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Normal-state nodal electronic structure in
underdoped high-Tc copper oxides
Suchitra E. Sebastian1, N. Harrison2, F. F. Balakirev2, M. M. Altarawneh2,3, P. A. Goddard4, Ruixing Liang5,6, D. A. Bonn5,6,
W. N. Hardy5,6 & G. G. Lonzarich1

An outstanding problem in the field of high-transition-temperature
(high-Tc) superconductivity is the identification of the normal state
out of which superconductivity emerges in the mysterious underdoped
regime1. The normal state uncomplicated by thermal fluctuations can
be studied using applied magnetic fields that are sufficiently strong to
suppress long-range superconductivity at low temperatures2,3. Pro-
posals in which the normal ground state is characterized by small Fermi
surface pockets that exist in the absence of symmetry breaking1,4–8 have
been superseded by models based on the existence of a superlattice
that breaks the translational symmetry of the underlying lattice7–15.
Recently, a charge superlattice model that positions a small electron-
like Fermi pocket in the vicinity of the nodes (where the supercon-
ducting gap is minimum)8,9,16,17 has been proposed as a replacement
for the prevalent superlattice models10–14 that position the Fermi pocket
in the vicinity of the pseudogap at the antinodes (where the supercon-
ducting gap is maximum)18. Although some ingredients of symmetry
breaking have been recently revealed by crystallographic studies,
their relevance to the electronic structure remains unresolved19–21.
Here we report angle-resolved quantum oscillation measurements in
the underdoped copper oxide YBa2Cu3O6 1 x. These measurements
reveal a normal ground state comprising electron-like Fermi sur-
face pockets located in the vicinity of the nodes, and also point to an
underlying superlattice structure of low frequency and long wave-
length with features in common with the charge order identified
recently by complementary spectroscopic techniques14,19–22.

The normal ground-state electronic structure revealed by our mea-
surements is summarized in Fig. 1. Quantum oscillations measured in
the contactless electrical resistivity of the underdoped copper oxide YBa2

Cu3O6.56 are shown in Fig. 2a. The prominent oscillatory beat structure
reveals a sizeable frequency spread8,16. Measurements are made as a func-
tion of magnetic field up to 85 T over a wide range of field orientations as
defined by the polar angle h and the azimuthal angle w. This data may be
used to identify characteristics of the momentum-space electronic struc-
ture in the way that, for example, X-ray data may be used to identify the
real-space lattice structure of a crystal. In particular, it can be employed
to identify the correct Fermi surface model23. In the case of underdoped
YBa2Cu3O6 1 x, which has a primitive orthorhombic lattice, Fig. 2b illus-
trates the quasi-two-dimensional electronic structure characterized by a
cylindrical Fermi surface with fundamental neck and belly warping that
would be expected in the absence of a superlattice (Fig. 3a–d). A dis-
tinguishing characteristic of this neck and belly Fermi surface is that it
gives rise to a resonance in the amplitude of quantum oscillations at a
polar angle known as the Yamaji angle23. The resonance in amplitude
is expected to grow with the size of the frequency spread, and its loca-
tion is expected at approximately 60u in YBa2Cu3O6 1 x, given the mea-
sured mean diameter of the cylinder (corresponding to the dominant
quantum oscillation frequency) and the c-axis lattice constant (Fig. 2b, c).
Strikingly, however, despite the sizeable frequency spread of the quan-
tum oscillation spectrum (Fig. 2a), higher angle data in Fig. 2a reveal

the Yamaji resonance anticipated for a fundamental neck and belly Fermi
surface geometry to be absent, pointing to an alternative Fermi surface
geometry. Supporting analyses are shown in the Methods and in Ex-
tended Data Figs 1, 2, 3 and 4.

To arrive at the correct Fermi surface model we are guided by the fol-
lowing key experimental findings: (1) as shown in Fig. 4a, the replace-
ment of the expected Yamaji resonance indeed by an anti-resonance;
(2) as shown in Fig. 4b, the fourfold anisotropy in w dependence of the
quantum oscillation amplitude for different values of h, with a maximi-
zation of quantum oscillation amplitude along the a and b crystallo-
graphic directions and minimization along the diagonal directions, for
example, w 5 45u; and (3) as shown in Fig. 4b, the enhancement in four-
fold anisotropy as a function of azimuthal angle with increasing values
of polar angle h.

While the observed experimental features are in sharp variance with
those expected for a dominant fundamental neck and belly Fermi sur-
face geometry, we find that a dominant staggered twofold Fermi sur-
face with warping maxima along the diagonal directions in momentum
space (Fig. 1a–c, Fig. 3f–h) predicts the experimental features that we
have observed. The simulation of the quantum oscillation waveform
(Fig. 3h and 4 and Methods) shows that such a staggered twofold Fermi
surface geometry yields first an anti-resonance in the quantum oscil-
lation amplitude at a special value of h along the diagonal directions in
w, second, a fourfold anisotropy in the quantum oscillation amplitude as
a function of w that is minimized along the diagonal directions, and
finally an enhancement in the fourfold anisotropy as a function of w
with increased values of h. Layered materials with examples of both
fundamental neck and belly and staggered twofold Fermi surface geo-
metries are discussed in the Methods.

Simulations of a staggered twofold Fermi surface geometry with mod-
ulation amplitude DFtwofold < 15 T agree well with the measured quan-
tum oscillation data as a function of all three parameters B, h and w
(Fig. 4, Extended Data Table 2). In addition to the amplitude damping
factor for a staggered twofold geometry (Rtwofold

w ), conventional damp-
ing factors are included that are used to describe layered materials, which
arise from thermal smearing, impurity scattering or quenched inhomo-
geneities, Zeeman splitting and magnetic breakdown. The quantum
oscillatory frequency spread is captured by Fermi surface splitting from
a finite bilayer or spin orbit coupling. More details of the simulation are
given in the Methods, Extended Data Figs 2c, 4, 5, 6 and 7 and Extended
Data Tables 1 and 2.

