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Observation of surface states on heavily indium-doped SnTe(111), a superconducting topological
crystalline insulator
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The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium
(Sn1−xInxTe), and for low indium content (x = 0.04) it is known that the topological surface states are preserved.
Here we present the growth, characterization, and angle resolved photoemission spectroscopy analysis of samples
with much heavier In doping (up to x ≈ 0.4), a regime where the superconducting temperature is increased nearly
fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist.
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I. INTRODUCTION

Three-dimensional topological insulators constitute a popu-
lar and active topic in contemporary condensed matter physics,
primarily stemming from the exotic properties of the surface
states in these systems. This set of properties can be enriched
even further when combined with superconductivity [1–3].
Notably, such a system represents a quasiparticle approach to
realizing a Majorana fermion. While such a realization is of
considerable importance to the particle physics community, the
interest also extends further into quantum computation, where
Majorana bound states potentially represent a qubit platform.

Accordingly, there is an active branch of research into
candidate materials. One approach is to deposit a super-
conductor on a regular TI, relying on the proximity effect
[3,4]. An alternative is to find bulk-superconducting mate-
rials that natively possess topological surface states; some
examples are CuxBi2Se3 (TC = 3.8 K for x ≈ 0.14) [5–7]
and Sn1−xInxTe [8–13]. For the latter, an indium content of
x = 0.04 yields a critical temperature of 1.2 K and topological
surface states appear to persist [14]. However, it has recently
been realized that the critical temperature can be increased to
4.5 K with a higher In content of x = 0.45 [11]. An immediate
question is whether this increase comes at the cost of the
topological surface states. Specifically, while the lower limit
of cubic SnTe is a confirmed topological crystalline insulator,
the same cannot be said of the lower symmetry upper limit,
tetragonal InTe.

Angle-resolved photoemission spectroscopy (ARPES) can
play an important role here, but the strong p-type doping in
SnTe due to natural Sn vacancies [15] makes this challenging.
The doping becomes even more severe with the introduction
of indium, which acts as a p-type dopant in SnTe [8]. To
date, a Dirac point has never been observed in photoemission
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measurements of pure SnTe, but can nonetheless be inferred
from measurements of heavily lead-doped SnTe [16,17]. Here,
we report the in situ growth and photoemission study of (111)
oriented Sn1−xInxTe films with very high indium contents.
Despite severe p-type doping, we clearly observe that Dirac-
like surface states persist at these high indium contents.

II. METHODS

High-quality (111) oriented surfaces of (Sn,In)Te were
prepared in ultrahigh vacuum (UHV) by a hot-wall epitaxy
method. After ex situ cleaving shortly before entry into UHV,
BaF2 substrates were prepared by being heating to >400 ◦C
for several hours. For deposition, the substrate temperature
was reduced to ≈330 ◦C. Thick films of (Sn,In)Te (≈1.5 μm)
were deposited by single source open hot-wall epitaxy [18],
using ex situ re-crystallized Sn0.6In0.4Te in powdered form as
source material. All subsequent photoemission measurements
were performed without removing the samples from UHV
(<2 × 10−10 Torr). LEED measurements [Fig. 1(a)] confirm
that the (Sn,In)Te films grow with a (111) orientation.

All UV photoemission measurements were performed at the
I4 beam line at the MAX-IV synchrotron facility [19], using
p-polarized photons. The total energy resolution (beamline
and spectrometer) was configured for 25 meV, except for the
higher energy scans in Fig. 2 and 5 (≈85 meV). Fermi level
positions within the films were determined by reference to a
clean tantalum foil on the manipulator. This was found to be
accurate to within only ≈30 meV in most cases, presumably
owing to charging effects from the BaF2 substrate. For high
resolution valence band spectra, the Fermi level position was
revised by careful examination of the intensity distribution in
the spectra.

