
PHYSICAL REVIEW B 102, 174429 (2020)

Magnetic order and disorder in a quasi-two-dimensional quantum Heisenberg
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We present an investigation of the effect of randomizing exchange coupling strengths in the S = 1/2 square
lattice quasi-two-dimensional quantum Heisenberg antiferromagnet (QHAF) (QuinH)2Cu(ClxBr1−x )4 · 2H2O
(QuinH = Quinolinium, C9H8N+), with 0 � x � 1. Pulsed-field magnetization measurements allow us to
estimate an effective in-plane exchange strength J in a regime where exchange fosters short-range order, while
the temperature TN at which long-range order (LRO) occurs is found using muon-spin relaxation, allowing us
to construct a phase diagram for the series. We evaluate the effectiveness of disorder in suppressing TN and the
ordered moment size, and we find an extended disordered phase in the region 0.4 � x � 0.8 where no magnetic
order occurs. The observed critical substitution levels are accounted for by an energetics-based competition
between different local magnetic orders. Furthermore, we demonstrate experimentally that the ground-state
disorder is driven by quantum effects of the exchange randomness, which is a feature that has been predicted
theoretically and has implications for other disordered quasi-two-dimensional QHAFs.

DOI: 10.1103/PhysRevB.102.174429

I. INTRODUCTION

Understanding the effect of disorder on magnetic ground
states at a microscopic level is an important prerequisite for
future applications of quantum-spin systems, and it is the topic
of a broad range of research (see, e.g., [1–5]). Ground states of
unfrustrated magnets with classical moments are predicted to
be robust with respect to low levels of disorder, while such
disorder is thought to have a far stronger effect on quan-
tum spin systems [6–11]. The two-dimensional (2D) S = 1/2
square lattice quantum Heisenberg antiferromagnet (QHAF)
has previously been investigated in this context through intro-
duction of nonmagnetic on-site impurities in CuO [12] and
CuF4 [13–15] planes. However, less work exists on other
forms of quenched disorder such as randomized exchange
bonds, where the strength of exchange coupling is varied
throughout the lattice. Numerical treatments of this prob-
lem [7] suggest that if the bond disorder is homogeneous,
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the ground state is very robust, even against strong bond
disorder, with the spin stiffness and order parameter being
exponentially reduced and only vanishing in the case of in-
finite randomness. However, if disorder is inhomogeneous
[8,9], the occurrence of lower-dimensional quantum states,
such as dimer singlets, significantly enhances quantum fluc-
tuations, which reflect low-temperature time dependence in
the states of the system (and differ from time-independent,
temperature-driven classical fluctuations that dominate mag-
netism at elevated temperatures). Disorder can also give rise to
spin frustration, which strongly suppresses correlation lengths
[4,10]. In these cases, long-range order can be destroyed, with
a quantum-disordered phase resulting [9,16,17]. We present
here a complete experimental investigation of a 2D QHAF
with randomized exchange strengths. We indeed find evidence
for the formation of small clusters of fluctuating quantum
spins acting to destabilize magnetic order.

We use coordination chemistry to generate a tuneable
family of low-dimensional materials in which S = 1/2 Cu2+

ions are linked magnetically via a superexchange pathway
mediated by halide bonds. Previous work showed that by sub-
stituting halide ions in the superexchange pathway, differing
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FIG. 1. (a) Packing diagram for (QuinH)2CuBr4 · 2H2O show-
ing magnetic layers separated by quinolinium cations; (b) layers of
CuBr4

2− distorted tetrahedra.

exchange strengths can be realized [18–20]. The square-lattice
case is addressed here through pulsed-field magnetization
and muon-spin relaxation (μ+SR) measurements of the se-
ries (QuinH)2Cu(ClxBr1−x )4 · 2H2O (QuinH = Quinolinium,
C9H8N+) [21–24]. This combination of techniques is well
suited to determining the magnetic ground state of low-
dimensional Cu2+ complexes [25–27]. Our series is based on
2D antiferromagnetic (AF) layers of CuZ4

2− distorted tetra-
hedra (where the halide Z = Cl or Br). Tetrahedra are related
by C-centering, resulting in a square magnetic lattice, with
each S = 1/2 Cu2+ ion having four identical nearest neigh-
bors. Hydrogen bonding to water molecules within the layer
generates close Z-Z contacts, providing the AF superexchange
pathway [Fig. 1(b)]. These 2D AF layers are well isolated
due to the presence of alternating layers of QuinH cations

[Fig. 1(a)]. The magnetic properties of the x = 0 compound
(QuinH)2CuBr4 · 2H2O suggest that it represents a good re-
alization of the 2D QHAF model with intraplane exchange
strength J (x = 0) = 6.17(3) K [22]. Comparing x = 1 (Z =
Cl) and x = 0 (Z = Br) materials, there are differences of only
4% and 0.4%, respectively, in the distance between Cu2+ ions
along the a-axis and b-axis. However, the change in the inter-
action strength caused by the varying chemical composition
of the superexchange pathways will have a much larger effect
than these small differences would suggest. Energy-dispersive
x-ray spectroscopy (EDX) measurements [24] were used to
determine x and confirm that there is no macroscopic separa-
tion of Br- and Cl-rich structures.

