
Real Operating Systems
Lecture #12

Department of Computer Science and Technology
University of Bedfordshire

Written by David Goodwin,
based on the lecture series of Dayou Li

and the book Understanding Operating Systems 4thed.
by I.M.Flynn and A.McIver McHoes (2006).

Operating Systems, 2012



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

Outline

Introduction
DOS
Windows
Unix & Linux

Memory Management
DOS
Windows
Linux

Process Management
DOS
Windows
Linux



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

INTRODUCTION TO DIFFERENT
O/Ss

I Three typical operating systems
I Disk operating system (DOS)
I Windows
I Unix/Linux



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS

I History
I In 1980, IBM looked for an operating system for its

soon-to-be-released 6-bit personal computers
I Digital Research offered CP/M-86
I Softech offered P-System
I MS

I MS also looked for OS for its 16-bit computers
I Seattle Computer Products offered 86-DOS
I MS bought it and renamed it MS-DOS

I IBM chose MS-DOS in 1981 and called it PC-DOS
I MS-DOS evolved from v 1.0 to v 6.22 from 1981 to

1994



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS

I Features
I Single user, stand-alone

desktop
I Command-line
I Commands are based on

words
I Examples

I COPY – copy a file
I DEL – delete a file
I PRINT – print files on a

printer
I DIR – list files in this

directory
I MD – make a new

directory
I CHKDSK – check the disk
I COMP – compare two

files



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

Layers of DOS

I Three layers:
I Top layer – command processor

I Sends prompts to user
I Accepts commands
I Executes commands (including interpret commands to

machine language)
I Issues responses



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

Layers of DOS

I I Middle layer – DOS kernel
I A program containing routines that are needed for

interfacing disk
I Stored in MSDOS.SYS file
I Read to memory during initialisation time



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

Layers of DOS

I I Bottom layer – BIOS (Basic Input/Output System)
I Interfaces I/O devices such as printer, monitor and

keyboard
I Controls data flow to and from these devices
I Receive statues information about these devices



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS

I History
I Initiative

I To allow users to not have to remember and use
system commands but via a user-friendly interface –
GUI

I Not a replacement of DOS

I Early versions (1985 to 1992)
I Windows 1.0 to 3.1 are only “interfaces” between GUI

and DOS
I Single-user rather than networked

I True O/S since 1992
I Windows 95 is first true O/S

I Network O/S
I Windows NT version 3.1 in 1993 led by David Cutler



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS - Design goals

I Extensibility – be easily enhanced to meet changes over
time to support new hardware and software technologies

I Privileged process and non-privileged processes
I Kernel mode refers to the privileged mode of a

processor
I All instructions are allowed
I System memory is accessible

I Use mode refers to the non-privileged mode of a
processor

I Only certain instructions are allowed
I System memory is not accessible

I O/S executes in kernel mode
I Application programs (protected subsystems) run in

user mode

I Modular structure

I Drivers for new file systems, devices and networks

I Objects – abstract data types



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS - Design goals

I Portability – ability for O/S to operate on different
machines that use different processors or configurations

I Code is modular
I Standard high-level programming language c/c++ is

used for implementation
I Hardware abstraction layer (HAL) providing isolation

from hardware dependencies
I HAL abstracts hardware such as caches with a layer of

low-level software so that higher-level code needs no
change when moving from one platform to another



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS - Design goals

I Reliability – predictability in responding to error
conditions, including hardware failures

I Modular design
I NTFS to recover all types of errors
I US government-certifiable security
I Virtual memory strategy to prevent one user from

reading or modifying memory that is occupied by
another user

I Compatibility – ability of an O/S to execute programs
written for other O/Ss

I Execution environments for applications that differ from
Win32 API

I Source-level compatibility to POSIX (Portable
Operating System Interface for Computer Environment)