The staggered twofold Fermi surface geometry we observe would not
be expected to dominate within the primitive orthorhombic unit cell of
underdoped YBa2Cu3O6 1 x. Yet just such a geometry would arise from
the unique symmetry of the corner T point in the Brillouin zone of a body-
centred orthorhombic unit cell defined in Figs 1 and 3e–h (see Methods).
At this special corner T point, the twofold in-plane rotational symmetry
alternates by 90u between adjacent symmetry planes. The diagonal ori-
entation of the maximal warping directions of the Fermi surface (shown
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in Figs 1a–c and identified from the azimuthal anisotropy in Fig. 4b),
reveals the new body-centred orthorhombic Brillouin zone to be oriented
concentrically with the original primitive orthorhombic Brillouin zone,
and to be defined by orthogonal ordering wavevectors Q1 and Q2. The

staggered twofold Fermi surface pockets at the corner T point are there-
fore located in the nodal region of the original Brillouin zone. A nodal
Fermi surface pocket contained within the reconstructed Brillouin zone
is not only consistent with the present measurements, but also with the
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low observed value of linear specific heat coefficient in high magnetic
fields6 and strong chemical potential oscillations inferred from previous
quantum oscillation studies17.

We now consider the possible origin of the superlattice responsible
for the above nodal staggered twofold Fermi surface pockets, which
emerge from a reconstruction of a large Fermi surface determined from
band structure, characteristic of the original primitive orthorhombic
lattice in the normal state8. Numerous proposals for superlattices in the
copper oxides have been put forward, for example in refs 1, 7–16 and
24–29. Of particular relevance to our observations is the charge order
recently detected in short-range or long-range forms in YBa2Cu3O6 1 x

by techniques such as X-ray diffraction19,20, ultrasound21, nuclear mag-
netic resonance14 and optical reflectometry22. These observations point
to a superlattice characterized by the same ordering wavevectors Q1

and Q2 identified by our measurements and defined in Fig. 1, with the
superlattice scaling parameters d1 < d2 < 0.3, and anisotropic ampli-
tudes in some cases. We note that for Fermi surface reconstruction, the
superlattice need not be strictly long-range or static, but it must not be
fluctuating over a range much smaller than the cyclotron radius, nor
with a frequency much larger than the cyclotron frequency.

Numerical calculations indeed show that this type of charge order
can give rise to nodal Fermi surface pockets similar to those observed in
our measurements, potentially accompanied by antinodal gaps in the
electronic excitation spectrum8,9,24 (schematic shown in Extended Data
Figs 6 and 7). Furthermore, the resulting nodal electron-like Fermi sur-
face pockets yield the observed negative sign of Hall coefficient in the
accessed high magnetic field limit (see Methods and refs 8–10) in con-
trast to the positive value expected for the large unreconstructed Fermi
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Figure 4 | Quantum oscillation data compared
with a staggered twofold Fermi surface model.
a, Real component of the cross-correlation between
the quantum oscillation data over a fixed range of
Bcosh for a range of measured h angles with a
simple sinusoid cos(2pF/Bcosh 1 w). F and w are
matched to the periodicity and phase of the
oscillations at h 5 38u, where a single frequency
dominates the measured quantum oscillations. The
dotted lines show the expected constant magnitude
of the maximum and minimum amplitude
for an ideal two-dimensional Fermi surface. A
suppression in amplitude (anti-resonance) instead
of a Yamaji resonance is observed as a function
of h (see Methods and Extended Data Fig. 2).
b, Fourfold anisotropy in the w-dependent
amplitude of quantum oscillations for h 5 45u and
60u. c, Measured quantum oscillations shown in
Fig. 2 (black lines). The magenta lines in a and
b show a simulation of Rtwofold

w Rs and the coloured
lines in c show a simulation of Ytwofold respectively
for a staggered twofold Fermi surface model
(for a value of DFtwofold 5 15 T). For definitions of
the staggered twofold damping factor Rtwofold

w , the
spin damping factor Rs, the quantum oscillation
function Ytwofold, the modulation amplitude of
staggered twofold geometry DFtwofold, and
parameter values used for the simulation,
see the Methods.

Figure 3 | Fermi surface and geometry-dependent quantum oscillation
damping for different crystal structures. a–d, Primitive orthorhombic
structure. e–h, Body-centred orthorhombic structure. Shown are the real-space
unit cells (a, e), cuts through the Brillouin zone showing local symmetries about
the vertical lines (b, f), location of the warped Fermi surface within the Brillouin
zone in which symmetry points C, Z, M and T are indicated (c, g), and the
angular dependences of the corresponding quantum oscillation amplitude
damping factor Rw (d, h). The amplitude for the fundamental warping
(d) exhibits a maximum versus h —known as the Yamaji resonance—in
contrast to an anti-resonance for the staggered twofold warping (h). Rw has been
simulated using parameters in Extended Data Table 1 and a representative value
of B 5 62 T. For the definition of Rw and further analyses including the spin
factor Rs, see the Methods.
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surface in the absence of the superlattice. Our measurements do not
distinguish between charge order with s-wave symmetry and uncon-
ventional symmetry such as d-wave symmetry (that is, bond order).
Furthermore, they are compatible with charge modulation components
(of wavevectors Q1 and Q2) not only of similar amplitudes, but also of
significantly different amplitudes, as in a nearly uniaxial structure107.

The strength of magnetic fields in which the present measurements
were carried out (up to 85 T in Fig. 2a and up to 100 T in Extended Data
Fig. 3b) is adequate to suppress long-range superconducting order, and
thus to reveal the normal ground state underpinning superconductivity
in underdoped YBa2Cu3O6 1 x. The resulting normal ground state is a
Fermi liquid characterized by staggered twofold Fermi pockets that
emerge naturally from a long-range static or short-range slowly fluctu-
ating superlattice defined by ordering wavevectors Q1 and Q2 (Fig. 1),
support for which is found from recent complementary experiments14,19–21.
Superconductivity may therefore be viewed as emerging from the pair-
ing of quasiparticles on Fermi pockets we locate in the nodal region of
momentum space. Our finding clarifies observations from complemen-
tary experiments using, for example, Raman spectroscopy30, which show
that in the underdoped regime, Bogoliubov quasiparticles are confined
to momentum space islands around the nodal regions of the Brillouin
zone. This is in sharp contrast with the emergence of Bogoliubov qua-
siparticles from both nodal and antinodal regions of the starting large
unreconstructed Fermi surface in the overdoped regime.

