
Operating Systems
Lecture #8: Critical Sections

Written by David Goodwin
based on the lecture series of Dr. Dayou Li

and the book Understanding Operating Systems 4thed.
by I.M.Flynn and A.McIver McHoes (2006)

Department of Computer Science and Technology,
University of Bedfordshire.

Operating Systems, 2013

18th March 2013



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

interesting problems

Operating Systems

Outline

1 critical sections

2 management functions

3 interesting problems



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

3critical sections

management functions

interesting problems

Operating Systems

critical sections



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

4critical sections

management functions

interesting problems

Operating Systems

Introduction - a problem

� Problem
� If a process is updating a data structure and another process

is allowed to run before the updating completes, the result
may be inconsistent

� Example 1 (Incorrect result):
� Two processes A and B both run ++x which contains the

following three instructions:
ld x, r1
addi #1, r1
st r1, x

� A is pre-empted by B after the 1st instruction is executed
� B finished after its three instruction are executed
� Switch back to A



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

5critical sections

management functions

interesting problems

Operating Systems

Introduction - a problem

� Effect: x increments for B

� Net effect: x does not increment for A



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

6critical sections

management functions

interesting problems

Operating Systems

CRITICAL SECTIONS

� The common element in all synchronisation schemes is to
allow a process to finish work on a critical section

� Also not allowing other processes to have access to it before
the critical section of the program has completed.

� This is called a critical section because its execution must
be handled as a unit.

� The processes within a critical section can’t be interleaved
without threatening the integrity of the operation.

� Definition
� Race conditions: the correctness of result depends on the

relative timing among two or more processes sharing the
same resource

� Critical section: code embodies race conditions



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

7management functions

interesting problems

Operating Systems

management functions



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

8management functions

interesting problems

Operating Systems

MANAGEMENT FUNCTIONS

� Interrupt control
� Interrupt: the processor interrupts a process to stop it when

the time slot assigned to the process is due to end
� If interruption occurs at critical section, the problem

mentioned earlier takes place
� Protection of critical sections from being interrupted:

� Disable interrupts
� Interrupt priority levels: higher level interrupts are allowed

and lower ones are blocked
� Problems:
� An erroneous process may never re-enable if it disables

interrupt
� Clock interrupt may be lost
� Preventing multi-processes waiting for critical sections at the

same time



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

9management functions

interesting problems

Operating Systems

MANAGEMENT FUNCTIONS

� Atomic instructions
� Atomic instruction is indivisible
� Instruction ++x is not an atomic instruction as it consists of

three instructions
� Building atomicity of a relative large code section using

mutual exclusion (also known as mutex lock [MUTual
EXclusion])

� Example 2 (Test-and-set):
mutex lock:

tas lock
blt mutex lock
ret

� Process A tries to get a lock for a memory location
� It tests to see if it can get the lock by running tas
� If the lock is used by another process then it follows branch

of less than (blt) to go back loop and try again
� Otherwise, it gets the lock and returns (ret)



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

10management functions

interesting problems

Operating Systems

Test-and-set

� Test-and-set (TS)
� In single machine cycle, tests to see if the “key” is available
� if it is, sets it to unavailable
� Key is a single bit in a storage location that is zero (if free) or

one (if busy).
� Process (p1) test the condition code using TS, before

entering critical section.
� if no other process is in the critical section, then p1 may

enter, key is set from zero to one (busy)
� if p1 finds the busy code, then it’s placed in a waiting loop,

where it continues to test the key.

� unless first-come first-served was set up, some processes
could be favoured over others

� waiting processes remain in un-productive,
resource-consuming wait loops, known as busy-waiting



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

11management functions

interesting problems

Operating Systems

WAIT and SIGNAL

� WAIT and SIGNAL
� modification of test-and-set, designed to remove busy-waiting
� WAIT

� Activated when process encounters a busy condition
� sets process’s process control block to blacked state and links

it to the queue of processes waiting
� process scheduler selects another process for execution

� SIGNAL
� Activated when a process exits the critical section and

condition code is “free”.
� checks queue of processes waiting to enter and selects one,

setting it to READY state

� WAIT and SIGNAL operations free processes from busy
waiting, returning control to the OS.



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

12management functions

interesting problems

Operating Systems

Peterson’s algorithm

� Peterson’s algorithm
� Two competing processes to take turns in using a shared

resource, using only shared memory for communication
� If one is not interested in using the resource, the other can

use it even when it is not its turn
� Example 3 (Peterson’s code with processes A and B):

int turn;
int want [2];
void mutex lock (int who) who test the lock
{
int other;
other = 1 – who;
want [who] = 1;
turn = other;
while (want[other]̂turn 6= who);
}



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

13management functions

interesting problems

Operating Systems

Peterson’s algorithm

� A and B can never be in the critical section at the same time:
If A is in its critical section, then either want[1] is false
(meaning B has left its critical section) or turn is 0 (meaning
B is just now trying to enter the critical section, but
graciously waiting). In both cases, B cannot be in critical
section when A is in critical section.

� A process cannot immediately re-enter the critical section if
the other process has set its flag to say that it would like to
enter its critical section.

� a process will not wait longer than one turn for entrance to
the critical section: After giving priority to the other process,
this process will run to completion and set its flag to 0,
thereby allowing the other process to enter the critical section.



