OPERATING SYSTEMS LECTURE #4: IO MANAGEMENT

Written by David Goodwin based on the lecture series of Dr. Dayou Li and the book *Understanding Operating Systems* 4th ed. by *I.M.Flynn and A.McIver McHoes* (2006)

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY, UNIVERSITY OF BEDFORDSHIRE.

OPERATING SYSTEMS, 2013

18th February 2013

Outline

Lecture #4 IO Management

David Goodw University of Bedfordshire

Device typ

DASE

Components of subsystem

Communication
Polling & Interrupts

DIVIA

Duniei.

Management of IO requests

Device Handling Algorithms

SSTF

SSTF

RAID

summar

1 Device types

2 DASD

3 Components of IO subsystem

4 Communication
Polling & Interrupts
DMA

Buffers

Management of IO requests

6 Device Handling Algorithms

FCFS SSTF SCAN

RAID

8 summary

Operating System

Lecture #4 IO Management

David Goodwin
University of

Device type

DACD

Components of IC subsystem

Communicatio

Polling & Interrupts

Duffer

Butter

Management of IC requests

Device Handling

CCTT

3315

RAIF

summar

Operating Syster

I/O HARDWARE

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device types

DASI

Components of subsystem

ommunication. Polling & Interrupts

Buffer

Management of IC requests

Device Handling

SSTF

SCA

RAID

- Incredible variety of I/O devices
- Common concepts
 - Port
 - Bus (daisy chain or shared direct access)
 - Controller (host adapter)
- I/O instructions control devices
- Devices have addresses, used by
 - Memory-mapped I/O
 - Direct I/O instructions

TYPES OF DEVICES

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device types

DASE

Components of IC subsystem

Polling & Interrupt:

Buffer

Management of IC requests

Device Handlir Algorithms

SSTF

SCA

....

summa

Dedicated

 Assigned to only one job at a time, e.g. printers, tape drives, etc.

Shared

 Can be assigned to several processes, e.g. a disk can be shared by several processes at the same time by interleaving their requests which are carefully controlled by the Device Manager.

Virtual

 A combination of the first two – dedicated devices transferred to shared devices, e.g. a printer made sharable through spooling (Simultaneous Peripheral Operation On-Line).

STORAGE DEVICES

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device types

DASI

Components of IC subsystem

Polling & Interrup

DMA

Buffers

Management of IC requests

Device Handlir Algorithms

SSTE

SCA

RAID

summa

Sequential access storage

Paper printout, punch cards, paper tapes, magnetic tapes

Direct access storage devices (DASDs)

Magnetic disks (fixed-head and moveable-head)

Optical discs (CD-ROM, CD-Recordable, CD-Rewritable, DVD)

Magneto-optical (combination of magnetic and optical discs)

Flash memory

 Removable medium that emulates random access memory but unlike RAM, it stores data securely even it is removed from its power supply

RAID (Redundant Array of Inexpensive/independent Disks)

 A set of physical disk drives viewed as a single logical unit by OS to close the widening gap between increasingly fast processors and slower disk drives

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device type

DASE

Components of IC subsystem

Communicatio

Polling & Interrupt

Duffer

Butter

Management of IO requests

Device Handling

Algorithms

SSTF

SCAN

RAID

summar

Operating System

DASD ACCESS TIMES

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

DASI

Components of IC subsystem

Polling & Interrupt

Buffer

Management of IC

Device Handling

SSTF

SCAL

RAID

summa

 $\begin{array}{l} \textbf{ For a fixed-head DASD} \\ \textbf{ Total access time}(t_a) = \\ \textbf{ Sum of search time}(t_s) + \textbf{ Transfer time}(t_t) \end{array}$

• Search time t_s Best search time $t_s = 0$ Worst search time $t_s = 0$

Worst search time $t_s=r$ (r is time taken per revolution of disk)

Average search time $t_s=rac{r}{2}$

ullet Transfer time t_t

DASD ACCESS TIMES

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device ty

DASD

Components of IC subsystem

ommunication Polling & Interrupt

DMA

Management of I

Device Handling Algorithms

SSTF

SCAN

RAID

summa

Example for a fixed-head DASD

A complete revolution takes 14ms, and data transfer time is 0.16ms per record. Calculate