METHODS SUMMARY
Quantum oscillations in the electrical resistivity were measured using a contactless
technique on a high quality de-twinned single crystal of YBa2Cu3O6.56 over a wide
range of polar and azimuthal angles, h and w, in magnetic fields up to 85 T and at
1.5 K (Fig. 2a and Extended Data Fig. 1). Measurements up to 100 T at h 5 0 are
presented in Extended Data Fig. 3.

The model used for the quantum oscillation simulations is discussed in the Methods.
Of particular importance here is the Fermi surface geometrical damping or warp-

ing factor, taken to be of the form Rtwofold
w ~J0

2pDFtwofold

B cos h
sin 2wJ2 kF c0=2ð Þtan hð Þ

� �
,

which is expected for a staggered twofold Fermi surface geometry in a body-centred
weakly-orthorhombic unit cell (Fig. 1a, b). Here kF < 0.13 Å21 (corresponding to
the dominant frequency F0 < 530 T) is the average radius of the Fermi surface
pockets in the basal plane, DFtwofold is a measure of the magnitude of the staggered
twofold warping and J0 and J2 are the zeroth and second-order Bessel functions,
respectively. The results of the simulation are shown and explained in Fig. 4 and in
Extended Data Table 1.

For a Fermi surface with fundamental neck and belly warping geometry in a
primitive weakly orthorhombic unit cell (see Fig. 2b), a different geometrical damp-

ing factor Rneck{belly
w ~J0

2pDFneck{belly

B cos h
J0 kFc tan hð Þ

� �
is required. The results of a

simulation using Rneck{belly
w with model parameters listed in Extended Data Table 3

are shown in Fig. 2c and Extended Data Fig. 2b and c. The striking difference in the
angular dependence of the quantum oscillation waveform corresponding to
Rneck{belly

w and Rtwofold
w (illustrated in Fig. 3d and h, respectively) is shown in

Extended Data Fig. 2.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.

Received 12 January; accepted 2 April 2014.

Published online 15 June 2014.

1. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-
temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

2. Grissonnanche, G. et al. Direct measurement of the upper critical field in cuprate
superconductors. Nature Commun. 5, 4280 (2014).

3. Wang, Y.et al.High fieldphase diagram of cuprates derived from the Nernst effect.
Phys. Rev. Lett. 88, 257003 (2002).

4. Yang, K.-Y., Rice, T. M. & Zhang, F.-C. Phenomenological theory of the pseudogap
state. Phys. Rev. B 73, 174501 (2006).

5. Anderson, P. W. et al. The physics behind high-temperature superconducting
cuprates: the ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16,
R755–R769 (2004).

6. Riggs, S. C. et al. Heat capacity through the magnetic-field-induced resistive
transition in an underdoped high-temperature superconductor. Nature Phys. 7,
332–335 (2011).

7. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an
underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

8. Sebastian, S. E., Harrison, N. & Lonzarich, G. G. Towards resolution of the Fermi
surface in underdoped high-Tc superconductors. Rep. Prog. Phys. 75, 102501
(2012).

9. Harrison, N. & Sebastian, S. E. Protected nodal electron pocket from multiple-Q
ordering in underdoped high temperature superconductors. Phys. Rev. Lett. 106,
226402 (2011).

10. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc
superconductors. Nature 450, 533–536 (2007).

11. Chakravarty, S. & Kee, H.-Y. Fermi pockets and quantum oscillations of the Hall
coefficient in high-temperature superconductors. Proc. Natl Acad. Sci. USA 105,
8835–8839 (2008).

12. Millis, A. J. & Norman,M. R. Antiphase stripe order as the originof electronpockets
observed in 1/8-hole-doped cuprates. Phys. Rev. B 76, 220503 (2007).

13. Yao, H., Lee, D. H.& Kivelson, S. A. Fermi-surface reconstruction ina smectic phase
of a high-temperature superconductor. Phys. Rev. B 84, 012507 (2011).

14. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature
superconductor YBa2Cu3Oy. Nature 477, 191–194 (2011).

15. Chen, W.-Q., Yang, K.-Y., Rice, T. M. & Zhang, F. C. Quantum oscillations in
magnetic-field-induced antiferromagnetic phase of underdoped cuprates:
application to ortho-II YBa2Cu3O6.5. Europhys. Lett. 82, 17004 (2008).

16. Sebastian, S. E. et al. Quantum oscillations from nodal bilayer magnetic
breakdown in the underdoped high temperature superconductor YBa2Cu3O61x.
Phys. Rev. Lett. 108, 196403 (2012).

17. Sebastian, S. E. et al. Chemical potential oscillations from nodal Fermi surface
pocket in the underdoped high-temperature superconductor YBa2Cu3O61x.
Nature Commun. 2, 471 (2011).

18. Hossain, M. A. et al. In situ doping control of the surface of high-temperature
superconductors. Nature Phys. 4, 527–531 (2008).

19. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in
(Y,Nd)Ba2Cu3O61x. Science 337, 821–825 (2012).

20. Chang, J. et al. Direct observation of competition between superconductivity and
charge density wave order in YBa2Cu3O6.67. Nature Phys. 8, 871–876 (2012).

21. LeBoeuf, D. et al. Thermodynamic phase diagram of static charge order in
underdoped YBa2Cu3Oy. Nature Phys. 9, 79–83 (2013).

22. Hinton, J. P. et al. A new collective mode in YBCO observed by time-domain
reflectometry. Phys. Rev. B 88, 060508 (2013).

23. Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe,D. & Ohmichi, E.Quasi-two-
dimensional Fermi liquid properties of the unconventional superconductor
Sr2RuO4. Adv. Phys. 52, 639–725 (2003).

24. Li, J.-X., Wu, C.-Q. & Lee, D.-H. Checkerboard charge density wave and pseudogap
of high-Tc cuprate. Phys. Rev. B 74, 184515 (2006).

25. Wang, Y. & Chubukov, A. V. Charge order and loop currents in hole-doped
cuprates. Preprint at http://arXiv.org/abs/1401.0712 (2014).