Owing to its low melting temperature and high vapor
pressure relative to Sn, In has a tendency to segregate to
the surface during film growth (which we discuss in more
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FIG. 1. (a) Low-energy (55 eV) electron diffraction pattern of a
typical film. (b) Normal emission UPS spectra of the 4d core levels of
Sn and In for film 1 (hν = 70 eV) and film 2 (hν = 94 eV); both films
exhibit a large indium signal. (c)–(e) The same core levels excited with
high energy photons (hν = 2–4 keV) for both the Sn0.6In0.4Te source
material and a third thin film preparation. The reduction of the In 4d

peak with increasing photon energy in the thin film is indicative of
indium segregation during film growth. The valence band spectra are
labeled according to the scheme of Kemeny [20], and demonstrate
that the films grow as In-doped SnTe. (e) SIMS profile of film 1,
confirming that indium segregates to the surface.

detail below). In order to understand the depth-dependent
In concentration, complementary hard x-ray photoemission
(HAXPES) measurements were also performed on separate
thin film samples, as well as on the precursor Sn0.6In0.4Te
single crystals. For these measurements, photon energies
of 2.14 and 4 keV were used, with energy resolutions of
≈180 meV and ≈220 meV and probing depths of ≈3.5 nm and
≈6.5 nm, respectively (compared with <1 nm at UV energies).
The thin film samples used for the HAXPES experiment were
grown and characterized in UHV at Beamline X1B of the
NSLS using similar parameters to the UV ARPES samples,
before being transferred (with exposure to atmosphere) to the
HAXPES instrument. The angle-integrated valence band of
both bulk single crystal and as-grown thin film were very
similar to one another [Fig. 1(e)], and in good agreement
with previous measurements of SnTe [20], confirming that
electronically the grown films are In-doped SnTe.

III. STOICHIOMETRY CHARACTERIZATION

In this paper, we will mainly discuss two film samples,
produced with slightly different source and sample tempera-
tures and thus with different stoichiometry. Normal emission
ultraviolet core level spectroscopy (UPS) [Fig. 1(b)] at photon
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FIG. 2. (a) Room-temperature, normal emission photoemission
spectra for the x = 0.41 sample as a function of photon energy.
Such a measurement maps the kZ dispersion along the bulk L-�-L
high-symmetry direction. The experimental dispersions agree well
with tight binding calculations for bulk SnTe (b), adapted with
permission from Littlewood et al. [24]). (c) A schematic depiction
of the relationship between the (111) surface and the bulk Brillouin
zone illustrates the projection of Fermi ellipsoids at the bulk L points
onto �̄ and M̄ in the surface Brillouin zone.

energies of 70 and 94 eV suggests an indium content which is
significantly higher than the x = 0.045 bulk crystals studied
previously [14]. A simplistic quantification based on the ratio
of peak areas and photoionization cross sections[21] suggests
surface indium contents of x = 0.58 and 0.33 for the two films.
Similar analysis of a uniform x = 0.40 bulk crystal at a photon
energy of 80 eV yields an indium fraction of x = 0.56 [22],
suggesting that in this low energy regime the theoretically
calculated cross section ratio should be slightly rescaled. This
lowers the estimate for our films to more realistic values of
x = 0.41 and 0.23. Scanning the ≈100 μm × 25 μm light
spot across the sample showed no obvious variation in the
core level ratios.

Supporting measurements of the film stoichiometry are not
trivial owing mainly to indium segregation at the surface,
i.e., the stoichiometry is strongly depth dependent. This is
confirmed by both HAXPES measurements of a separate
(but similarly prepared) sample, as well as secondary ion
mass spectroscopy (SIMS) of the x = 0.41 film. Figures 1(c)
and 1(d) compare core level spectra of the grown film and
the bulk precursor crystal, measured with photon energies of
2.14 keV (λ4d ≈ 3.5 nm) and 4 keV (λ4d ≈ 6.5 nm). Here, λ4d

is the inelastic mean free path of the In/Sn 4d photoelectrons,
a measure of the depth sensitivity. For the x = 0.40 bulk
crystal, the core level peak areas are not appreciably different
for the two photon energies, consistent with a spatially
uniform indium content. The same quantification technique
as employed for the UPS spectra yields indium fractions of
x = 0.49 at 2.14 keV and x = 0.48 at 4 keV. In contrast,
for the film the indium core level signal is notably smaller,
and appears significantly reduced at higher photon energies,
mapping to indium fractions of x = 0.18 at 2 keV and
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x = 0.12 at 4 keV [23]. That the indium signal is reduced
as λ4d is increased suggests a decaying indium concentration,
and this is confirmed by SIMS measurements [Fig. 1(e)].