- Total average access time for 20 individual records
- Total average access time for a block of 20 records
- Time saving between the two

•
$$t_a$$
 for 20 individual records = $20\left(\frac{14}{2} + 0.16\right) = 143.2ms$

•
$$t_a$$
 for block of 20 records = $\frac{14}{2} + 20 \times 0.16 = 10.2 ms$

• Time saving =
$$143.2 - 10.2 = \bar{1}33.0 ms$$

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device type

DASD

Components of IO subsystem

Communication

B. ...

DMA

Ruffern

Dunci

Management of IO requests

Device Handling Algorithms

1013

55 I F

KAID

Sullillidi

Operating System

APPLICATION I/O INTERFACE

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device type

Components of subsystem

Communication
Polling & Interrupts

DMA Buffers

Management of IC requests

Device Handling Algorithms

SSTF

RAID

summar

 I/O system calls encapsulated device behaviours in generic classes

- Device-driver layer hides differences among I/O controllers from kernel
- Devices vary in many dimensions
 - · Character-stream or block
 - Sequential or random-access
 - Synchronous or asynchronous
 - Sharable or dedicated
 - Speed of operation
 - Read-write, read only, or write only
- I/O subsystem is independent of hardware, which simplifies job for OS developers; device manufacturers have to develop device drivers to suit a specific OS

A KERNEL I/O STRUCTURE

Lecture #4 IO Management

David Goodwi University of

Device type

DASD

subsystem

12

Polling & Interrupts

Buffers

Management of I

Device Handlin

Algorithms

SSTF

RAID

summa

kernel software kernel I/O subsystem SCSI keyboard mouse PCI bus floppy ATAPI device device device device device device driver driver driver driver driver driver SCSI keyboard PCI bus ATAPI mouse floppy device device device device device device controller controller controller controller controller controller hardware ATAPI devices SCSI floppy-disk keyboard PCI bus mouse (disks. devices drives tapes. drives)

CHARACTERISTICS OF I/O DEVICES

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device type

Components of IO subsystem

Communication
Polling & Interrupts

Buffers

Management of IC requests

Device Handlin Algorithms

FCFS

SSIF

RAID

Summa

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controller disk

BLOCK AND CHARACTER I/O DE-VICES

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device typ

DASD

Components of IO subsystem

Communication
Polling & Interrupts

Buffer

Management of IC requests

Device Handlin

FCFS

3316

RAIF

- Block devices include disk drives
 - Commands include read, write, seek
 - Raw I/O or file-system access
 - Memory-mapped file access possible
 - Character devices include keyboards, mice, serial ports
 - Commands include get, put
 - Libraries layered on top allow line editing

BLOCKING AND NON-BLOCKING I/O

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

Components of subsystem

Communication
Polling & Interrupts

DMA Buffers

Management of IO requests

Algorithms

SSTF

RAID

- Blocking process suspended until I/O completed
 - Easy to use and understand
 - Insufficient for some needs
- Nonblocking I/O call returns as much as available
 - User interface, data copy (buffered I/O)
 - Implemented via multi-threading
 - Returns quickly with count of bytes read or written
 - Processing and displaying data on screen while receiving keyboard/mouse input; video application reading frames from file on a disk while decompressing and displaying the output.
- Asynchronous process runs while I/O executes
 - Difficult to use
 - I/O subsystem signals process when I/O completed

KERNEL I/O SUBSYSTEM

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

DASD

components of IO subsystem

Communication
Polling & Interrupts

Buffer

Management of IC requests

Device Handlin Algorithms

FCFS

SCAN

RAIF

- Scheduling
 - Some I/O request ordering via per-device queue
 - Some operating systems try fairness
- Buffering store data in memory while transferring between devices
 - To cope with device speed mismatch
 - To cope with device transfer size mismatch
 - To maintain "copy semantics"

