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• Type I

– Meissner state: H < HC

– Normal state: H > HC

• Type II

– Meissner state: H < HC1

– Mixed state: HC1 < H < HC2

– Normal State: H > HC
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• Cooper pair of electrons: conventionally 

a spin singlet state

– No net angular momentum

Microscopic mechanism behind 

superconductivity



• Cooper pair of electrons: conventionally 

a spin singlet state

– No net angular momentum

• Unconventional pairing: spin triplet

– Net angular momentum

– Time-reversal symmetry broken

μSR is sensitive enough to detect the low fields (~0.1 G) 

caused by triplet pairing in the superconducting state

Microscopic mechanism behind 

superconductivity



Unusual superconductivity in TiV

• TC of TiV alloys much lower 

than predicted

• Hints of spin fluctuations in 

the presence of 

superconducting state

• Can we see them directly?

– Yes, with muons

• How are they tied to the 

superconductivity?

– …not really sure

Matin et al., Eur. Phys. J. B, 87 131 (2014) 



Fundamentals: the positive muon

• Microscopic particle

– Local probe

• Spin ½ 

– Sensitive to magnetism

• τ1/2 = 2.2 μs

– Independent of material

μSR provides a picture of a the local magnetic 

environment that may be missed by susceptibility 

measurements

μ+



The Muon Source at ISIS
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MuSR instrument 

at ISIS



Sample

F B
H

μ+

After muon pulse 

implanted start 

clock and begin 

counting
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Zero-field studies of Ti55V45

• Exponential term in 

relaxation function 

is evidence for the 

presence of spin 

fluctuations
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• Spin fluctuations appear to 

have an onset temperature 

of ~140 K

𝛬 𝑇 = 𝛬0 1 −
𝑇

𝑇𝑠𝑓

𝑁

+ 𝛬𝐵𝐺

N = 1.54±0.09 ≈ 3/2
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Superconducting state in Ti55V45

• Below TC: characteristic 

depolarization rate 

caused by the vortex 

lattice

• Above TC: small 

residual depolarization 

rate from randomly 

oriented nuclear spins





• Magnetic field distribution of the lattice leads to 

depolarization of the muon ensemble

𝜎 ∝
1

𝜆2
∝
𝑛𝑠
𝑚∗

Decay of 

oscillations

Magnetic 

penetration 

depth

Superconducting carrier 

density

Effective mass



• Isotropic energy gap of 

2.1±0.2 meV

• Expected:

• For TiV

λ = 536±2 nm

2∆𝐵𝐶𝑆
𝑘𝐵𝑇𝐶

= 3.528

2∆𝑇𝑖𝑉
𝑘𝐵𝑇𝐶

= 7.2±0.4



• Predicted TC,pr = 13.7 K (using the McMillan formula)

– 𝑇𝐶,𝑝𝑟 =
𝜃𝐷

1.45
exp −1.04

1+𝜆

𝜆−𝜇∗−0.62𝜆𝜇∗

• Much closer to BCS value

2∆𝑇𝑖𝑉
𝑘𝐵𝑇𝐶,𝑝𝑟

= 3.56



• Predicted TC,pr = 13.7 K (using the McMillan formula)

– 𝑇𝐶,𝑝𝑟 =
𝜃𝐷

1.45
exp −1.04

1+𝜆

𝜆−𝜇∗−0.62𝜆𝜇∗

• Much closer to BCS value

2∆𝑇𝑖𝑉
𝑘𝐵𝑇𝐶,𝑝𝑟

= 3.56
2∆𝐵𝐶𝑆
𝑘𝐵𝑇𝐶

= 3.528



Conclusions

• Spin fluctuations coexist with superconductivity, and 

have an onset temperature of ~140 K

• Temperature dependence of the penetration depth 

fits an s-wave BCS model

• Magnitude of energy gap is too large for measured 

TC

• Are spin fluctuations unconventionally pairing the 

Cooper pairs?  Or are they suppressing the 

conventional singlet superconductivity?



Outlook

• Single crystals + SANS 

study

– Koss, 1976

• Stoichiometry variation 

study with μSR 



Thanks for listening.



Growth & characterization

• GSAS: refined to single 

bcc phase with 

expected Im-3m

spacegroup

Ti55V45

a = 3.1761(1) Å
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Growth & characterization
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Muon production

Carbon target

n

p+

280 MeV



Muon production

n

p+ + n → n + n + π+

n

π+



Muon production

Pions that 

decay at rest 

at the surface 

of the target

π+



Muon production

π+ → μ+ + νμ

νμ

Sν = ½ 

μ+

Sμ = ½ 

100% spin polarized 

muon beam thanks 

to parity violation



• Static order

μ+ μ+ 

μ+ μ+ 
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• Static disorder

μ+ μ+ 

μ+ μ+ 
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