For the purposes of interpreting our angle resolved spectra,
it is only the near-surface stoichiometry that is of principle
interest, since the photoelectrons in this case possess very short
inelastic mean free paths (<1 nm). Techniques such as energy
dispersive x-ray spectroscopy (EDX) with probing depths of
several μm are therefore not representative. For example, EDX
performed on the films grown in this study yielded indium
concentrations as low as x ≈ 0.04, corresponding to the
depth-averaged In content and clearly not in agreement with
the surface sensitive in situ UPS measurements. Throughout
the manuscript we will continue to label the two Sn1−xInxTe
films by UPS estimated indium contents of x = 0.41 and 0.23,
but it should be understood that these values represent only
a best estimate. This method of stoichiometry determination
can be influenced for example by resonance effects, detector
nonlinearity or the accuracy of photoionization cross sections.

It is interesting to consider why such a high indium content
has apparently been obtained in a single-phase crystal, when
previous work has indicated the emergence of a tetragonal
InTe phase at high indium contents. A likely answer to this
lies again with the strong In segregation, in the sense that we
have produced not a large, uniform single crystal with a high
indium content but only an In enriched surface layer. It seems
reasonable to expect that the phase diagram could be quite
different for very thin films.

IV. ELECTRONIC STRUCTURE MEASUREMENTS

In Fig. 2, we show normal emission photoemission intensity
maps as a function of photon energy for the x = 0.41 film. The
band structure is in good agreement with the �-L-� direction
of bulk SnTe [24], providing further confidence that we are
studying well defined, (111) oriented (Sn,In)Te as opposed
to InxTey clusters. At normal emission the bulk L points are
probed at photon energies of approximately 17, 55, and 113 eV,
and around these energies the bulk valence band crosses the
Fermi level at �̄. Upon closer (Fig. 3), it becomes apparent
that two distinct pairs of bands are present. The innermost
pair broadens and disperses to a higher binding energy as the
photon energy is increased, consistent with the bulk valence
band. In contrast, the outermost pair does not disperse, a
characteristic property of surface states. As is also the case for
the surface states of (Pb,Sn)Se(111), the surface state intensity
is resonantly enhanced at photon energies which probe the
bulk L point [25].

The dispersion of the surface state resembles the linear
dispersion typical of topological surface states close to a Dirac
point, and indeed one might anticipate topological states on the
basis of previous studies of SnTe [26] and Sn0.955In0.045Te [14].
In Fig. 4, we quantify the dispersion, tracking peak positions by
fitting individual momentum distribution curves taken along
K̄-�̄-K̄ with four Lorentzian peaks. Linear extrapolation of the
surface state bands then provides an estimate of the binding
energy of the (assumed) Dirac points: 375 meV above the
Fermi level for the x = 0.41 film and 312 meV for the x =
0.23 film. Previous studies found values of 50 meV for both
SnTe [26] and Sn0.955In0.045Te [14], at least partially due to
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FIG. 3. Photon energy-dependent ARPES of the hole pockets
at �̄ for the x = 0.41 sample (T ≈ 230 K). Raw spectra (a) and
corresponding second derivative images after box smoothing along
the energy direction (b). The outermost bands do not disperse
with increasing photon energy, identifying them as a surface states.
The innermost pair broadens and moves to higher binding energy,
consistent with the bulk valence band at bulk L.

surface band bending. The larger value we observe compared
to these studies may reflect different surface band bending, but
is also consistent with a significantly higher indium content.
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FIG. 5. Room-temperature three-dimensional ARPES mapping
of the �̄ hole pockets in the x = 0.23 film at hν = 18 eV. Above
the Fermi level the contours resemble an isotropic two-dimensional
hole gas, but at higher binding energies the surface state becomes
severely warped towards M̄ . This becomes particularly clear in second
derivative images [(b) and (c)].