KERNEL I/O SUBSYSTEM

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

DASE

Components of IO subsystem

Communication
Polling & Interrupts

Buffer

Management of IC requests

Device Handlin Algorithms

SSTF

SCAI

RAID

- Caching fast memory holding copy of data
 - Always just a copy
 - Key to performance
- Spooling (simultaneous peripheral operation on-line) buffer that holds output for a device
 - If device can serve only one request at a time
 - i.e. printing
- Device reservation provides exclusive access to a device
 - System calls for allocation and de-allocation
 - Watch out for deadlock

SUN ENTERPRISE TRANSFER RATES

6000 DEVICE

Lecture #4 IO Management

David Goodwi

Device typ

Components of IC

18

Communication

Polling & Interrupts

Buffers

Management of IC requests

Device Handlin

FCFS

SSIF

RAID

Components of the IO system

Management

subsystem

10 subsystem's components perform similar functions

 The channel's job is to keep up with the IO requests from the CPU and pass them to the control unit.

10 channels are programmable units places btween the CPU and the control units

 their job is to synchronize the fast speed of the CPU with the slow speed of the IO device

make it possible to overlap IO operations with processor operations so the IO and CPU can process concurrently

Channels use 10 channel programs

 Each channel program specifies the action to be performed by the devices

controls the transmission of data between main memory and the control units

IO control unit interprets the signal sent from the channel

control unit is sometimes part of the device

one control unit may be attached to several similar devices

Components of the IO system

Lecture #4 IO Management

subsystem

 At the start of an IO command, the information passed from the CPU to the channel is:

- IO command (READ, WRITE, REWIND, etc.)
- Channel number
- Address of the physical record to be transferred (from secondary storage)
- Starting address of a memory buffer from which or into which the record is to be transferred
- Because the channels are as fast as the CPU, they can direct several control units by interleaving commands
- Each control unit can direct several devices in a similar way
- Channels are often shared because they are the most valuable items in terms of the IO subsystem

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device type

DAED

Components of IO

Communication

Polling & Interrupts

DMA

Butter

Management of IC requests

Device Handling

FCES

SSTF

SCAN

RAIL

summar

Operating System

Communication among devices

Management

Communication

 The Device Manager relies on several auxiliary features to keep running efficiently

There are three problems that must be solved:

- It needs to know which components are busy and which are free
- It must be able to accommodate the requests that come in during heavy IO traffic
- 3 It must accommodate the disparity of speeds between the CPU and the IO devices
- The first is solved by structuring the interaction between units.
- The last two are solved by buffering records and queueing requests
- The success of the operation depends on the system's ability to know when a device has completed an operation

Communication among devices

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

Components of IC subsystem

Communication

DMA

DMA

Management of IC requests

Device Handlin Algorithms

FCFS

SCAI

RAID

summar

 This is done by hardware flagging, and must be tested by the CPU

 The flag is made up of three bits and resides in the Channel Status Word, or CSW.

 It is in a predefined location in main memory and contains information indicating the status of the channel.

each bit represents one of the components of the IO subsystem

- · one for the channel
- one for the control unit
- · one for the device

• Each bit is changed from 0 to 1 to indicate that the unit has changed from free to busy

• Each component has access to the flag

 The flag is tested before proceeding with the next IO operation to ensure that the entire path is free

 There are two common ways to perform this test: polling and interrupts.

POLLING

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device typ

DASE

Components of IC subsystem

Communicatio

DMA

Managem

Management of IC requests

Device Handling Algorithms

SSTF

RAID

summar

Determines state of device

- command-ready
 - busy
- Error
- Example:
 - CPU periodically tests the channel status bit (in CSW)
 - If the channel is busy, the CPU performs some other task
 - Else, the channel performs the IO operation
- Busy-wait cycle to wait for I/O from device
- Inefficient when attempted repeatedly, yet rarely finds a
 device ready for service while other CPU processing remains
 undone; More efficient for the hardware controller to notify
 the CPU when it is ready for service rather than to require
 the CPU to poll repeatedly for an I/O completion.