26. Castellani, C., Di Castro, C. & Grilli, M. Singular quasiparticle scattering in the
proximity of charge instabilities. Phys. Rev. Lett. 75, 4650–4653 (1995).

27. Hayward, L. E., Hawthorn, D. G., Melko, R. G. & Sachdev, S. Angular fluctuations of a
multi-component order describe the pseudogap regime of the cuprate
superconductors. Science 343, 1336–1339 (2014).
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METHODS
Experimental details. High quality detwinned single crystals of YBa2Cu3O6.56 of
dimensions 0.5 3 0.8 3 0.1 mm3 used in this study were grown and prepared at the
University of British Columbia31. Quantum oscillations were measured at the National
High Magnetic Field Laboratory (Los Alamos and Tallahassee) using the contactless
resistivity technique (described elsewhere32,33). The sample and the proximity detector
oscillator coil to which it is coupled were rotated in situ through different polar (h) and
azimuthal (w) angles before each magnetic field pulse extending to 65 T or 85 T.
Quantum oscillation measurements for h 5 0 were extended to 100 T, in the regime
where long-range superconductivity is destroyed at low temperatures2,3,34,35. Addi-
tional azimuthal angle dependences were measured using a two-axis goniometer in
the 45 T direct current hybrid magnet. In all cases the sample temperature was main-
tained close to T < 1.5 K throughout the experiment by direct immersion in super-
fluid 4He. A worm drive rotator powered by a stepper motor at room temperature
was used for sample rotation, with a secondary angular calibration provided by a
pancake projection coil wound in the plane of the sample. For the pulsed-field data,
the measured component of the applied magnetic induction Bcosh (where B < m0H)
projected along the crystalline c axis shown in Extended Data Fig. 1 yields an uncer-
tainty of approximately 0.2u or less in the sample orientation.

The polar angles accessed in the rotation study shown in Figs 2c and 4a and Ex-
tended Data Figs 1 and 2 are h 5 0u, 1.3u, 11.3u, 12u, 16.3u, 18u, 21.3u, 26.3u, 31.3u,
36.3u, 38u, 41.3u, 45.2u, 46.3u, 48u, 49u, 49.4u, 50.1u, 50.6u, 51.4u, 51.5u, 52u, 52.3u,
52.5u, 52.9u, 53.1u, 54.4u, 54.9u, 55.5u, 56u, 56.2u, 256.95u, 57.2u, 257.4, 258.15u,
58.2u, 259.4u, 59.6u, 60.6u, 61.2u, 261.4u, 61.7u, 62.5u, 62.6u, 262.7u, 263.2u, 63.4u,
63.7u, 264.1u, 64.5u, 65.5u, 66u, 66.3u, 68.1u, 69.4u and 70.6u. Negative h angles refer
to a measured equivalent (180 2 jhj) angle, as shown in Extended Data Fig. 1.
Absence of experimental Yamaji effect in underdoped YBa2Cu3O6 1 x. Extended
Data Fig. 2a shows a compilation of quantum oscillations measured for YBa2Cu3O6.56

(also shown in Figs 2a and 4c). In previous experiments over a limited range of
magnetic field and orientation (indicated by thick grey dashed line in Extended
Data Fig. 2b)36, experimental data was compared with a simulated quantum oscil-
lation waveform from two cylinders with fundamental neck and belly geometry:

Yneck{belly~
X

j

aj RsRDRT Rw½ �j sin
2pFj

B cos h
{2pcj

� �
ð1Þ

where j 5 1, 2 for two cylinders, and the relative amplitudes aj, phases cj , quantum
oscillation frequencies Fj, and fundamental neck and belly warpings DFneck–belly,j

were considered as independent parameters36. The spin damping factor Rs, Dingle
damping factor RD, thermal damping factor RT, and the geometrical damping, or
warping factor Rw are defined in the following sections. In this case, the quantum
oscillatory frequency spread is modelled by neck and belly warping, which predicts
a dramatic enhancement in quantum oscillation amplitude at a special Yamaji polar
angle of approximately 60u. This Yamaji resonance is a consequence of all the orbits
becoming degenerate at this special angle23,37. Simulations made using parameters
from ref. 36 (shown in Extended Data Table 3) are shown in Fig. 2b and c and Ex-
tended Data Fig. 2b and c. In the present experiment in underdoped YBa2Cu3O6 1 x,
where an extended magnetic field and polar and azimuthal angular range are
accessed, despite the sizeable frequency spread, we unexpectedly find the absence
of any quantum oscillation amplitude enhancement in the vicinity of a polar Yamaji
angle of approximately 60u, with instead a suppression of the quantum oscillation
amplitude at a special polar angle in the vicinity of 60u.
Simulations using staggered twofold Fermi surface geometry. Figure 4 shows a
simulation of a Fermi surface with staggered twofold geometry that agrees with the
experimental quantum oscillation waveform and amplitude remarkably well over
the entire experimental range in B, h and w. The simulation uses a quantum oscil-
lation function of the form expected for a bilayer-split nodal Fermi surface with
staggered twofold warping (see Fig. 1a–c)

Y twofold~a0

X6

j~1

Nj RwRMBRsRDRT½ �jcos
2pFj

Bcosh
{p

� �
ð2Þ

Here, a0 is the amplitude prefactor (which is taken to be the same for all orbits),
RMB is the magnetic breakdown amplitude reduction factor to be defined in the
following sections, and Nj counts the number of instances the same orbit is
repeated within the magnetic breakdown network. In our model, Rw, RD and RT

are taken as the same for all orbits.
Conventional damping parameters included in simulations. Quantum oscil-
lation simulations include conventional thermal, Dingle, and spin damping fac-
tors of the same form used for previous comparisons with quantum oscillations
measured in the underdoped copper oxides and other layered families of
materials7,8,10,16,17,32,36,38–53. The thermal damping factor is given by

RT~
Xj

sinhXj

(where Xj~2p2kBm�hjT
.
BeB), and the Dingle damping factor is given by

RD~exp {
Lj

Bcosh

� �

(where Lj is a damping factor)38. The spin damping factor is given by

Rs~cos
p

2

m�hj

me

� �
g�hj

� �

where m�hj~m�Ej

.
cosh for a given orbit ‘j’ is determined by the projection Bcosh of B

perpendicular to the planes (that is, the projection parallel to the ĉ axis in YBa2Cu3O6 1x).