II. RESULTS

A. Magnetometry

To determine the effective intraplane exchange J , low-
temperature (T ≈ 0.6 K) pulsed-field magnetization measure-
ments were made on materials with 0 � x � 1 (Fig. 2) (see
also the Supplemental Material [24], where the full dataset is
presented along with further details of the analysis). Magne-
tization measurements are made at T � J where collective
behavior of the spins is expected. The magnetization M as
a function of applied field for the x = 0 and 1 materials
[Fig. 2(a)] shows a convex rise to saturation, indicative of
2D magnetic interactions [25]. Where sufficient correlations
(promoted by a narrow distribution in J) are present (see
below), saturation of M at applied field Hsat occurs via a
sharp change in the slope of M, giving rise to a minimum
in d2M/dH2 that allows Hsat to be determined. For x = 0,
this occurs at μ0Hsat = 16.9(4) T, whereas for x = 1 we find

FIG. 2. Low-temperature (T ≈ 0.6 K) single-crystal magnetization data for (QuinH)2Cu(ClxBr1−x )4. (a)–(c) M(H ), dM/dH and
d2M/dH2 for x = 0 and 1. (d) Low and high values of x show a sharp feature in M(H ) at Hsat, but (e) intermediate values do not. Data
for (f) x = 0.41, (g) x = 0.57, (h) x = 0.605, and (i) x = 0.74 showing the smooth approach to saturation in the intermediate values of x.
Black arrows indicate Hsat, horizontal black dashed lines correspond to zero values of the derivatives, and orange arrows indicate the low-field
kink feature discussed in the text. Data for all samples are provided in the Supplemental Material [24].
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μ0Hsat = 3.8(3) T [Figs. 2(b) and 2(c)]. The Hamiltonian that
describes the two end members of the family is

H = J
∑

〈i, j〉‖
Si · S j + J⊥

∑

〈i, j〉⊥
Si · S j − gμBB

∑

i

Sz
i , (1)

where J is the strength of the exchange coupling within the
magnetic planes, J⊥ is the coupling between planes, and J �
J⊥. The first two terms on the right-hand side refer to summa-
tions over unique exchange bonds parallel and perpendicular
to the planes, respectively. For S = 1/2 spins, within a mean-
field treatment of this model [25], saturation occurs when
gμBμ0Hsat = zJ , and z = 4 is the number of nearest neighbors
in the 2D planes. Using the published value of g = 2.15 for the
x = 0 material [22], this gives J (x = 0) = 6.1(1) K, in good
agreement with the previous estimate. Assuming a similar
g-factor, a value of J (x = 1) = 1.4(1) K is obtained, in good
agreement with the value derived from susceptibility measure-
ments [23] and consistent with previous measurements that
suggest JBr ≈ 4JCl for Cu2+ QHAFs [18].

For concentrations with x � 0 we again measure the char-
acteristic 2D convex rise to saturation, but this becomes less
pronounced for x � 0.05 where the saturation field [and there-
fore J (x)] decreases and the change in the slope of M(H )
becomes less sharp [Fig. 2(d)]. As x is increased further to-
ward x ≈ 0.4, the approach to saturation broadens, such that
the trough in d2M/dH2 is hard to discern [24]. However, a
sharp elbow in M(H ) is still observed at the saturation field,
which can be identified by extrapolation of the data above and
below Hsat [Fig. 2(f)]. For x = 0.57, 0.74, and 0.835 there is
no clear feature in the M(H ) data [24] and it is not possible
to estimate an effective value for J [Figs. 2(e) and 2(g)–2(i)].
In this region, M(H ) no longer exhibits its convex form but
instead rises smoothly with decreasing gradient up to satu-
ration. This behavior is reminiscent of a disordered system,
however the data cannot be fitted to a fully paramagnetic
model. This suggests that, while interactions between spins
exist, correlations characterized by a single effective exchange
energy are not present, or drop below a certain critical length
scale. The sharp change in the slope of M(H ) at saturation
becomes resolvable again for x � 0.84, and, as the concen-
tration approaches x = 1, the traces develop the convex shape
observed at low x. This is consistent with the return to 2D
QHAF behavior in the x = 1 material.

We can assess the coherence length ξ required to give a
resolvable transition in M(H ) through temperature-dependent
pulsed-field measurements of the x = 0 compound between
0.5 and 15 K, shown in the Supplemental Material [24].
As T is raised, the saturation point becomes more rounded
such that the width of the trough in d2M/dH2 increases
and the amplitude decreases. For T � 4 K it is no longer
possible to clearly identify Hsat. The coherence length in
square lattice planes can be estimated using ξ/d ≈ 0.498(1 −
0.44T/J )exp(1.131J/T ), where d is the magnetic lattice pa-
rameter [28], which holds for H = 0 and T � J . Coupling
this formula with the limiting value of T , above which Hsat

is undefined, suggests that the magnitude of exchange can be
identified only when ξ/d � 2 at H = 0.