INTERRUPTS

Lecture #4 IO Management

David Goodw University of Bedfordshire

Device type

Components of IO subsystem

Communication

Polling & Interrupt

Buffers

Management of IC requests

Device Handlin Algorithms

SSTF

SCA

IVAID

- More efficient way to test the flag than polling
 - A hardware mechanism does the test as part of every machine instruction executed by the CPU
 - If the channel is busy the flag is set so that execution of the instructionsis automatically interupted
 - control is passed to the interrupt handler
 - part of the OS which resides in a predefined location of the memory
 - find out which unit sent the signal
 - analyse it's status and restart is where appropriate with the next operation
 - return control to the interrupted process
 - Some systems have hardware that can distinguish between several types of interrupts
 - these interrupts are ordered by priority
 - each one can transfer control to a corresponding memory location
 - hardware will automatically intercept all interrupts of similar or lower priority

INTERRUPTS

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

DASE

Components of It

Communication

Polling & Interrupt

Buffers

Management of IC requests

Device Handlin

FCFS

SCA

RAID

- CPU Interrupt-request line triggered by I/O device
- Interrupt handler receives interrupts
- Maskable to ignore or delay some interrupts
- Interrupt vector to dispatch interrupt to correct handler
 - Based on priority
 - Some unmaskable
- Interrupt mechanism also used for exceptions

INTERRUPT-DRIVEN I/O CYCLE

Lecture #4 IO Management

David Goodwin
University of
Redfordshire

Device type

Device ty

Components of IO

Communication

Polling & Interrupts
DMA

Buffers

Management of IO requests

Device Handlin

Algorithms

SSTF

.

summa

Operating System

DIRECT MEMORY ACCESS

Lecture #4 IO Management

David Goodw University of Bedfordshire

Device typ

Components of IO subsystem

Polling & Interrupt

DMA

Management of I

Device Handling Algorithms

SSTF

RAID

- Avoid programmed I/O (PIO) for large data movement
- Bypasses CPU to transfer data directly between I/O device and memory
 - DMA controller and CPU can compete for the system bus if they need it at the same time
 - Host writes a DMA command block in memory
 - Command block consisting of a pointer to the source of transfer, a pointer to the destination (memory address), and a count of the number of bytes to be transferred
 - CPU can then go to another task while the control unit completes the transfer independently
 - DMA controller then sends and interrupt to the CPU when the operation is complete
 - Without the DMA the CPU is responsible for this transfer of data - which is time-consuming and creates significant overheads, reducing the performance of the CPU
- Some computer systems use direct virtual-memory access (DVMA)

SIX-STEP PROCESS TO PERFORM DMA TRANSFER

Lecture #4 IO Management

David Goodwin University of

Device tvo

.

omponents of IC

Communication

Pollin

Ruffe

Management

requests

Algorithms

SSTF

SCAI

RAID

Buffers

Lecture #4 IO Management

Buffers

Used extensively to better synchronise the movement of data between slow io devices and fast CPU

- Temporary storage areas residing in three locations
 - Main memory
 - Channels
 - Control units
- Used to store data read from an input device before it's needed by the processor or that will be written to an output device
- To decrease idle time for devices and maximise their throughput, the technique of double buffering is used
 - two buffers are present in main memory, channels, and control units
 - record will be ready at any time, avoiding delay caused by waiting for a buffer to fill up with data
 - While one record is being processed by the CPU, another can be read or written by the channel

ERROR HANDLING

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device typ

DASE

Components of IC subsystem

Communication

Polling & Interru

Buffers

Management of IO

Device Handling

FCFS

5511

RAII

summa

OS can recover from disk read, device unavailable, transient write failures

Most return an error number or code when I/O request fails

System error logs hold problem reports

KERNEL DATA STRUCTURES

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

Components of IC

Communication

Polling & Interrupt
DMA

Management of I

Device Handlin Algorithms

FCFS

SCAN

RAID

- Kernel keeps state information for I/O components, including open file tables, network connections, character device state
- Many, many complex data structures to track buffers, memory allocation, "dirty" blocks
- Some use object-oriented methods and message passing to implement I/O