The anisotropic effective g-factor has the form g�hj~g�Ej

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hz

1
jj

sin2 h

s
, which can

be renormalized with respect to the electron g-factor by spin orbit coupling54, many-
body effects55 and the presence of small bandgaps56,57. Here, m�Ej and g�Ej refer to the

respective values of m�hj and g�hj when B is parallel to the crystalline ĉ axis, while

jj~
g�E
g�\

� �2

is the anisotropy in the spin susceptibility. Because of the multiple quan-

tum oscillation frequencies, it is not possible to identify the g-factors uniquely. The
values of g�j and j�j here represent parameters used for the simulation.

The quantum oscillatory frequency spread is modelled by a splitting of the Fermi
surface, which can arise not only by tunnelling between bilayers16,58, but also, for
example, via spin-orbit effects under certain conditions59. This leads to two starting
frequencies that are denoted (for reasons that will become clear below) as F0 2

2Fsplit and F0 1 2Fsplit (ref. 16). Magnetic breakdown tunnelling (in the nodal
region where the splitting is smallest) can then give rise to a series of combination
frequencies. Here we consider cyclotron orbits corresponding to a nodal bilayer-
split Fermi surface from charge ordering shown in Extended Data Figs 6 and 7
(modelled in refs 8, 9, 16, 60 and 61). The combination frequencies from the Fermi
surface orbits depicted in Extended Data Fig. 7 are listed in Extended Data Table 2.
For a small magnetic breakdown gap, a high tunnelling probability P causes the
orbit of frequency F0 to dominate the quantum oscillation amplitude (as seen in
Extended Data Fig. 3a). The beat structure in the quantum oscillation simulation is
caused primarily by the superposition of the dominant F0 oscillations and weaker
amplitude oscillations of frequency F0 2DFsplit and F0 1DFsplit. Oscillations of
frequency F0 2 2DFsplit and F0 1 2DFsplit are expected to be even more strongly
attenuated. The magnetic breakdown amplitude reduction factor has the form

RMB~ i
ffiffiffi
P
p� �ln ffiffiffiffiffiffiffiffiffiffi

1{P
p� �lg

in which ln and lg count the number of magnetic breakdown tunnelling and Bragg
reflection events en route around the orbit, having transmitted amplitudes i

ffiffiffi
P
p

andffiffiffiffiffiffiffiffiffiffi
1{P
p

respectively. The magnetic breakdown probability is given by P 5 exp(2B0/
Bcosh), where B0 is the characteristic magnetic breakdown field38.
Angle-dependent damping term from Fermi surface warping geometry. The
Fermi surface warping geometry in layered materials leads to a quantum oscil-
lation damping factor with an azimuthal (w) and polar (h) angular variation that is
very sensitive to the energy band dispersion perpendicular to the planes (known as
the ‘warping’ of the Fermi surface). The amplitude damping factor Rw, which arises
as a consequence of weak Fermi surface warping is obtained by (1) an expansion of
the Fermi surface wavevectors in terms of cylindrical harmonics, and retaining
only the lowest-order harmonic in kz, (2) an evaluation of the Fermi surface cross-
sectional area A(kz, h, w) in a plane normal to the field orientation defined by (h, w)
and crossing kz, and (3) via a kz integration of exp[iBA(kz, h, w)/(eB)].

For the case of a primitive weakly orthorhombic unit cell62 (with lattice dimen-
sion c; see Fig. 3a) in the limit of weak warping, we thus arrive at the quantum oscil-
lation damping factor for leading order neck and belly geometry, in the simplified
form

Rneck{belly
w ~J0

2pDF0

Bcosh
J0 kFc tanhð Þ

� �
ð3Þ

In contrast, for the case of a body-centred weakly orthorhombic unit cell (with
lattice dimension c9 5 2c; see Figs 1d and 3e) in the limit of weak warping, the
quantum oscillation damping factor for leading order staggered twofold geometry
has the simplified form

Rtwofold
w ~J0

2pDF1

Bcosh
sin2wJ2 kF c0=2ð Þtanhð Þ

� �
ð4Þ
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The former has well known examples occurring in materials families including
organic conductors39–41 while the latter occurs at the Brillouin zone corner in
materials families including body-centred tetragonal pnictides51, ruthenates23 and
Tl-based (overdoped) high-Tc superconductors49,52.

Here the effective Fermi wavevector kF (the average radius of the Fermi pocket
in the basal plane) and warping parametersDFn are related to the cylindrical harmonic
expansion parameter kmn defined in ref. 23 by kF 5 k00 and DFn 5Bk00k2n,1/e, as is
appropriate to the leading order, n 5 1, cylindrical harmonic in kz. In this work, we
refer to the amplitude of fundamental neck and belly geometryDF0 as DFneck–belly,
and the amplitude of staggered twofold geometryDF1 asDFtwofold. J0 and J2 are the
zeroth and second-order Bessel functions, respectively. The relevant Fermi surface
geometry depends on the local symmetry in the Brillouin zone. Examples of an
isotropic azimuthal anisotropy for a fundamental neck and belly Fermi surface
geometry and a fourfold azimuthal anisotropy for a staggered twofold Fermi sur-
face geometry are shown in Fig. 3.

While a fundamental neck and belly geometry would be expected to dominate at
all locations in a primitive orthorhombic Brillouin zone, a staggered twofold Fermi
surface geometry would arise from the unique symmetry of the special corner T
point in the Brillouin zone of a body-centred orthorhombic unit cell (shown in
Figs 3f and g and 1a–c). At this corner T point, the twofold in-plane rotational sym-
metry is seen to be rotated by 90u between adjacent symmetry planes. The special
corner point is characterized by a leading order expansion of the Fermi wavenumber

kF kz ,wð Þ~kF wð ÞzDktwofold cos c0=2ð Þkzð Þsin 2wð Þ ð5Þ
in cylindrical harmonics, where kz is the wavenumber along the ĉ axis, c9 5 2c
(Figs 1d and 3e), and the parameterDktwofold is the amplitude of modulation along
the ĉ axis, with the following symmetries: (1) invariance under the joint trans-
formation kz R kz 1 2p/c9 and w R w 1 90u, (2) mirror symmetry about kz 5 0
and (3) mirror symmetry about w 5 45u (that is, the nodal planes in YBa2Cu3O6 1 x

shown in Fig. 1a). While this special symmetry of the corner point does not support
a neck and belly geometry, it instead supports a Fermi surface with a staggered
twofold geometry (Figs 1a–c and 3g, and examples from other layered unconven-
tional superconductors23,51,52).