In addition to the feature at saturation, the M(H ) data for
some samples show a kink at fields considerably lower than
Hsat for the x = 1 system. The kink is resolvable for several

x between 0.05 and 0.61, indicated by an orange arrow in
Figs. 2(f) and 2(h). We attribute this to the presence of isolated
clusters of spins (e.g., dimers, trimers, square plaquettes, etc.)
coupled by Cl–Cl halide exchange bonds, which are weaker
than Br–Br bonds and thus easier to saturate with an applied
field. (The effect of these localized units is discussed below.)

B. Muon-spin relaxation

Although the ideal 2D QHAF should only show long-
range magnetic order (LRO) at T = 0, in any realization of
the model in a three-dimensional material the presence of
interplane exchange J⊥ can lead to a transition with TN > 0.
To determine TN, zero-field (ZF) μ+SR measurements were
made [29,30]. Oscillations in the asymmetry are observed
in some members of the series at low T (Fig. 3), providing
unambiguous evidence of LRO. For materials with x � 0.25,
oscillations are observed at multiple (n = 2 or 3) frequencies
νi [Figs. 3(a) and 3(b)] consistent with several magnetically
inequivalent muon sites. The oscillatory spectra can be fitted
to a function of the form

A(t ) =
n∑

i=1

Aie
−λit cos(2πνit + φi ) + Abge−λbgt , (2)

where the last term accounts for muons with their initial
spin polarization along the direction of the local magnetic
field, along with those muons that stop in the sample
holder. The frequencies were held in fixed proportion for
the fits (fitting parameters are given in the Supplemental
Material [24]). From the behavior of the oscillatory frequency
versus temperature, the ordering temperature TN for each
of the compounds can be extracted using the function
νi(T ) = νi(0)[1 − (T/TN)α]β , which provides values consis-
tent with discontinuous changes in amplitude that also occur
at the ordering transition. We find TN(x = 0) = 1.65(1) K,
and transition temperatures that decrease smoothly with
increasing x, such that TN(x) extrapolates to zero at
x ≈ 0.35. The frequencies νi(T → 0) are proportional to
the moment size on the Cu2+ ions and hence to the sublattice
magnetization m. We measure relatively small frequencies
compared to typical 3D systems, reflecting a reduced ordered
moment (expected to be 0.33 μB for T → 0 in spin-wave
theory [31]). These frequencies decrease with increasing x
with m dropping by around 24% from x = 0 to 0.25.

The behavior is qualitatively different for samples with
0.41 � x � 0.77 [Figs. 3(c)–3(e)] where no oscillations are
resolved down to 0.02 K. Instead, spectra resemble a distorted
Kubo-Toyabe (KT) function [30] at low T , corresponding to
disordered quasistatic moments in the materials, with the dis-
tortion of the spectra likely reflecting short-range order along
with some limited dynamic fluctuations. As T is increased, the
spectra change such that they resemble dynamic, exponential
functions above T � 0.5 K. These data can be parametrized
using a stretched-exponential envelope function e−(λt )δ that
accounts for the early-time behavior of the spectra. The tran-
sition between the static and dynamic regimes appears abrupt
in the x = 0.70 sample, taking place at a freezing temperature
to a glassy configuration around Tf = 0.27 K, with a similarly
rapid variation in relaxation rate seen in the x = 0.41 material
at low temperature, suggesting Tf ≈ 0.41 K. No such sharp
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FIG. 3. Results of ZF μ+SR measurements. (a)–(f) Top: Example of high-temperature spectra; middle: Example of low-temperature
spectra; bottom: Example of oscillation frequency ν, relaxation rate λ, or stretching parameter δ from the function e−(λt )δ (see the main
text).

freezing is seen in the x = 0.77 sample, where the relaxation
rate λ drops fairly smoothly with increasing T (with a change
in slope around T = 0.4 K, likely related to the freezing seen
for other concentrations).

The observed behavior is qualitatively different again in the
x = 0.89 and 1 materials (Fig. 4) where an abrupt transition
to LRO takes place with similar TN. Data for the x = 0.89
material [Fig. 4(a)] can be fitted to a Bessel function, typical
of incommensurate magnetic order [30]. The presence of in-
commensurate order might also be consistent with measured
data for 0.1 � x < 0.41 where nonzero phase offsets are ob-
served in the oscillatory components, although the presence of
multiple characteristic frequencies complicates the modeling
of this feature. The Bessel function results from sampling a
distribution of local magnetic fields that varies sinusoidally
with position in the material, as expected from an incommen-
surate spin-density wave. However, depending on the muon
sites in a system, there are other field distributions that can

lead to relaxation that resembles the Bessel functional form,
with its characteristic negative phase shift and damped cosinu-
soidal temperature dependence. As a result, it is not possible
to unambiguously infer the existence of an incommensurate
magnetic structure in this composition. In any case, the char-
acteristic frequency decreases smoothly [Fig. 4(b)] allowing
TN = 0.41(1) K to be extracted using the same approach as
for the materials with x � 0.25.