Lecture #4 IO Management

David Goodwir University of

Device typ

Ť

Components of IO subsystem

Communication

Polling & Interrup

Duffer

Management of IO

Device Handlin

Algorithms

SSTI

SCA

RAIL

summa

I/O REQUEST TO HARDWARE OPERA-TIONS

- Consider reading a file from disk for a process:
 - Determine device holding the file
 - Translate name to device representation
 - Physically read data from disk into buffer
 - Make data available to requesting process
 - Return control to process

LIFE CYCLE OF AN I/O REQUEST

Lecture #4 IO Management

David Goodwin

Device type

-

Components of IO

Communication

Polling & Interrupt

DMA

Buffers

Management of IO requests

Device Handlin Algorithms

FCFS

SSTF

RAID

summar

Operating Systems

PERFORMANCE

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device type

DASI

Components of IC subsystem

Communicatio

Polling & Interrupt

Buffers

....

Management of IO requests

Device Handlin Algorithms

FCF5

CCAN

RAID

- I/O is a major factor in system performance
 - Demands CPU to execute device driver, kernel I/O code
 - Context switches due to interrupts
 - Data copying
 - Network traffic especially stressful

IMPROVING PERFORMANCE

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device typ

DASE

Components of IC subsystem

Communication
Polling & Interrupts

Buffers

Management of IO requests

Device Handlin Algorithms

SSTF

SCAI

RAID

- Reduce number of context switches
- Reduce data copying
- Reduce interrupts by using large transfers, smart controllers, polling
- Use DMA
- Balance CPU, memory, bus, and I/O performance for highest throughput

DEVICE-FUNCTIONALITY PROGRES-SION

Lecture #4 IO Management

David Goodwir University of

Device type

.

Components of IC

Communication

Polling & Interrup

Buffer

Management of IO requests

38

Device Handlin Algorithms

FCFS

SCAN

RAID

IO Traffic Controller

Lecture #4 IO Management

The **IO** traffic controller monitors the status of every device, control unit, and channel.

- Three main tasks:
 - determine if there's at least one path available
 - 2 if more than one path, determines which to select
 - 3 if paths are all busy, determines when one will become available
- Maintains a database containing status and connections for each unit in the IO subsystem grouped as:
 - Channel Control Blocks
 - Control Unit Control Blocks
 - O Device Control Blocks
- To choose a free path; traces backward from the control block of the requested device through the control units to the channels
- If no path available the Process is linked to the queues kept in the Control Blocks
- Creates multiple wait queues with one queue per path

10 Scheduler & 10 Device Handler

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

DASI

Components of IC subsystem

Communication
Polling & Interrup

Buffers

Management of IO requests

Device Handlin Algorithms

SSTF

SCA

RAID

- IO scheduler allocates devices, control units, and channels and must decide which which requests to satisfy first.
- IO device handler processes the IO interrupts, handles error conditions, and provides detailed scheduling algorithms

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device type

DASD

Components of IC subsystem

Communicatio

Polling & Interrupt

Buffer

Dunci

Management of IC requests

Device Handling Algorithms

SSTE

SCAN

RAID

summa

O------

Seek strategy

Management

Device Handling Algorithms

- Allocate access to the device among the many processes that may be waiting for it
- Determines the order in which the processes get the device
- Goal to keep seek time to a minimum
- Some common strategies include:
 - first-come, first-served (FCFS)
 - shortest seek time first (SSTF)
 - SCAN (with varients; LOOK, N-Step SCAN, C-SCAN, C-LOOK)
- Every scheduling algorithm should do the following:
 - Minimise arm movement
 - Minimise mean response time
 - Minimise the variance in response time

First-come, First-served

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

DACD

Components of IC subsystem

Communication
Polling & Interrupt

DMA

Duncis

Management of IC requests

Device Handlin

FCFS

SCAN

RAID

- Simplest device-scheduling algorithm; easy to program and essentially fair to users
- However, on average, it doesn't meet any of the three goals of a seek strategy
- FCFS has the disadvantage of extreme arm movement, and hence large seek time

