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INTRODUCTION TO DIFFERENT
O/Ss

I Three typical operating systems
I Disk operating system (DOS)
I Windows
I Unix/Linux
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DOS

I History
I In 1980, IBM looked for an operating system for its

soon-to-be-released 6-bit personal computers
I Digital Research offered CP/M-86
I Softech offered P-System
I MS

I MS also looked for OS for its 16-bit computers
I Seattle Computer Products offered 86-DOS
I MS bought it and renamed it MS-DOS

I IBM chose MS-DOS in 1981 and called it PC-DOS
I MS-DOS evolved from v 1.0 to v 6.22 from 1981 to

1994
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DOS

I Features
I Single user, stand-alone

desktop
I Command-line
I Commands are based on

words
I Examples

I COPY – copy a file
I DEL – delete a file
I PRINT – print files on a

printer
I DIR – list files in this

directory
I MD – make a new

directory
I CHKDSK – check the disk
I COMP – compare two

files
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Layers of DOS

I Three layers:
I Top layer – command processor

I Sends prompts to user
I Accepts commands
I Executes commands (including interpret commands to

machine language)
I Issues responses
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Layers of DOS

I I Middle layer – DOS kernel
I A program containing routines that are needed for

interfacing disk
I Stored in MSDOS.SYS file
I Read to memory during initialisation time
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Layers of DOS

I I Bottom layer – BIOS (Basic Input/Output System)
I Interfaces I/O devices such as printer, monitor and

keyboard
I Controls data flow to and from these devices
I Receive statues information about these devices
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WINDOWS

I History
I Initiative

I To allow users to not have to remember and use
system commands but via a user-friendly interface –
GUI

I Not a replacement of DOS

I Early versions (1985 to 1992)
I Windows 1.0 to 3.1 are only “interfaces” between GUI

and DOS
I Single-user rather than networked

I True O/S since 1992
I Windows 95 is first true O/S

I Network O/S
I Windows NT version 3.1 in 1993 led by David Cutler
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WINDOWS - Design goals

I Extensibility – be easily enhanced to meet changes over
time to support new hardware and software technologies

I Privileged process and non-privileged processes
I Kernel mode refers to the privileged mode of a

processor
I All instructions are allowed
I System memory is accessible

I Use mode refers to the non-privileged mode of a
processor

I Only certain instructions are allowed
I System memory is not accessible

I O/S executes in kernel mode
I Application programs (protected subsystems) run in

user mode

I Modular structure

I Drivers for new file systems, devices and networks

I Objects – abstract data types
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WINDOWS - Design goals

I Portability – ability for O/S to operate on different
machines that use different processors or configurations

I Code is modular
I Standard high-level programming language c/c++ is

used for implementation
I Hardware abstraction layer (HAL) providing isolation

from hardware dependencies
I HAL abstracts hardware such as caches with a layer of

low-level software so that higher-level code needs no
change when moving from one platform to another
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WINDOWS - Design goals

I Reliability – predictability in responding to error
conditions, including hardware failures

I Modular design
I NTFS to recover all types of errors
I US government-certifiable security
I Virtual memory strategy to prevent one user from

reading or modifying memory that is occupied by
another user

I Compatibility – ability of an O/S to execute programs
written for other O/Ss

I Execution environments for applications that differ from
Win32 API

I Source-level compatibility to POSIX (Portable
Operating System Interface for Computer Environment)

I Supporting already-existing file systems
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WINDOWS - Design goals

I Performance – fast response times
I Crucial processes such as system calls and page faults

are tested and optimised
I LPC (local procedure call) to guarantee fast

communications among the protected subsystems
I Carefully designing the environment subsystems to

ensure the speed of frequently used systems services
I Critical elements of Windows’ networking software are

built in the privileged protion
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UNIX AND LINUX

I Advantages shared by Unix and Linux
I Portable
I Powerful utilities
I Device independent
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UNIX AND LINUX

I Evolution of UNIX
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UNIX AND LINUX

I Evolution of LINUX
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UNIX AND LINUX - Design goals

I Supporting software development

I Keeping its algorithms as simple as possible
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DOS MEMORY MANAGEMENT

I ROM and RAM
I ROM contains a section of BIOS for

starting up a computer
I RAM is mail memory where programs

are loaded
I Interrupt vectors
I BIOS interface
I DOS kernel
I Buffer cache
I Installable drives
I Resident part of COMMAND.COM
I TSR
I User memory
I Transient part of COMMAND.COM
I Reserved for BIOS
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DOS MEMORY MANAGEMENT

I TPA allocation “policy”
I Reason for allocating memory blocks in TPA for more

than one programs
I Improving efficiency when executing or accessing the

next program/file after executing one program

I “Policy”
I Dynamic allocation
I Modification – modifying (normally giving more)

memory blocks to a running program when it requires
more for, e.g., I/O purposes

I Release of main memory– after part of a program is
executed

I For .EXE files – allocating the max memory needed if
TPA has enough free memory, otherwise, giving the
min memory

I For .COM files – allocating all memory it may need
despite it will use or not
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DOS MEMORY MANAGEMENT

I TPA allocation algorithms
I First-fit was used in early version and Best-fit was used

in later version
I A block can be as small as 16 bytes (also known as

paragraph) and as large as the max available memory
(TPA)

I The first five bytes have special usage:
I Byte 0 – indicator of the last block (90h if yes, 77h

otherwise)
I Byte 1– indicator of status of the block (00h for busy)
I Byte 2 – pointer to PSP
I Bytes 3 and 4 – indicator of the number of paragraph

contained in the block

I List of busy/free blocks
I List is a data structure containing a head and a tail
I An algorithm searches for a free block in the list for a

file
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WINDOWS MEMORY MANAGEMENT