Data for the x = 1 composition show oscillations below the
ordering temperature, but at relatively low amplitude com-
pared to other concentrations, as shown in Fig. 4(c). The
frequency of these oscillations varies smoothly with tempera-
ture [Fig. 4(d)], but cannot be reliably fitted to an oscillatory
function close to the transition, where the relaxation rate in-
creases. Such low-amplitude oscillations have been observed
previously in similar materials with related structures [32,33].
In this case, the x = 1 crystallites are notably different in
surface color and form to the other concentrations, and the
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FIG. 4. (a) Muon-spin relaxation data for the x = 0.89 material
below (0.1 K) and above (1.2 K) the ordering temperature TN, with a
fit shown to a Bessel function relaxation (blue curve, T < TN) and a
relaxed Kubo-Toyabe function (red curve, T > TN). The extracted
frequency is plotted in (b), where the line is a guide to the eye.
(c) Data for the x = 1 material below (0.17 K) TN and above (1.2 K),
with a fit to an oscillatory model for the low-temperature data (blue
curve) and relaxed Kubo-Toyabe function (red curve, T > TN). The
extracted frequency is plotted in (d), where the line is a guide to
the eye.

relatively large ratio of relaxing to an oscillatory signal could
reflect the behavior of muons near the surfaces of these crys-
tallites. However, the transition is via a discontinuous change
in the spectra (also seen in the other compositions, where it
coincides with the disappearance of the oscillations), and this
feature is used to assign TN(x = 1) = 0.44(1) K.

For the x = 0 material we have TN/J = 0.27(2), which,
combined with predictions from quantum Monte Carlo
(QMC) simulations [34], suggests |J⊥/J| ≈ 3.2 × 10−3, in-
dicating well-isolated magnetic layers. At x = 1 we observe
magnetic order with TN/J = 0.31(2) and thus |J⊥/J| ≈ 7.5 ×
10−3. Comparing, we have J⊥(x = 1) = 0.014(5) K and
J⊥(x = 0) = 0.011(8) K, which is the same within uncertain-
ties, demonstrating that the degree of isolation of the 2D layers
is largely unaffected by substitution of Br for Cl ions. This
implies that J⊥(0 < x < 1) is likely close to these values, and
that the observed magnetic effects of bond randomness are
attributable solely to disorder in the 2D layers.

III. DISCUSSION

A notional phase diagram for the system is shown in Fig. 5.
The parameter x represents the fraction of Cl in a square
2D unit cell with intermediate values corresponding to more
exchange-bond disorder. Since halide bonds are formed from
two Z ions, the presence of Cl can create a Cl–Cl exchange
bond [expected to be around four times weaker than Br–Br
bond exchange based on the size of J (x)] or a mixed Cl–
Br bond. The effective exchange strength J extracted from
M(H ) data provides the energy scale below which we expect
short-range AF correlations in 2D planes to dominate the
magnetic behavior for TN � T � J . The phase diagram is not
symmetrical about x = 0.5 because x does not merely lead to
random substitution but also decreases the effective value of J
across the series.
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FIG. 5. (a) Fields at which μ0Hsat (filled symbols) and low-field
kink (open symbols) are observed as a function of x. (b) Evolution of
estimated ordered moment. (c) Notional phase diagram showing anti-
ferromagnetically ordered (AFM), short-range correlated (SRC), and
disordered (D) regions. Open triangles show the predicted ordering
temperatures from QMC assuming J⊥ = 0.011 K (and no disorder
effects aside from a renormalized effective J). The dotted line is
described in the main text.

We expect the effective exchange J through halide-halide
contacts to reflect the size and shape of the orbitals. Struc-
turally, the exchange strength J via the two-halide pathway
depends on the identity of the halide ion for two reasons. The
first is the shape of the orbitals, which leads to better overlap
between bromides than between chlorides. The second is that
the interhalide distance is shorter for Cl. By substituting Cl
for Br at low levels of doping, the cell constants will still be
similar to the x = 0 compound, so that not only is the Cl ion
smaller leading to poor overlap, but the distance between Cl
and Br may be greater than observed in the pure Br material,
leading to a still smaller value of J . At low concentrations
of Br the lattice is similar to the x = 1 material, and the
opposite trend might be expected, with Br ions in small spaces
causing distortion, and therefore with shorter than expected
halide-halide distances, leading to a larger value of J .

The extracted values of J (x) [Fig. 5(c)] show a gradual
decrease up to x = 0.41. This is also the region where LRO is
observed, with TN showing a similar gradient to J (x). Combin-
ing the measured J (x) with our estimated J⊥, we can use the
QMC results [34] to predict values of TN assuming disorder
leads only to a renormalized effective J (open triangles in
Fig. 5). The measured TN are seen to depart significantly
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from these predictions, showing that disorder does have a
strong effect in suppressing TN beyond simply the gradual
reduction in effective J . The ordered moment is seen to de-
crease as shown in Fig. 5(b). The behavior in this part of the
phase diagram is reminiscent of that for substitutional dis-
order in La2Cu1−z(Zn,Mg)zO4 [12]. A fairly linear decrease
was observed in TN and the ordered moment, along with
the disappearance of LRO around x = 0.41. There is also a
resemblance to the 1D molecular case in Ref. [20], where
J values change approximately linearly across the phase di-
agram, while TN and ordered moments drop rapidly on the
Br-rich side of the phase diagram. In our case, the energy
scales close to x = 1 are all lower due to a smaller J mediated
by the Cl ions. In the region 0.84 � x � 1 there is a sufficient
correlation length to identify J from the M(H ) data, and LRO
is restored above x = 0.89. However, TN close to x = 1 does
not show the rapid decrease seen on the other side of the phase
diagram when moving away from the pristine composition,
likely because enhanced disorder is also accompanied by an
increase in effective J .