We see from the simulated geometrical quantum oscillation amplitude damp-
ing factor as a function of polar and azimuthal angle that a fundamental neck and
belly geometry and a staggered twofold Fermi surface geometry would exhibit strik-
ingly different angular dependences (shown in Fig. 3a–d and e–h, respectively, sim-
ulated using equations (3) and (4)). A staggered twofold Fermi surface geometry
would yield an amplitude suppression (anti-resonance) in quantum oscillation am-
plitude at a special polar angle, in contrast to the enhancement in quantum oscil-
lation amplitude expected at a special Yamaji polar angle23,37 for a fundamental neck
and belly Fermi surface geometry. Furthermore, while a fundamental neck and belly
Fermi surface would yield an isotropic azimuthal dependence of quantum oscil-
lation amplitude to leading order, a staggered twofold Fermi surface geometry
would yield a fourfold azimuthal dependence of quantum oscillation amplitude to
leading order.
Staggered twofold Fermi surface geometry simulation. Extended Data Table 1
shows the value of parameters used for the quantum oscillation waveform simu-
lated for a staggered twofold Fermi surface using equations (2) and (4), which is
compared with the experimental data in Fig. 4 and Extended Data Figs 2c and 4.
For simplicity, the value of magnetic breakdown field B0, warpingDFtwofold, damp-
ing L and effective mass m�E is taken to be the same for all orbits (enabling us to
drop the subscript j). Furthermore, only two sets of anisotropic g-factors are con-
sidered: orbits F1, F2, F4, F5 and F6, which undergo both magnetic breakdown
tunnelling and finite Bragg reflection (that is, 1 2 P) are approximated to have the
same g-factor g�Ee with anisotropy j

e
. This anisotropy is smaller than for orbits F3,

which show only magnetic breakdown tunnelling without finite Bragg reflection,
and which are approximated to have a common g-factor g�E% with anisotropy jh.
Since it is not possible to identify unique g-factor values given the multiplicity of fre-
quencies, the values of g�j and j�j here represent parameters used for the simulation.

The amplitudes of the F2 and F5 orbits are approximated to be equal, while
experimentally, the amplitude of the F2 orbit is slightly larger in contactless res-
istivity16 and magnetic torque44 measurements, probably due to additional effects
such as small differences in the scattering time or effective mass. We note that the
amplitude of the F2 orbit is significantly larger in c-axis transport experiments36.

We note that in equations (2), (4) and (5) the most general circular Fermi
surface cross-section has been assumed, which is not specific to any Fermi surface
reconstruction model. In order to extract the in-plane Fermi surface topology from
the experimental data, a complete determination of the km,n Fermi wavevectors
would be required, for which future complementary experiments to the present
quantum oscillation experiments are indicated.
Additional angle-dependent damping factors considered. The inclusion of damp-
ing of the quantum oscillation amplitude from a finite lifetime of the quasiparticles

would further not be expected to alter the conclusion of a staggered twofold Fermi
surface geometry. This damping can be described in terms of a complex dispersion
relation or effectively in terms of complex Fermi wavevectors, which are consistent
with the symmetry of the full lattice potential both in their real and imaginary parts.
Here the effect of quasiparticle scattering lifetime over the Fermi surface is included
in terms of an imaginary component of the Fermi wavevector. The anisotropy of
the amplitude arising from a complex Fermi surface (defined by Fermi wavevectors
with real and imaginary parts) is expected to be the same as the original real Fermi
surface. If the imaginary part of the warping were to dominate the real part then the
amplitude damping factors would be given by expressions similar to equations (3)
and (4) to leading order in warping, but with the outer Bessel function J0 replaced
by the modified Bessel function I0, and DF0 and DF1 replaced by analogous para-
meters that measure the degree of warping. Our conclusion wherein the quantum
oscillatory frequency spread is inconsistent with a fundamental neck and belly warp-
ing remains unchanged for the reasons that (1) for a real part of neck and belly warp-
ing sizeable enough to capture the frequency spread, a Yamaji resonance would
occur, contrary to observation, whereas (2) if the real part were negligible then the
amplitude would be governed by the very different function I0, which is also con-
trary to experimental observation.

Other amplitude damping factors that arise from random quenched sample
inhomogeneities or magnetic field inhomogeneities would not be expected to
show the symmetries of the underlying lattice. Further damping factors such as
additional damping within the vortex regime, or a damping factor of the form
exp(21/(cosh)a 2 1) where a is a variable parameter (after ref. 49) have been
considered. However, such damping factors would yield an increasing amplitude
suppression with increase in polar angle, and hence do not provide an explanation
for the observed anti-resonance in quantum oscillation amplitude in the vicinity of
a special polar angle at approximately 60u in underdoped YBa2Cu3O6.56.
Negative Hall effect from nodal Fermi surface pocket from charge order. Of
the various models proposed for the normal ground state of the underdoped copper
oxides1,4,5,7–15,24–29,48,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,
examples of Fermi surface models that have been proposed include
refs6–13,15–17,36,48,53,60,61,63,93,94,95,96,97,98,99,100. An accurate Fermi surface model would
need to explain the observation of quantum oscillations in underdoped YBa2Cu3

O6 1 x on a background of a negative Hall coefficient RH (ref. 10), given that a
positive Hall coefficient would be expected for the hole carrier doping in under-
doped YBa2Cu3O6 1 x. In various previously proposed interpretations, the nega-
tive Hall effect is yielded by electron pockets at the antinodal locations of the
Brillouin zone8,11–13,53. Our present work that locates the small Fermi pockets in
the vicinity of the nodal regions of the Brillouin zone, however, renders these inter-
pretations unlikely.

