going for medical treatment - which person would

you ask for an appointment? The cleaner, the
receptionist, or the doctor?



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
EXPERT: Example



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
LOW COUPLING: Problem

I How to support low dependency, low change impact,
and increased reuse?

I Coupling:
I measurement of how strongly one element is connected

to, has knowledge of, or relies on another.
I A class with high coupling relies on many other classes,

and may suffer from the following:

I forced local changes because of changes in related
classes

I harder to understand in isolation
I harder to reuse because its use requires the additional

presence of the classes on which it is dependent.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
LOW COUPLING: Solution

I Assign a responsibility so that coupling remains low.
Use this principle to evaluate alternatives.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
LOW COUPLING: Discussion

I Low Coupling is an evaluative pattern which a designer
applies while evaluating all design decisions.

I Coupling happens in the same forms as visibility: local,
global, as a parameter, as an attribute.

I A subclass is strongly coupled to its superclass, so
subclassing needs to be considered with care!

I Low Coupling supports reuseability, so classes which are
inherently very generic in nature should have especially
low coupling.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
LOW COUPLING: Example



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
CONTROLLER: Problem

I What first object beyond the UI layer receives and
coordinates (“controls”) a system operation?

I System operations are the major input events upon our
system.

I A controller is the first object beyond the UI layer that
is responsible for receiving or handling a system
operation message.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
CONTROLLER: Solution

I Assign the reponsibility to a class representing one of
the following:

I Represents the overall “system”, a “root object”, a
device that the software is running within, or a major
subsystem

I Represents a Use Case scenario within which the system
event occurs.

I Use the same controller class for all system events in
the same Use Case scenario

I Informally, a session is an instance of a conversation
with and Actor. Sessions can be of any length but are
often organised in terms of Use Cases.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
HIGH COHESION: Problem

I How to keep objects focused, understandable, and
manageable, and as a side effect, support low coupling?

I Cohesion is a measure of how strongly related and
focused the reponsibilities are.

I An element with highly related responsibilities that does
not do much work is of high cohesion.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
HIGH COHESION: Solution

I Assign a responsibility so that cohesion remains high.
Use this to evaluate alternatives.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
HIGH COHESION: Discussion

I Benefits:
I Clarity and ease of comprehension of the design is

increased.
I Maintenance and enhancements are simplified.
I Low coupling is often supported.

I Rule of thumb:
I A class with high cohesion has a relatively small number

of methods, with highly related functionality, and does
not too much work.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
HIGH COHESION: Example



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

GRASP - patterns for responsibilities
Polymorphism, Pure Fabrication,
Indirection, Protected Variations

I Polymorphism
I How to handle alternatives based on type?

I Pure Fabrication
I Who, when you are desperate?

I Indirection
I How to de-couple objects?

I Protected Variations
I To whom should messages be sent?



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

CRC cards & role playing

I Not part of the UML design process but useful in
detecting responsibilities of objects are CRC cards
(developed by Kent Beck and Ward Cunningham).

I CRC stands for Class-Responsibility-Collaborator. They
look like:



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

CRC cards & role playing

I CRC cards are index cards, one for each class, upon
which the responsibilities and collaborators of a class
are written.

I They are developed in a small group session where
people role play being the various classes.

I Each person holds onto the CRC cards for the classes
that they are playing the role of.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Testing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Purpose of Testing

I Purpose of testing
I Finding differences between the expected behaviour

specified by models and the observed one of the
implemented system

I The differences reflect failures of a piece of software
I Verification: Are you build the product right? (Does it

work properly?)
I Validation: Are we build the right product (Does it

satisfy user’s requirement?)



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Purpose of Testing

I Causes of a failure
I Failures are caused by faults, also known as bugs
I An error is a human action that results in a program

containing faults
I Errors can take place at any stage of a software life cycle
I Finding an error is a diagnostic progress contain

mapping from differences detected in testing to errors



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Test Stratagies

I White Box (structural) test
I Every independent execution path through the code is

tested and all conditional statements are tested for true
and false statements

I Black Box (specification) test
I The ‘behaviour’ of object/class is tested and test case

design should be based upon domain knowledge.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

OBJECT ORIENTED TESTING



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Unit Testing

I Aim of Unit testing

I to test objects/classes, blocks and service packages
I more complicated than unit testing in traditional

program testing, as an object contains both attributes
and operation and because of inheritance and
polymorphism.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Unit Testing

I Specification testing
I black box testing
I equivalence partitioning: partitioning possible inputs

into several categories and set one test case for each
category

I State based testing
I tests are performed based on the encapsulated state and

the interaction of the operations of an object



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Unit Testing

I Structural testing
I white box test, also known as path testing



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Unit Testing

I Polymorphism testing
I all possible bindings should be identified and tested



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Integration Testing

I Integration testing
I earlier than traditional cases because objects and classes

communicate with one another.
I Integration testing is any type of software testing that

seeks to verify the interfaces between components
against a software design. Normally integrated in an
iterative way, allows interface issues to be localised more
quickly and fixed.

I Integration testing works to expose defects in the
interfaces and interaction between integrated
components. Progressively larger groups of tested
software components corresponding to elements of the
architectural design are integrated and tested until the
software works as a system.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

System Testing

I System testing of software or hardware is testing
conducted on a complete, integrated system to evaluate
the system’s compliance with its specified requirements.

I System testing falls within the scope of black box
testing, and as such, should require no knowledge of the
inner design of the code or logic

I Each use case is initially tested separately based on
requirement model.

I The entire system is tested as a whole after all use case
are tested.

I Testing several use case in parallel.

I Testing several use case at the same time.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Testing Procedure



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Large Software Management

I Functional decomposition - in function-oriented
programming, a function is broken down into
sub-functions and further into sub-sub-functions and
small pieces of programs are developed to implement
these sub-sub-functions. (Note: operations and data are
separate.)

I It looks like that we can use this idea to break down a
use case into sub- or even sub-sub-cases. However, the
separation of operation and data does not satisfy
OOP’s theme.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Large Software Management

I Package - grouping classes together into higher-level
units called wok package, assignment or task. (Note:
operations and data are not separate in a work package
as it is a group of classes and, therefore, package is
widely used in OOP.)

I Self-contained - a work package is self-contained, that
is, the development of a work package follows the entire
procedure of waterfall model.

I Smaller work package is more manageable.

I Work packages are assigned to individuals or teams for
completion.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Large Software Management

I Work package example



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Package Diagrams



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Package Diagrams

I A package diagram show packages and the dependency
between packages.

I Package:

I Dependency:



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Package Diagrams

I Dependency - if changes to definition of a class in a
package A causes the changes in classes in another
package B, we say that B has dependencies with A.

I On class sends message to another (return value from a
method).

I One class mentions another as a parameter (parameter
of a method).

I One class has another as a part of its data (defining
reference variable)

I Dependency is not transitive.



Patterns and
Testing

Patterns

Intoduction

Responsibilities

Knowing/Doing

Good/bad design

GRASP

Creator

Expert

Low Coupling

Controller

High Cohesion

CRC cards

Testing

purpose

Stratagies

Unit Testing

Integration
Testing

System Testing

Testing Procedure

Management

Package
Diagrams

Package Diagrams

I Package diagram example


	Patterns
	Intoduction
	Responsibilities
	GRASP
	CRC cards

	Testing
	purpose
	Stratagies
	Unit Testing
	Integration Testing
	System Testing
	Testing Procedure
	Large Software Management

	Package Diagrams