For 0.41 � x � 0.84, the magnetic behavior is more com-
plicated. No LRO can be identified from the μ+SR data across
the entire region. The lack of a sharp feature in M(H ) at
saturation implies that collective behavior characterized by
a single effective exchange J is no longer straightforwardly
applicable and that there is therefore a highly magnetically
disordered region. Here we see evidence from μ+SR for
slow fluctuations of spins for T � 0.5 K with these becoming
more static at the lowest measured temperature, although still
not long-range ordered down to 0.02 K. The lack of muon
oscillations in the static regime points [30] to a coherence
length ξ/d � 10, which is consistent with the analysis of the
M(H ) data in this region. Nonzero M at small applied field
implies that this disordered phase is not characterized by an
energy gap. For samples with 0.41 � x � 0.7, there is also
evidence for freezing of spins at low T . This would appear to
suggest freezing of glassy behavior in this region, as might be
expected for a system forming clusters of strongly interacting
spins surrounded by disordered moments [35], and it seems to
be distinct from the spin-liquid-like state predicted for random
interactions [9].

We consider here three potential effects driving the form
of the phase diagram: (i) percolation, (ii) bond energetics, and
(iii) quantum fluctuations. The bond percolation threshold for
a square lattice is [36] pc = 1/2. However, for our materials
a single exchange bond comprises two possible substitution
sites. If a single substitution per bond suffices to destabilize
magnetic order, then we should equate the percolation thresh-
old pc to the probability that one or more substitutions occurs
on a single exchange bond pc = 1 − (1 − xc1)2, which gives
a lower critical substitution level xc1 = 0.29, while at high x
we should have pc = 1 − x2

c2, which gives an upper critical
substitution level xc2 = 1 − xc1 = 0.71. This could be com-
patible with the data for x < 0.41, but it fails to describe the
large-x behavior. Furthermore, it is unlikely that percolation is
the sole driver of the observed behavior since we are changing
the strengths of random bonds, rather than removing exchange
pathways. More sophisticated correlated percolation models
including lattice-dependent grouping of substituted bonds also
fail to describe the measured phase diagram. The possibility

of random formation of spin clusters, their size, and the effect
of correlated substitutions are discussed in the Appendix.

An approximate criterion for the collapse of magnetic or-
der (which could be short-range) might be when the total
exchange energy of substituted bonds becomes larger than
that of unsubstituted bonds. We would expect a lower critical
substitution level x = xc1 to be determined by Br–Cl and Cl–
Cl bonds acting as disorder in a Br–Br ordered background
such that (1 − xc1)2JBr−Br = 2xc1(1 − xc1)JBr−Cl + x2

c1JCl−Cl.
The upper critical substitution level x = xc2 is then determined
by Br–Cl and Br–Br bonds acting as disorder in a Cl–Cl
ordered background giving x2

c2JCl−Cl = 2xc2(1 − xc2)JBr−Cl +
(1 − xc2)2JBr−Br. The unknown exchange strength in these
expressions, JBr–Cl, can be determined by fitting the measured
J (x) with J (x) = (1 − x)2JBr–Br + 2x(1 − x)JBr–Cl + x2JCl–Cl,
which describes the data well [dotted line, Fig. 5(c)] and gives
estimates JBr–Br = 6.2(1) K, JBr–Cl = 4.3(3)K, and JCl–Cl =
1.3(1)K. These yield the critical substitution levels xc1 =
0.40(2) and xc2 = 0.88(2), both of which agree well with the
observed location of the collapse of magnetic order.

In fact, values of xc compatible with experiment result from
only a limited range of choices for the ratio JBr–Cl/JBr–Br.
We can express the expected lower and upper critical sub-
stitution levels xc1 and xc2, respectively, as a function of the
two exchange-strength ratios JBr–Cl/JBr–Br and JCl–Cl/JBr–Br.
Fixing the known pristine-system exchange-strength ratio
JCl–Cl/JBr–Br = 0.206(15), the observed critical substitution
levels xc1 = 0.32(9) and xc2 = 0.83(6) put stringent limits
on the range of experimentally allowed ratios JBr–Cl/JBr–Br =
0.65–0.78 (Fig. 6). This is incompatible with the most sim-
ple assumption that each substitution of a Br with a Cl ion
weakens the exchange bond (which consists of two Br/Cl
sites) by the same factor, which would yield JBr–Cl/JBr–Br ≈√

JCl–Cl/JBr–Br = 0.45(2). On the other hand, the enhanced
ratio JBr–Cl/JBr–Br = 0.69(5) extracted from the best fit of the
average exchange model to the measured J (x) [Fig. 5(c)] is
fully compatible with the observed critical substitution levels
via the bond-energetics criterion (Fig. 6). This validates both
the bond-energetics criterion for the collapse of magnetic
order in the 2D square-lattice QHAF as well as the average-
exchange J (x) model described above.