The nodal staggered twofold Fermi pocket in the new reconstructed body-
centred orthorhombic Brillouin zone that we propose to arise from staggered
charge order (schematic in Extended Data Figs 6 and 7; refs 8, 9, 16, 60 and 61),
has opposite polarity to the original large Fermi surface in the starting primitive
orthorhombic Brillouin zone in underdoped YBa2Cu3O6 1 x. In the high magnetic
field limit, the Hall conductivity from a Fermi surface pocket—rather than being
determined by the Fermi surface curvature, as would be the case in low magnetic
fields101—would instead be expected to be proportional to the number of states
contained within that pocket, with a sign that is negative for filled states and
positive for empty states102,103. A negative Hall coefficient would therefore arise
from the nodal staggered twofold Fermi surface from charge order8,9,16,60,61, pro-
viding an explanation for the previous puzzling observation10.
Low quantum oscillation frequency. Very slow quantum oscillations are further
seen over a large magnetic field range in contactless electrical resistivity measure-
ments (Extended Data Fig. 3b). The separation between observed oscillation max-
ima (lower inset to Extended Data Fig. 3b) corresponds to a frequency of 90 1/2
10 T.

A property of systems exhibiting magnetic breakdown is the occurrence of Stark
quantum interference effects in electrical transport104,105. Quasiparticles that encoun-
ter the magnetic breakdown junction (indicated in magenta in the upper inset of
Extended Data Fig. 3) can take two possible paths (that is, the inner orbit or the
outer orbit), depending on whether or not magnetic breakdown tunnelling occurs.
When the quasiparticles recombine at a second magnetic breakdown junction they
acquire a relative difference in Onsager phase (Dw 5 2pDF/B), which is propor-
tional to the difference in k-space area between the two paths. Because this area is
not a closed orbit, it does not yield quantum oscillations in thermodynamic quant-
ities such as the magnetization or heat capacity—however, interference between the
two paths can give rise to oscillations in electronic transport properties such as the
electrical resistivity, or thermal conductivity. The simulation of the charge order
model made using parameters in Extended Data Tables 1 and 2 yields DF < 90 T
for the frequency corresponding to the small difference in area between the two
magnetic breakdown junctions suggesting the association of the observed low
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quantum oscillation frequency with the Stark quantum interference effect104. Alter-
natively, this low frequency could correspond to the small hole pocket predicted in
ref. 107. The existence of a small hole pocket in addition to the nodal electron pocket
discussed in the main text provides one possible explanation for the observed
oscillatory component of the Hall resistivity7,10.
Anisotropy between in-plane and inter-plane effective hopping. The velocity
anisotropy corresponding to a staggered twofold Fermi surface geometry may be
estimated by means of a quasi-two-dimensional energy band dispersion of a form
consistent with the order of expansion in cylindrical harmonics in equation (4). In
cylindrical coordinates (k, w, kz) and to an additive constant, this dispersion rela-
tion near the Fermi surface can be expressed in the form

e~
B2k2

F

2m�
z2t� cos kz c0=2ð Þsin 2w

where the magnitude of the interlayer dispersion varies around the circumference.
Here m* is an in-plane effective mass, kF is the effective Fermi wavevector, and t* is
a c-axis effective hopping parameter.

The ratio of the in-phase Fermi velocity vjj to c-axis root mean square velocity
vH is then

vE

v\
~

F0

DFtwofold

� �
4

kFc

� �

where DFtwofold
	

F0~2t�
	

B2k2
F

	
2m�


 �
. Taking F0 < 530 T,DFtwofold < 15 T, kF~ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eF0=B
p

<0:13 A{1 and c < 11.7 Å, the velocity anisotropy ratio vjj/vH is of the
order of 100, a large value consistent with a nodal location of the Fermi surface
pocket, given that the interlayer hopping is expected to be weakest in this region of
the Brillouin zone62. Interestingly, the velocity anisotropy ratio is of a similar order
of magnitude as the conductivity anisotropy ratio inferred for optical conductivity
measurements in the pseudogap regime106.

The correlation length of the associated superlattice structure19,20 is required to
be similar to or greater than the extent of motion of the cyclotron orbit in the
interlayer direction, for our analysis arriving at the Fermi surface geometry in this
work. The large anisotropy in velocity between in-plane and interlayer directions
means that the cyclotron orbits in real space traverse an interlayer distance of only
about 1% of the in-plane cyclotron orbit radius, placing us in the required limit.
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Extended Data Figure 1 | Measured projection of the magnetic field along
the crystalline c axis of the sample. Circles indicate the maximum Bcosh
measured at 65 T (cyan) and 85 T (red), obtained by means of a projection coil,
while the dashed lines represent fits to a cosine function. The angular error is
less than 0.2u for h # 66u and approximately 0.2u for 68u# h # 71u. h 5 0u,
1.3u, 11.3u, 12u, 16.3u, 18u, 21.3u, 26.3u, 31.3u, 36.3u, 38u, 41.3u, 45.2u, 46.3u,
48u, 49u, 49.4u, 50.1u, 50.6u, 51.4u, 51.5u, 52u, 52.3u, 52.5u, 52.9u, 53.1u, 54.4u,
54.9u, 55.5u, 56u, 56.2u, 256.95u, 57.2u, 257.4u, 258.15u, 58.2u, 259.4u,
59.6u, 60.6u, 61.2u, 261.4u, 61.7u, 62.5u, 62.6u, 262.7u, 263.2u, 63.4u, 63.7u,
264.1u, 64.5u, 65.5u, 66u, 66.3u, 68.1u, 69.4u and 70.6u. Negative h angles refer to
a measured equivalent (180 2 | h | ) angle as shown.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 2 | Experimental quantum oscillations for different
angles compared with simulations for a neck and belly model. a, Measured
oscillations in the contactless resistivity. b, Simulated oscillations at the same
angles and fields as a for two Fermi surface cylinders exhibiting a fundamental
neck and belly warping, for parameters used in ref 36 (listed in Extended Data
Table 3) to simulate the restricted experimental range within the dashed line. Data

in a and simulations in b have been scaled by exp
100 T
B cos h

for visual clarity.