Constant energy surface mapping of the �̄ surface state
(Fig. 5) reveals both intensity modulations and strong hexago-
nal warping, especially apparent in second-derivative images.
In Fig. 5, we present such mapping for the x = 0.23 film.
The x = 0.41 data are qualitatively similar, but less of the
surface state band structure is visible due to the heavier
doping. The low-energy surface electronic structure around
�̄ in spin-orbit coupled systems can often be well described
by a simple 2D nearly-free-electron model, giving rise to
circular Fermi contours. This is at least true of Au(111)
and Bi2Se3 close to the Dirac point, but has been shown to
be insufficient for stronger spin-orbit coupled systems such
as Bi2Te3 and the giant Rashba system BiAg2 [27,28]. In
such cases, the Hamiltonian must be expanded to include
higher order terms in momentum, with the crystal symmetry
dictating allowable terms. For C3V symmetric systems such
as Sn1−xInxTe(111), this leads to hexagonal warping and a
variety of interesting consequences such as surface density
wave instabilities, lifetime anisotropy and an out-of-plane
spin texture [29–31]. We note that this is the first clear
observation of hexagonal warping effects in a topological
crystalline insulator system. Previous studies of (111) oriented
SnTe and (Sn,In)Te [14,32] did not sufficiently resolve the
Fermi surface, whilst in (111) oriented Pb1−xSnxSe [25] the
warping effect is expected to be much less severe owing
to the weaker spin-orbit coupling of selenium compared to
tellurium (analogous to the comparison of Bi2Se3 and Bi2Te3).
The combination of warping effects with a superconducting
transition makes Sn1−xInxTe(111) an interesting system for
continued studies.
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along M̄-�̄-M̄-K̄ in both samples [(b) and (c)] indicate anisotropic
hole pockets located at M̄ .

Based on consideration of mirror symmetry and where the
bulk L points project to, Dirac points are also predicted to
exist at M̄ [Fig. 2(c)]. However, the configuration of these
Dirac points depends on the surface termination. In contrast
to the well studied (100) natural cleavage plane, the (111)
face of SnTe is strongly polar. Different surface terminations
and reconstructions are therefore possible, with significant
consequences for the surface electronic structure [33,34].
Thermodynamic calculations for SnTe indicate that a (1 × 1)-
Te termination is the most stable, in which case the M̄ Dirac
point is expected to lie close to the bulk conduction band
edge [33]. Combined with the strong p-type doping, it is there-
fore not obvious that Dirac cones should be experimentally
observable at M̄ . This is further complicated by the strong
intensity resonances in this system—even if present, surface
states can only be resolved at particular photon energies. In
Figs. 6(a) and 6(c), we show wide-area Fermi surface maps
for both the x = 0.41 sample (hν = 64 eV) and the x = 0.23
sample (hν = 94 eV). In both cases, there are weakly resolved
anisotropic hole pockets at M̄ . In Figs. 6(b) and 6(d), we extract
energy-momentum spectra from regions where these pockets
are most visible. The fact that the linear dispersions appear to
be unchanged between the 64 and 94 eV scans is suggestive
that these are indeed the lower portions of M̄ surface state
Dirac cones.

V. CONCLUSIONS

By growing (Sn,In)Te films in situ, we have bypassed
the need for cleavable bulk crystals and been able to study
the high-indium regime of this material. Importantly, we
can confirm that surface states similar in character to the
topological states on SnTe continue to exist at very high indium
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contents. While spin-resolved measurements are always a
necessary requirement to confirm the nature of these surface
states, our observation is nonetheless highly encouraging for
the continuing efforts towards superconducting topological
insulators. In particular, we note that the increase in critical
temperature for Sn1−xInxTe when the indium content reaches
x = 0.45 brings it within a highly accessible liquid helium
experimental regime. However, as our measurements confirm,
it remains an important and unsolved material challenge
to realize n-type doping of (Sn,In)Te such that transport
properties are not dictated by trivial bulk bands. To this end,
the possibility of high-quality thin-film growth demonstrated
here may open up new research directions.
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