Finally, theory predicts that the disorder-driven introduc-
tion of antiferromagnetically coupled dimers, chains, or other
clusters acts to enhance quantum fluctuations, destroying
long-range magnetic order [8,9]. This scenario is consistent
with our observations: the presence of the low-field kink in
our magnetometry data points to high densities of microscopic
clusters of Cu moments coupled by Cl bonds, while our
EDX measurements showed no evidence for phase separation,
suggesting inhomogeneities are limited to a local level. Calcu-
lations indeed show (see Appendix) that a random distribution
of disordered bonds leads to a large concentration of dimers
and trimers around x = 0.2, where we see TN being strongly
suppressed toward disorder.

IV. CONCLUSION

In summary, the addition of small amounts of disorder to
the pristine 2D QHAF cause regions of the sample to remain
correlated with a single effective J , which decreases as x
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FIG. 6. Lower (xc1, black solid line) and upper (xc2, red solid
line) critical substitution levels calculated from the bond-energetics
criterion for magnetic-order collapse detailed in the main text as a
function of the ratio JBr–Cl/JBr–Br. (The equations determining these
substitution levels are identical when JBr–Cl vanishes, resulting in a
single critical value.) The measured ratio JCl–Cl/JBr–Br = 0.206(15) is
assumed. Experimentally observed critical substitution levels xc1 and
xc2 are indicated by horizontal dashed lines with one-sigma shaded
regions around them. The green shaded region highlights the range of
ratios JBr–Cl/JBr–Br compatible with xc1 and xc2 within one sigma. The
simple guess JBr–Cl/JBr–Br ≈ √

JCl–Cl/JBr–Br is shown as a gray vertical
dashed line and lies outside the experimentally allowed green region,
while the actual value of JBr–Cl/JBr–Br extracted from the best fit of
the average exchange J (x) [dashed line in Fig. 5(c)] is shown by a
blue vertical line and is compatible with experimental xc1 and xc2.
One-sigma uncertainty intervals for both of these values are shown
by horizontal error bars on the bottom axis.

increases. Simultaneously there is a preponderance for the
formation of minority clusters (e.g., dimers and trimers) that
enhance quantum fluctuations and act to suppress TN more
than is predicted from the change in J alone. For 0.41 �
x � 0.84, while spins continue to interact, the correlated re-
gions are no longer apparent, LRO is completely absent, and
low-temperature spin freezing is evident. Critical substitution
levels can be explained by an energetics-based competition
between different local magnetic orders. Our result that mag-
netic order can be destroyed by quantum effects of exchange
randomness could have implications for other disordered Q2D
AFM systems such as the parent state of the cuprate super-
conductors, or frustrated square lattices, which are believed to
evolve into a spin-liquid state on the introduction of quenched
disorder.

Data presented in this paper will be made available via
Ref. [37].
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APPENDIX: CALCULATING THE EFFECT OF HALIDE
SUBSTITUTION ON SPIN CLUSTERS

In the main text, we described the influence of percolation
as a possible driver of the phase diagram of this system.
The complication of exchange bonds comprising two possible
substitution sites makes this problem more complex than that
of a bond being formed from a single substitution site. We
discuss the details of the effects of halide substitutions on spin
clusters in this Appendix.

1. Formation of spin clusters

Increasing x in (QuinH)2Cu(ClxBr1−x )4 · 2H2O has the
result of replacing Br linkages with Cl linkages in superex-
change pathways. Since bonds are formed with two halide
ions, the connections between magnetic Cu2+ ions change
from being all Br–Br links at x = 0 (colored black in Fig. 7)
to all Cl–Cl links at x = 1 (colored red). However, at interme-
diate x there are many Br–Cl links (colored yellow). This is
shown schematically in Fig. 7, in which the bonds are chosen
randomly according to the value of x indicated on the vertical
axis. This figure illustrates that intermediate values of x give
a range of mixtures of different linkages, which, as explained
in the main text, have different exchange strengths.

Another way of looking at this problem is shown in Fig. 8,
which plots the probability of finding an isolated dimer,
trimer, or tetramer of spins connected by Cl-containing bonds
(either Br–Cl or Cl–Cl) and surrounded by only the Br–Br
bonds that dominate at low x. The probability that a ran-
domly chosen bond contains at least one Cl is 1 − (1 − x)2 =
x(2 − x). Furthermore, we denote by ps(x) the probability
that a randomly chosen bond is part of an isolated cluster
of Cl-containing bonds of size s (so a spin dimer has s = 1
because it represents two Cu2+ spins connected by a single Cl-
containing bond, a spin trimer has s = 2 because it involves
two Cl-containing bonds, etc.). These probabilities are given
by p1(x) = x(2 − x)(1 − x)12 for spin dimers [the power of 12
reflecting the six double-bromide bonds that must be present
at the boundary of a dimer, a double Br bond having probabil-
ity (1 − x)2], p2(x) = 6x2(2 − x)2(1 − x)16 for spin trimers
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x

FIG. 7. A schematic diagram showing a simulation of the two-
dimensional lattice in (QuinH)2Cu(ClxBr1−x )4 · 2H2O for different
values of x. The coloring of the bonds is black for Br–Br, yellow for
Br–Cl, red for Cl–Cl.