c, Symbols represent the absolute value of the cross-correlation between the

quantum oscillation data in a with a simple sinusoid exp i
2pF

B cos h

� �
. F is

matched to the periodicity of the oscillations at h 5 38u, where a single frequency
dominates the measured quantum oscillations. Coloured lines indicate a
simulation proportional to RwRs for a staggered twofold model using parameters
in Extended Data Table 1 (magenta), and a neck and belly model using
parameters from ref. 36 in Extended Data Table 3 (red). While the anti-resonance
in the vicinity of h 5 60u yielded by the staggered twofold model is in good
agreement with the experimental data, the striking Yamaji resonance in
the vicinity of h 5 60uyielded by the neck and belly model is in marked contrast to
experiment.
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Extended Data Figure 3 | Quantum oscillations up to 100 T. a, Schematic
illustration of the small and large Fermi surface pocket sizes (and quantum
oscillation Fourier frequencies) in underdoped YBa2Cu3O6 1 x and overdoped
Tl2Ba2CuO6 1 d, respectively16,52. b, Contactless electrical resistivity of
YBa2Cu3O6.56 measured to 100 T, showing the resistive transition (at
approximately 20 T) and quantum oscillations. The dominant quantum
oscillations with a frequency of 530 T can be seen to be superimposed on slowly

varying oscillations (red line), which we extract in the lower inset by subtracting
the dominant oscillations and a linear background. The slowly varying
oscillations are consistent with a low frequency of 90 6 10 T. The upper inset
shows the bilayer-split pockets expected for charge order in which the
difference in area between two magnetic breakdown junctions corresponds to a
frequency of approximately 90 T.
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Extended Data Figure 4 | Contour representation of a staggered twofold
Fermi surface model compared to the experimental data. a, Contour plot of
the simulated quantum oscillation amplitude for a staggered twofold Fermi
surface geometry represented by equations (2) and (4), using parameters in
Extended Data Table 1 and shown in Fig. 4c. b, Contour plot of experimentally

measured quantum oscillation amplitude; good agreement is seen with the
model in a. The quantum oscillation amplitude is indicated by the colour scale
(in arbitrary units) in the reciprocal field-angle plane; for clarity the ordinate is
given as tanh.
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Extended Data Figure 5 | Cross-correlation measured over different field
ranges, compared to simulations for a staggered twofold Fermi surface
geometry. Real component of the cross-correlation between the quantum
oscillation data over fixed ranges of Bcosh for a range of measured h angles, with
a simple sinusoid cos(2pF/(Bcosh) 1 w). F and w are matched to the periodicity
and phase of the oscillations at h 5 38u, where a single frequency dominates
the measured quantum oscillations. Black lines indicate the simulation
(proportional to RwRs), where DFtwofold < 15 T is the depth of the modulation,
while square symbols indicate the experimental cross-correlation.
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Extended Data Figure 6 | Schematic of a nodal Fermi surface from charge
order that is staggered perpendicularly to the bilayers. a, Reconstruction of
the Brillouin zone, with one instance of the pocket location indicated in the
vicinity of the ‘T’ point in relation to the original Fermi surface (purple) and
nodes in the superconducting wavefunction (from refs 8, 9, 60 and 61). Here the
concentric arrangement of Fermi surfaces arises from bilayer splitting. We note

that the in-plane shape of the Fermi pocket shown here is an illustration based
on a non-interacting model calculation in refs 8, 9, 60 and 61. b, A three-
dimensional view of a. While this schematic assumes achirality, a chiral model
is not ruled out, as for instance proposed in ref. 87, where the form of order
breaks mirror symmetry within each plane.
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Extended Data Figure 7 | Schematic of the Brillouin zone cross-section,
showing magnetic breakdown orbits in a charge ordering scheme. A cut
through the kz 5 0 plane of the Brillouin zone shows the six possible orbits
resulting from magnetic breakdown tunnelling in a bilayer charge ordering
scheme16,61, an illustrative Fermi pocket shape similar to Extended Data Fig. 6 is
shown. a, The two Fermi surface cross-sections of frequency F1 5 F0 2 2DFsplit

and F6 5 F0 1 2DFsplit that can result from bilayer splitting with in-plane

ordering wavevectors Qjj1~2p +
d1

a
,0

� �
and Qjj2~2p 0,+

d2

b

� �
. TheC and T

symmetry points of the body-centred orthorhombic Brillouin zone of the
charge order superstructure are depicted in blue. The gap separating bonding
and antibonding surfaces is expected to be smallest at the nodes62. Panels
b, c and d show the range of possible magnetic breakdown orbits,
F2 5 F0 2DFsplit, F3 5 F0, F4 5 F0 and F5 5 F0 1DFsplit, as listed in Table 2.
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Extended Data Table 1 | Model parameters for a staggered twofold Fermi surface model

Tabulated values used in equations (2) and (4) to simulate the quantum oscillation waveform, yielding excellent agreement with experiment as a function of B, h and w (Fig. 4 and Extended Data Figs 2c and 4). The
effective mass is taken to be a fixed quantity, having been determined independently from temperature-dependent measurements47. The parameters are the same for all the orbits, except for those denoted
by subscripts h and e, which each correspond to a subset of orbits as defined in the text. Because of the multiple frequencies in the model, it is not possible to uniquely identify the g-factor; the values of g�j and j�j
here represent parameters used for the simulation.
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Extended Data Table 2 | Magnetic breakdown amplitude damping

The magnetic breakdown network corresponds to a split Fermi surface geometry from charge order, as
shown in Extended Data Fig. 7. A high magnetic breakdown tunnelling probability P causes the
amplitude of the F1 and F6 orbits to become very weak, as seen in Fig. 3a (ref. 16).
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Extended Data Table 3 | Model parameters for a fundamental neck and belly Fermi surface model

Tabulated values from ref. 36 used in equations (1) and (3) to simulate the waveform of the oscillations in Fig. 2c and Extended Data Fig. 2b and c for two cylinders with isotropic g-factors. The absolute amplitudes
a1 and a2 listed here have been adjusted to match the amplitude in the present experiment.
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