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The vortex lattice
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Microscopic mechanism behind
superconductivity

a spin singlet state

« Cooper pair of electrons: conventionally T l
— No net angular momentum

Science & Technology
W@ Facilities Council



Microscopic mechanism behind
superconductivity

a spin singlet state
— No net angular momentum

« Unconventional pairing: spin triplet
— Net angular momentum T T l l

— Time-reversal symmetry broken

 Cooper pair of electrons: conventionally T l

MSR Is sensitive enough to detect the low fields (~0.1 G)
caused by triplet pairing in the superconducting state
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Unusual superconductivity in TiV
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« T of TiV alloys much lower
than predicted

» Hints of spin fluctuations in
the presence of _
superconducting state <
(-

« Can we see them directly?
— Yes, with muons
- How are they tied to the 0 20 40 60 80 100
superconductivity? Rlgaiio.sotV
— ...not really sure

A Present study
o Collings et. al

Matin et al., Eur. Phys.d-B, 87 131 (2014) Ry el Technology



Fundamentals: the positive muon

« Microscopic particle +
— Local probe

e Spin Y
— Sensitive to magnetism

* Typ=2.2S
— Independent of material

MSR provides a picture of a the local magnetic
environment that may be missed by susceptibility
measurements

Science & Technology
W@ Facilities Council



The Muon Source at ISIS
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W(@) =1+ a.cos(0) .

Highest energy positrons Average over all positron energies
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Sample

MuSR instrment
at ISIS
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After muon pulse
Implanted start
clock and begin
counting
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Zero-field studies of Tl Ve

« EXxponential term in
relaxation function
IS evidence for the
presence of spin
fluctuations
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« Spin fluctuations appear to

have an onset temperature 0.16 e S ]
i o pin fluctuation rate |
of ~140 K A Two-fluid fit
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Superconducting state in Ti V.

Asymmetry
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Below T.: characteristic
depolarization rate
caused by the vortex
lattice

Above T.: small
residual depolarization
rate from randomly
oriented nuclear spins
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« Magnetic field distribution of the lattice leads to
depolarization of the muon ensemble

Superconducting carrier
densit
1 nS - SIty

Decay of T
oscillations 0 X /12 X m* .—— Effective mass

/

Magnetic
penetration
depth
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Isotropic energy gap of
2.1+0.2 meV

EXxpected:

Apcs
T, 3.528

For TiV
2071y _
kgTc

7.2+0.4

A =536+2 nm

A2(T) 1 272(0)

1.0

0.8

04

0.0

0.6

0.2F

T

1

T

—— Clean BCS
r - - - Dirty BCS

! 2 ! 2 ]

0.0

0.2

0.4 0.6 08 1.0
T/T

Cc

Science & Technology
W@ Facilities Council



Predicted T ,, = 13.7 K (using the McMillan formula)

o HD 1+1
- Tepr = 145 °%P {_1'04 /'l—,u*—0.62/’lpt*}

2Ar1iy

= 3.56
kB TC,pr

Much closer to BCS value
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Predicted T ,, = 13.7 K (using the McMillan formula)

o QD 1+1
- Tepr = 145 °%P {_1'04 /1—“*—0.62/1“*}

2ATiV ZABCS
= 3.56 = 3.528
kB TC,pr kB TC

Much closer to BCS value
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Conclusions

Spin fluctuations coexist with superconductivity, and
have an onset temperature of ~140 K

Temperature dependence of the penetration depth
fits an s-wave BCS model

Magnitude of energy gap is too large for measured
TC

Are spin fluctuations unconventionally pairing the
Cooper pairs? Or are they suppressing the
conventional singlet superconductivity?
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Outlook

« Single crystals + SANS
study

— Koss, 1976

« Stoichiometry variation
study with uSR
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Thanks for listening.
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Growth & characterization

GSAS: refined to single
bcc phase with
expected Im-3m
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Growth & characterization
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Muon production

Carbon target
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Muon production
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Muon production

C N

Pions that
decay at rest
at the surface
of the target
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Muon production
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100% spin polarized
muon beam thanks

m— u+ v, to parity violation
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Example spectra (LF)

o Static order
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« Static disorder
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