(both straight and bent, involving eight double-bromide bonds
at the boundary), and p3 = 3x3(2 − x)3(1 − x)18(9(1 − x)2 +
2) for tetramers (where various shapes are possible, as shown
in Fig. 8). For very small x these values depend mostly on
the probability of finding enough Cl-containing bonds [so for

p s
(x

)

xc

x

s = 1

s = 2

s = 3

FIG. 8. The probability of isolated clusters of Cl-containing
bonds [dimers (blue), trimers (red), or tetramers (green), correspond-
ing to s = 1, 2, and 3 bond clusters] surrounded by only Br–Br
bonds. The dotted line tangent to the s = 1 curve is described in
the text. The percolation threshold for impurity bonds with at least
one substitution xc is indicated by the short vertical dotted line.
The dashed curves show the effect of including ±30% additional
inhomogeneous clustering of Br- or Cl-rich regions.

FIG. 9. (a) A density plot of the cluster probabilities ps(x).
(b) The mean size S of bond clusters as a function of x. The percola-
tion threshold xc for impurity bonds with at least one substitution is
indicated by a vertical dashed line.

dimers, this factor is 1 − (1 − x)2 = x(2 − x), the dotted blue
line in Fig. 8], but this becomes reduced at higher x due to
the probability of finding pure Br–Br bonds surrounding the
cluster falling substantially below unity. The result is that
these isolated species are only reasonably probable below
the ideal percolation threshold for impurity bonds with at
least one Cl substitution, which is x = xc = 1 − 1/

√
2 ≈ 0.29

[a value obtained [36] from the exact bond percolation thresh-
old for a square lattice in terms of the single bond occupation
probability pc = 1/2 = xc(2 − xc)]. Beyond this value clus-
ters start to link up, and these species are practically absent
above x ≈ 0.4. This concentration is roughly consistent with
the lower value of x = xc1 at which both the AFM and SRC
phases collapse, although this likely reflects the fact that x ≈
0.4 lies well above the percolation threshold. This is explored
in more detail below.

2. Size of spin clusters

The effect of x on these isolated clusters is seen even
more clearly in Fig. 9(a), which shows the form of ps(x) as
a function of both x and cluster size s. These probabilities
were computed numerically on the line graph (i.e., graph of
bonds) of an L × L patch of a square lattice with L = 4001.
An O(L) space-complexity algorithm inspired by the modi-
fied Hoshen-Kopelman algorithm [38,39] and generalized to
arbitrary lattices was used for this, as described in Ref. [40].
Note that

∑∞
s=1 ps(x) = x(2 − x), the probability that one or

more substitutions occurs on a single bond, since the sum over
s of probabilities that a randomly chosen bond is a member
of a cluster of size s necessarily accounts for all substituted
bonds (at least below the percolation threshold). We note that
the probabilities of Br-rich bond clusters in a Cl–Cl bond
background (which dominate for x near 1) are the same as the
ones presented in Figs. 8 and 9 under the duality x → 1 − x
that exchanges the roles of Br and Cl.

174429-8



MAGNETIC ORDER AND DISORDER IN A … PHYSICAL REVIEW B 102, 174429 (2020)

Dividing ps(x) by x(2 − x) gives the conditional probabil-
ity that a randomly chosen Cl-substituted bond is part of a
cluster of size s and allows us to estimate the mean cluster
size S(x). This quantity is therefore defined as [36] S(x) =∑∞

s=1 sps(x)/[x(2 − x)] and answers the following question:
Given a randomly chosen bond with one or more substitu-
tions, what is the mean size of the cluster that this bond is a
part of? This is plotted in Fig. 9(b), showing that the mean
cluster size increases rapidly as x increases, and diverges as
x → xc. Given the sharpness of this percolation transition, we
conclude that uncorrelated percolation on its own is likely
not the sole driver behind the collapse of AFM and SRC
order in the material studied in this paper. Namely, the lower
critical concentration xc1 = 0.40(2) is not close enough to the
sharp percolation threshold of Cl-rich bond clusters, which
occurs at a substantially lower xc = 1 − 1/

√
2 ≈ 0.29. The

discrepancy is even more acute for the upper critical con-
centration xc2 = 0.88(2), which is substantially higher than
the predicted percolation threshold of Br-rich bond clusters
1 − xc = 1/

√
2 ≈ 0.71 under the Cl–Br duality. Uncorrelated

percolation thus cannot explain the observed critical concen-
trations for the collapse of AFM and SRC order in these
systems.

3. Effect of correlated substitutions

Going beyond uncorrelated percolation, we first consider
the effect of locally correlated substitution on individual
bonds due to structural consequences of changing the size
of the halide ion (the ionic radius of Br− is ≈ 8% larger
than that of Cl−). Denoting the probabilities that a ran-
domly chosen bond is a Br–Br bond, a Cl–Cl bond, or
a mixed Br–Cl bond by pBr–Br, pCl–Cl, and pBr–Cl, respec-
tively, uncorrelated substitutions of Br by Cl on bonds would
correspond to the probabilities p0

Br–Br = (1 − x)2, p0
Br–Cl =

2x(1 − x), and p0
Cl–Cl = x2 (where the superscript 0 labels

the probability for an uncorrelated substitution). Structural
changes might skew these probabilities, but they must obey
pBr–Br + pBr–Cl + pCl–Cl = 1, and reproduce the observed Cl
concentration by obeying pBr–Cl/2 + pCl–Cl = x. Denoting
the x-dependent probability difference 
p(x) = pBr–Cl(x) −
p0