I Supporting already-existing file systems



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS - Design goals

I Performance – fast response times
I Crucial processes such as system calls and page faults

are tested and optimised
I LPC (local procedure call) to guarantee fast

communications among the protected subsystems
I Carefully designing the environment subsystems to

ensure the speed of frequently used systems services
I Critical elements of Windows’ networking software are

built in the privileged protion



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

UNIX AND LINUX

I Advantages shared by Unix and Linux
I Portable
I Powerful utilities
I Device independent



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

UNIX AND LINUX

I Evolution of UNIX



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

UNIX AND LINUX

I Evolution of LINUX



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

UNIX AND LINUX - Design goals

I Supporting software development

I Keeping its algorithms as simple as possible



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS MEMORY MANAGEMENT

I ROM and RAM
I ROM contains a section of BIOS for

starting up a computer
I RAM is mail memory where programs

are loaded
I Interrupt vectors
I BIOS interface
I DOS kernel
I Buffer cache
I Installable drives
I Resident part of COMMAND.COM
I TSR
I User memory
I Transient part of COMMAND.COM
I Reserved for BIOS



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS MEMORY MANAGEMENT

I TPA allocation “policy”
I Reason for allocating memory blocks in TPA for more

than one programs
I Improving efficiency when executing or accessing the

next program/file after executing one program

I “Policy”
I Dynamic allocation
I Modification – modifying (normally giving more)

memory blocks to a running program when it requires
more for, e.g., I/O purposes

I Release of main memory– after part of a program is
executed

I For .EXE files – allocating the max memory needed if
TPA has enough free memory, otherwise, giving the
min memory

I For .COM files – allocating all memory it may need
despite it will use or not



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS MEMORY MANAGEMENT

I TPA allocation algorithms
I First-fit was used in early version and Best-fit was used

in later version
I A block can be as small as 16 bytes (also known as

paragraph) and as large as the max available memory
(TPA)

I The first five bytes have special usage:
I Byte 0 – indicator of the last block (90h if yes, 77h

otherwise)
I Byte 1– indicator of status of the block (00h for busy)
I Byte 2 – pointer to PSP
I Bytes 3 and 4 – indicator of the number of paragraph

contained in the block

I List of busy/free blocks
I List is a data structure containing a head and a tail
I An algorithm searches for a free block in the list for a

file



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS MEMORY MANAGEMENT

I Memory manage challenge and solution
I Challenge is to run programs written for Windows, DOS

and POSIX without clashing each other in memory
I Solution is to separate system memory and application

memory
I Example

I 4GB memory with 2GB each allocated for application
storage and system storage



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS MEMORY MANAGEMENT

I Virtual memory manager
I To allow applications to share memory
I Allocate memory in two stages:

I Reserving memory
I Committing memory

I Read/write protection for virtual memory so read/write
performed by one process won’t be interrupted by other
processes

I Lock virtual memory pages in physical memory to
ensure that a critical page won’t be removed from
memory while a process is using it

I Retrieve information
I Protect virtual pages
I Rewrite virtual pages to disk



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS MEMORY MANAGEMENT

I Implementation
I Address space management

I System storage section of the virtual memory can only
be accessed by kernel-mode processes

I Addresses of the lower part of this section are
translated by hardware to have a fast access speed

I Paging
I Fetch policy determines time when copying a page

from memory to disk
I Placement policy is a set of rules determining where

the vurtual pages are loaded in memory
I Replacement policy determines which virtual page

must be removed from memory to make room for new
pages



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX MEMORY MANAGEMENT

I Swapping and demand paging
I Swapping a job out of memory

I Round robin policy is used – jobs/processes are
managed by round robin and if a job’s time slice is up
or when it generate an I/O interrupt, the entire job will
be swapped out to secondary storage to make room for
another job that is waiting in the READY queue