I Memory manage challenge and solution
I Challenge is to run programs written for Windows, DOS

and POSIX without clashing each other in memory
I Solution is to separate system memory and application

memory
I Example

I 4GB memory with 2GB each allocated for application
storage and system storage



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS MEMORY MANAGEMENT

I Virtual memory manager
I To allow applications to share memory
I Allocate memory in two stages:

I Reserving memory
I Committing memory

I Read/write protection for virtual memory so read/write
performed by one process won’t be interrupted by other
processes

I Lock virtual memory pages in physical memory to
ensure that a critical page won’t be removed from
memory while a process is using it

I Retrieve information
I Protect virtual pages
I Rewrite virtual pages to disk
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WINDOWS MEMORY MANAGEMENT

I Implementation
I Address space management

I System storage section of the virtual memory can only
be accessed by kernel-mode processes

I Addresses of the lower part of this section are
translated by hardware to have a fast access speed

I Paging
I Fetch policy determines time when copying a page

from memory to disk
I Placement policy is a set of rules determining where

the vurtual pages are loaded in memory
I Replacement policy determines which virtual page

must be removed from memory to make room for new
pages
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LINUX MEMORY MANAGEMENT

I Swapping and demand paging
I Swapping a job out of memory

I Round robin policy is used – jobs/processes are
managed by round robin and if a job’s time slice is up
or when it generate an I/O interrupt, the entire job will
be swapped out to secondary storage to make room for
another job that is waiting in the READY queue

I Demand paging
I Image
I Program code
I Data
I stack
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LINUX MEMORY MANAGEMENT

I UNIX kernel
I Responding system calls issued by processes
I Set up memory boundary
I Permanently resides in memory
I Uses the least recently used (LRU) page replacement

algorithm



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

DOS PROCESS MANAGEMENT

I Designed for single-task and single user environment
I Parent child processes – parent process calls child

process and then goes to sleep and remains asleep while
the child process is running

I One process runs at a time
I The child process can interrupt the parent process
I 256 interrupts
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DOS PROCESS MANAGEMENT

I Reason for interrupts
I No need for having any sophisticated process

management as MS-DOS is designed for single user in a
single task environment

I A task/process sometimes does need to be interrupted ,
for example, when it waits for a peripheral device, to
improve efficiency

I Process life cycle: ready – running – waiting – exit
I Synchronisation among tasks/processes is need
I Synchronisation is achieved in MS-DOS via interrupts
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DOS PROCESS MANAGEMENT

I Different types of interrupts
I Internal hardware interrupts

I Generated by certain event during a program’s
execution, for example, divided by zero

I Every such event is assigned with a specific interrupt
number which is electronically wired into the processor
and therefore cannot be modified

I External hardware interrupts
I Caused by peripheral device controllers
I Also assigned with specified numbers and cannot be

modified

I Software interrupts
I Generated by system and application programs
I Some are used to activate specialised application

programs
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DOS PROCESS MANAGEMENT

I Interrupt synchronisation
I Stack for

I PSW (Program Statuts Word)
I code segment register
I instruction pointer register

I Disables the interrupt system until the current interrupt
has been solved

I Placing a 8-bit number on the systems bus
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WINDOWS PROCESS MANAGEMENT

I Multithreading
I Elements of a process

I An executable program
I Private memory area
I System resources allocated by an O/S
I At least one thread of execution

I Elements of a thread
I A unique identifier
I The contents of a volatile set of register indicating the

processor’s state
I Two stacks used during the thread exectuion
I A private storage area used by subsystems and

dynamic-link libraries



bg=white
Real Operating

Systems

Introduction

DOS

Windows

Unix & Linux

Memory
Management

DOS

Windows

Linux

Process
Management

DOS

Windows

Linux

WINDOWS PROCESS MANAGEMENT

I Multithreading synchronisation
I Problem

I Several treads can modify the same global variable
independently of each other

I Competition/racing for single shared resource

I Synchronisation in Win32
I Mutexes – only one thread can own the resource at a

time
I Semaphores – multiple threads can own it at a time
I Critical section – a critical section can only be owned

by a process and cannot be shared between processes
I Event object – it is sent to all threads to alert them of

an action occurring
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LINUX PROCESS MANAGEMENT

I Priority
I Priority is largely determined by accumulated CPU time
I Computer-to-total-time ratio:

CPU time a process has used

Total time CPU time required by the process

I A process that has used a lot CPU time gets the lowest
priority

I Computer-to-total-time ratio is updated every second
I Round-robin is used to decide which process will run

first among those that have the same priority
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LINUX PROCESS MANAGEMENT

I Tables
I Process with sharable

code
I Resident Section

of memory has two
tables

I Process Table
shows all processes

I Text Table shows
the relationship
between the
processes and
code, i.e. which
processes share the
same code and the
memory address of
the code
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LINUX PROCESS MANAGEMENT

I I I Transient Section has Data area, Code area and User
Table for each process

I Data and code are stored separately because code is
sharable

I User Table is a map between Data area and Code area
so it controls the access privilege of data/files

I Example – P3 and P4
I Processes with nonsharable code

I Data and code are stored in the same area
I Example – P5
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LINUX PROCESS MANAGEMENT

I Fork, wait and exec
I fork

I Creates a copy of a process
I The original one is called parent
I The copy is called child
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LINUX PROCESS MANAGEMENT

I I wait
I Allows programmers to synchronise process execution
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LINUX PROCESS MANAGEMENT

I I exec
I Is a family of commands – execl, execv, execls, execlp

and execvp
I Are used to start a process from another process
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