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

14management functions

interesting problems

Operating Systems

Semaphores

� Semaphores
� A semaphore is originally a signalling device used in railway to

protect a section of rail track
� In OS it is a protected variable or abstract data type for

restricting access to shared resources such as shared memory
in a multi-process environment

� An OS controls a semaphore by two operations:
� up(semaphore s):

s = s+1
� down(semaphore s):

s = 0 if s==0,
s = s-1if s>0



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

15management functions

interesting problems

Operating Systems

Semaphores

� A semephore is a non-negative integer variable used as a flag.

� In OS a semephoe performs a similar function to railway
device:

� it signals if and when a resource is free and can be used by a
process

� “up” operation, V(s)
� fetch, increment, and store sequence
� like tests-and-set, must be performed as a single indivisible

action to avoid deadlocks
� s cannot be accessed by other processes during the operation

� “down” operation, P(s)
� test, fetch, decrement, and store sequence
� like tests-and-set, must be performed as a single indivisible

action to avoid deadlocks



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

16management functions

interesting problems

Operating Systems

Semaphores

� Example 3: Four processes P1 to P4 share the same resource
and OS runs a semaphore

� P3 is placed in WAIT state on state 4
� states 6 and 8, when a process exits the critical section, value

of s is reset to 1 (free), this triggers one of the blocked
processes, entering into the critical section, resetting s the 0
(busy).

� state 7, P1 and P2 are not trying to do processing.

State calling process operation in critical section blocked value of s
0 1
1 P1 P(s) P1 0
2 P1 V(s) 1
3 P2 P(s) P2 0
4 P3 P(s) P2 P3 0
5 P4 P(s) P2 P3, P4 0
6 P2 V(s) P3 P4 0
7 P3 P4 0
8 P3 V(s) P4 0
9 P4 V(s) 1



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

17management functions

interesting problems

Operating Systems

Monitors

� Monitors
� The idea comes from

physical monitors – you can
only display something at a
time on your computer’s
monitor

� Implementing semaphore
using monitor

� When a process occupies
the monitor, OS executes
down() to block and stop
Other processes to access
to the monitor

� When a process is leaves,
OS executes up(), to
allow one of processes
blocked to use the
monitor



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

18interesting problems

Operating Systems

interesting problems



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

19interesting problems

Operating Systems

INTERESTING PROBLEMS - starvation

� Dining philosophers problem (also known as starvation
problem)

� The scenario:
� Five philosophers sit at a round table and in the centre lies a

plate of spaghetti that is available to everyone
� There are chopsticks on the table – one between each

philosopher
� The philosophers can have three status

� Think (because they are philosophers)
� Eat (as they are hungry) and
� Wait (two chopsticks are need to eat spaghetti but only five

available)



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

20interesting problems

Operating Systems

INTERESTING PROBLEMS - starvation

� The problem
� P1 picks C1 and C5 and starts to eat, P3 follows P1 by

picking up C2 and C3, P2 has to wait even if he is hungry
(because no chopsticks beside him is available

� P3 finished eating and resuming thinking, P1 is still eating,
although C2 becomes available for P2, he is not allowed to
pick it up – this is because otherwise it will soon end up with
each philosopher holding one chopstick (no one can eat)



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

21interesting problems

Operating Systems

INTERESTING PROBLEMS - starvation

� � P2 has to wait for C1 which is held by P1
� For some reason, P3 becomes hungry again, so he simply

picks up C2 and C3 and eat
� Poor P2 has no chopstick available at all
� Now P1 decides to think and C1 becomes available to P2,

however, P2 is not allowed to pick up C1 because C2 is not
available

� P2 has to wait for C2 which is held by P3
� As long as P1 and P3 alternate their use of chopsticks

(resources) P2 will never have an opportunity to eat



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

22interesting problems

Operating Systems

INTERESTING PROBLEMS - starvation

� Controlling philosophers
� Three groups: thinking (T), hungry (H), and eating (E)
� If philo i is H and neither of his neighbour is E, then he can

become E
� If he returns to T, OS tests his neighbours to see if they want

to change to E

� Code:



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

23interesting problems

Operating Systems

INTERESTING PROBLEMS - producer-
customer

� Producer-customer problem
� One process who produces data is called a producer
� The other process who uses the data is called a customer
� The producer can produce data at the time when the

customer has no intention to use or the amount of data is
more than enough for the customer for using at a time

� Solution
� Develop a buffer in between the producer and the customer
� Both can access it but not at the same time



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

24interesting problems

Operating Systems

INTERESTING PROBLEMS - producer-
customer

� Producer-customer problem
� CPU can generate output data much faster than a printer can

print in
� need a buffer to temporarily store data from CPU, retrieved

at an appropriate speed by the printer
� buffer can only hold a finite amount of data
� synchronisation process must delay the CPU from generating

more data while the buffer is full (and also preventing the
printer from retrieving data when the buffer is empty)

� Implemented by two counting sememphores, one to indicte
number of full positions in buffer, one to indicate the number
of empty positions in buffer.

� a third semephore (mutex) will ensure mutual exclusion



25

Lecture #8 Critical
Sections

David Goodwin
University of
Bedfordshire

critical sections

management functions

25interesting problems

Operating Systems

INTERESTING PROBLEMS - producer-
customer

� Code


	critical sections
	management functions
	interesting problems