I Demand paging
I Image
I Program code
I Data
I stack



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX MEMORY MANAGEMENT

I UNIX kernel
I Responding system calls issued by processes
I Set up memory boundary
I Permanently resides in memory
I Uses the least recently used (LRU) page replacement

algorithm



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS PROCESS MANAGEMENT

I Designed for single-task and single user environment
I Parent child processes – parent process calls child

process and then goes to sleep and remains asleep while
the child process is running

I One process runs at a time
I The child process can interrupt the parent process
I 256 interrupts



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS PROCESS MANAGEMENT

I Reason for interrupts
I No need for having any sophisticated process

management as MS-DOS is designed for single user in a
single task environment

I A task/process sometimes does need to be interrupted ,
for example, when it waits for a peripheral device, to
improve efficiency

I Process life cycle: ready – running – waiting – exit
I Synchronisation among tasks/processes is need
I Synchronisation is achieved in MS-DOS via interrupts



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS PROCESS MANAGEMENT

I Different types of interrupts
I Internal hardware interrupts

I Generated by certain event during a program’s
execution, for example, divided by zero

I Every such event is assigned with a specific interrupt
number which is electronically wired into the processor
and therefore cannot be modified

I External hardware interrupts
I Caused by peripheral device controllers
I Also assigned with specified numbers and cannot be

modified

I Software interrupts
I Generated by system and application programs
I Some are used to activate specialised application

programs



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS PROCESS MANAGEMENT

I Interrupt synchronisation
I Stack for

I PSW (Program Statuts Word)
I code segment register
I instruction pointer register

I Disables the interrupt system until the current interrupt
has been solved

I Placing a 8-bit number on the systems bus



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS PROCESS MANAGEMENT

I Multithreading
I Elements of a process

I An executable program
I Private memory area
I System resources allocated by an O/S
I At least one thread of execution

I Elements of a thread
I A unique identifier
I The contents of a volatile set of register indicating the

processor’s state
I Two stacks used during the thread exectuion
I A private storage area used by subsystems and

dynamic-link libraries



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS PROCESS MANAGEMENT

I Multithreading synchronisation
I Problem

I Several treads can modify the same global variable
independently of each other

I Competition/racing for single shared resource

I Synchronisation in Win32
I Mutexes – only one thread can own the resource at a

time
I Semaphores – multiple threads can own it at a time
I Critical section – a critical section can only be owned

by a process and cannot be shared between processes
I Event object – it is sent to all threads to alert them of

an action occurring



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX PROCESS MANAGEMENT

I Priority
I Priority is largely determined by accumulated CPU time
I Computer-to-total-time ratio:

CPU time a process has used

Total time CPU time required by the process

I A process that has used a lot CPU time gets the lowest
priority

I Computer-to-total-time ratio is updated every second
I Round-robin is used to decide which process will run

first among those that have the same priority



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX PROCESS MANAGEMENT

I Tables
I Process with sharable

code
I Resident Section

of memory has two
tables

I Process Table
shows all processes

I Text Table shows
the relationship
between the
processes and
code, i.e. which
processes share the
same code and the
memory address of
the code



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX PROCESS MANAGEMENT

I I I Transient Section has Data area, Code area and User
Table for each process

I Data and code are stored separately because code is
sharable

I User Table is a map between Data area and Code area
so it controls the access privilege of data/files

I Example – P3 and P4
I Processes with nonsharable code

I Data and code are stored in the same area
I Example – P5



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX PROCESS MANAGEMENT

I Fork, wait and exec
I fork

I Creates a copy of a process
I The original one is called parent
I The copy is called child



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX PROCESS MANAGEMENT

I I wait
I Allows programmers to synchronise process execution



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

LINUX PROCESS MANAGEMENT

I I exec
I Is a family of commands – execl, execv, execls, execlp

and execvp
I Are used to start a process from another process


	Introduction
	DOS
	Windows
	Unix & Linux

	Memory Management
	DOS
	Windows
	Linux

	Process Management
	DOS
	Windows
	Linux