Br–Cl(x) for finding a mixed Br–Cl bond, so that 
p =
0 would correspond to locally uncorrelated substitutions,
we get pBr–Br = (1 − x)2 − 
p/2, pBr–Cl = 2x(1 − x) + 
p,
and pCl–Cl = x2 − 
p/2. In this model, the lower percola-
tion threshold of Cl-rich bond clusters would correspond to
the condition 1 − pBr–Br(xc1) = pc = 1/2, while the upper
percolation threshold for Br-rich bond clusters would corre-
spond to the condition 1 − pCl–Cl(xc2) = pc = 1/2. Solving
for the mixed-bond probability shift 
p assuming locally
correlated bond substitutions, we get 
p(xc1) = −0.28(5)
and 
p(xc2) = +0.55(7), which correspond to a decrease
of mixed-bond probabilities by −58(7)% at x = xc1 and
an increase of mixed-bond probabilities by +260(80)% at
x = xc2. The huge shifts in probabilities that this model
would require are implausible, allowing us to reject this
percolation model with purely bond-local substitutional
correlations.

We also tested the effect of including additional clustering
effects between different neighboring bonds (i.e., a scenario

of interbond correlated percolation) due to the structural con-
sequences of changing the size of the halide ion. This could
mean that slightly Br-rich regions and slightly Cl-rich regions
could spontaneously form in a crystal prepared with a particu-
lar nominal x, though we stress that we have no experimental
evidence that this effect occurs in our samples. To model this,
we considered a sample with an equal mixture of regions with
x(1 + ε) and with x(1 − ε), and we illustrate the effect in
Fig. 8 for ε = 0.3. This would be an extremely high level of
clustering, but the simulations show that this does not alter
the general conclusions stated above. The only effect observed
is a small shift of the probability of isolated dimers, trimers,
and tetramers to larger values of x (due, of course, to regions
of the sample in which x is smaller than the nominal value).
We conclude that our picture of isolated clusters of Cl-rich
bonds growing as x increases, starting to coalesce and essen-
tially disappearing completely above around x ≈ 0.4, is fairly
robust to clustering effects and cannot explain the conflicting
experimental values of xc1 > xc and xc2 � 1 − xc.

For a quantitative understanding of correlation effects, we
consider the exact correlated-percolation model of Ref. [40],
where a shift of probability that a bond is substituted by Cl
if a neighboring bond is also substituted by Cl by some con-
stant factor γ > 0, where γ = 1 corresponds to uncorrelated
percolation, would correspond to an effective rescaling [40]
p → min(γ p0, 1) of the probability that a bond contains at
least one Cl, where p0 = x(2 − x) is the uncorrelated prob-
ability. Since the lower experimental critical concentration
xc1 is larger than the uncorrelated percolation expectation
of xc = 1 − 1/

√
2 ≈ 0.29, we would get γ = pc/p0(xc1) =

0.78(3) < 1. This is quite a large deviation from uncorre-
lated percolation [it corresponds to a Pearson correlation
coefficient of φ = (γ − 1)/(p−1

c − 1) = −0.22(3) at the per-
colation threshold], and being less than unity means that
nearby Cl-substituted bonds are less likely than expected for
uncorrelated Cl substitutions. The effect would be that Cl
would actually be dispersed more evenly throughout the sam-
ple than by pure uncorrelated chance. By extension, in the
dual view of rare Br bond substitutions in a Cl–Cl bond back-
ground (valid for x ≈ 1), one should also get less clustering
of Br-rich bonds (as clustering of Br-rich bonds would also
push Cl-rich bonds closer together, rather than farther apart as
required by γ < 1), meaning that the dual upper critical con-
centration xc2 should get pushed to lower values (farther away
from x = 1) than the uncorrelated expectation of 1 − xc =
1/

√
2 ≈ 0.71, in clear contradiction with experiment where

xc2 = 0.88(2) � 0.71.
We therefore conclude that a dual pair of pure percolation

transitions of Cl- and Br-rich bond clusters cannot explain
the experimentally observed critical concentrations xc1 and
xc2 either via uncorrelated Cl substitutions, via bond-local
correlation of Cl substitutions, or via the interbond substitu-
tional correlation effect [40]. In contrast, the experimentally
observed critical concentrations are reproduced relatively
straightforwardly using a simple position-blind model of
substituted-bond energetics (see the previous section). We
therefore conclude that a lattice-dependent bias toward group-
ing of substituted bonds must not be particularly significant
in the system that we have studied, and is therefore not the
primary driver behind the ultimate collapse of AFM and SRC
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order, which most likely originates from an energetics-based
competition between different local magnetic orders. On the
other hand, the simple unbiased model confirms the random
formation of minority clusters (e.g., dimers and trimers) at
low substitution values, as suggested by the magnetization

measurements. We reassert that these clusters will promote
quantum fluctuations, and in all likelihood account for the
observed suppression of TN beyond that which would be ex-
pected from the reduction in the effective exchange strength
alone.
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