Shortest Seek Time First

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

DASE

Components of I

Communication
Polling & Interrup

Buffer

Management of IO requests

Device Handlin Algorithms

SSTE

SCA

IVAIL

summa

 With SSTF, the request with the track closest to the one being served is the next to be satisfied

- Has the disadvantage that it favours easy-to-reach requests and postpones travelling to those that are a long way out of the way
- meets the first goal of seek strategies, but fails to meet the other two

SCAN

Lecture #4 IO Management

David Goodwi University of Bedfordshire

Device typ

Components of I

Communication
Polling & Interrupt

Buffers

Management of IC requests

Device Handling Algorithms

SSTF

SCA

RAID

- SCAN uses a directional bit to indicate whether the arm is moving toward the centre of the disk or away from it
- Moves the arm from outer to inner track, servicing every request in its path, then reverses direction
- There are a number of variations of the SCAN algorithm:
 - LOOK
 - doesn't go all the way to the edge if there are no requests there
 - N-Step SCAN
 - doesn't incorporate requests into the arm's path as it travels, but holds all requests until the arm starts on its way back
 - C-SCAN (circular SCAN)
 - instead of reversing direction when the arm meets the innermost track, the arm immediately returns to the outermost track
 - C-LOOK (circular LOOK)
 - an optimisation of C-SCAN, just as LOOK is and optimisation of SCAN

Comparison of seek strategies

Lecture #4 IO Management

David Goodwin University of Bedfordshire

Device typ

Components of IC subsystem

Communication
Polling & Interrupt

DMA

Butters

Management of IC requests

Device Handlin

SSTF

SCAI

IVAID

summar

FCFS works well with light loads, but as soon as the load grows, service time becomes unacceptably long.

SSTF works well with moderate loads but has the problem of localisation under heavy loads.

SCAN works well with light to moderate loads and eliminates the problem of indefinite postponement.

C-SCAN works well with moderate to heavy loads and has a very small variance in service times

Lecture #4 IO Management

David Goodwin University of

Device type

DASE

Components of IC subsystem

Communicatio

Polling & Interrupts

D "

Butter

Management of IC requests

Device Handling

Algorithms

SSTF

SCA

RAID

summary

Operating Systen

RAID

Lecture #4 IO Management

RAID = Redundant Array of Independent Disks

- a group of hard disks controlled in such a way that they speed read access of data on secondary storage devices and aid data recovery
- viewed as a single operating unit by OS
- RAID assumes that several smaller-capacity disk drives are preferable to a few large capacity disk drives
- system can simultaneously access and request data from multiple drives
- improves IO performance and data recovery in the event of disk failure
- Data is divided into segments called strips
 - Strips are distributed accross the disks in the array
 - A set of consecutive strips is called a stripe
 - The whole process is called striping

Levels of RAID

RAID level	Error Correction	IO request rate	Data transfer rate
0	none	excellent	excellent
1	mirroring	R:good, W:fair	R:fair W:fair
2	Hamming code	poor	excellent
3	Word parity	poor	excellent
4	Strip parity	R:excellent, W:fair	R:fair, W:poor
5	Distributed strip parity	R:excellent, W:fair	R:fair, W:poor
6	Distributed strip parity and independent	R:excellent, W:poor	R:fair, W:poor

Lecture #4 IO Management

David Goodwin University of

Device type

DACD

Components of IC subsystem

Communicatio

Polling & Interrupt

DMA

Buffer

Management of IC requests

Device Handling

Algorithms

SSTF

SCAN

RAIL

summary

Key Terms

Management

summary

C-SCAN first-come, first-served (FCFS) 10 channel 10 channel program 10 contol unit 10 device handler

access time blocking buffers channel status word (CSW) C-LOOK

direct access storage Device (DASD)

direct memory access (DMA)

10 scheduler

Key Terms

summary

10 subsystem 10 traffic controller interrupt LOOK N-step SCAN parity bit RAID SCAN search search time seek strategy seek time shortest seek time first (SSTF)