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Abstract

This thesis presents muon spin rotation and relaxation (µSR) studies of various
superconducting materials. µSR studies have been complemented with laboratory
measurements of heat capacity, resistivity, and magnetization. This work contributes
to the body of work surrounding noncentrosymmetric superconductors (NCS) and
unconventional superconductivity.

The intermetallic compound La7Ir3 is found to break time-reversal symmetry
upon transitioning into the superconducting state, elucidated by muon spin relaxation.
The pairing symmetry appears fully gapped, and is well described by an isotropic
s-wave model. Further theoretical analysis of the point group symmetry could
investigate the allowed superconducting states potentially existing here.

The physical properties of the NCS Re3Ta are well described by the conventional
BCS theory of superconductivity. µSR suggests unusual narrowing of the vortex
lattice signal in a region close to Tc, interpreted as motional narrowing due to thermal
motion of vortices. This is supported by irreversible magnetization in a sizable region
in the phase diagram. Ginzburg number and quantum resistance calculations place
Re3Ta intermediate between the high-Tc and conventional low-Tc superconductors.

LuRuB2 and YRuB2, superconducting members of the ternary boride family of
materials, are studied using µSR. Zero-field measurements detect spin fluctuations
exhibiting critical slowing down as the temperature is lowered, suggesting that these
materials lie near a quantum phase transition. These weak fluctuations coexist with
the superconductivity, which is well described by an isotropic, s-wave model for the
pairing symmetry.

The semi-metal Lu3Os4Ge13 is investigated using transverse-field and zero-
field µSR. The superfluid density is well described by a model containing two
superconducting gaps, supporting previously reported heat capacity measurements.
Zero-field measurements below Tc reveal a signal hinting at broken time-reversal
symmetry, however, it does not coincide with the bulk superconducting transition.
Further theoretical work could determine whether this is the first observation of a
novel three-gap multiband superconducting ground state.



Chapter 1

Preface

Since its discovery in 1911, understanding the underlying Physics of superconductiv-
ity has been a major goal of condensed matter research [59]. The microscopic theory
of Bardeen, Cooper, and Schrieffer (BCS), remains to this day a triumph of theoreti-
cal Physics [8]. However, there exist an alarming number of superconductors that
are not well described by the conventional theory [58]. Condensed matter research
has aimed to undercover the Physics of these ‘unconventional’ superconductors for
some time, but despite ardent experimental and theoretical efforts, it still remains
far from a solved problem. As an example of this, consider that the nature of the
pairing mechanism in the high-temperature cuprate superconductors is still not fully
understood, more than 25 years after their discovery [6]. An unconventional super-
conductor is defined as one whose symmetry is different from that expected in the
conventional BCS theory of superconductivity.

In this thesis, the technique of muon spin rotation and relaxation (µSR) lies
at the core of the experimental data in every chapter. µSR is a powerful probe
of local magnetism, and can be applied to a diverse array of different fields. The
basis of the technique relies on our ability to implant 100% spin polarized muons
into matter, and then to be able to observe the subsequent time evolution of the
ensemble polarization. Recently, muons have been used to study Li diffusion in
battery materials [3]; spin-liquid states in a quantum Kagome antiferromagnet [34];
magnetic properties of double perovskites [2]; and harnessed as a novel method of
performing depth-sensitive composition analysis [38]. The µSR technique has also
been applied extensively to studies of the vortex lattice in type-II superconductors.
The crossover from a triangle to a square lattice has been observed in the candidate
chiral p-wave superconductor Sr2RuO4 [66], and the technique is sensitive enough
to measure vortex clustering at low temperatures. One field in which µSR excels is

1
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the detection of time-reversal symmetry braking associated with the formation of
superconducting states that feature triplet pairs of electrons [53, 7, 39]. The following
provides as overview of the compounds studied in each experimental chapter using
this technique.

Since its discovery in 1911, understanding the underlying Physics of supercon-
ductivity has been a major goal of condensed matter research [59]. The microscopic
theory of Bardeen, Cooper, and Schrieffer (BCS), remains to this day a triumph of
theoretical Physics [8]. However, there exist an alarming number of superconductors
that are not well described by the conventional theory [58]. Understanding the
Physics of these ‘unconventional’ superconductors has been a goal of condensed
matter research for a long time, which despite ardent experimental and theoretical
efforts, still remains far from a solved problem. As an example of this, consider that
the nature of the pairing mechanism in the high-temperature cuprate superconduc-
tors is still not fully understood, more than 25 years after their discovery [6]. An
unconventional superconductor is defined as one whose symmetry is different from
that expected in the conventional BCS theory of superconductivity.

In this thesis, the technique of muon spin rotation and relaxation (µSR) lies
at the core of the experimental data in every chapter. µSR is a powerful probe
of local magnetism, and can be applied to a diverse array of different fields. The
basis of the technique relies on our ability to implant 100% spin polarized muons
into matter, and then to be able to observe the subsequent time evolution of the
ensemble polarization. Recently, muons have been used to study Li diffusion in
battery materials [3]; spin-liquid states in a quantum Kagome antiferromagnet [34];
magnetic properties of double perovskites [2]; and harnessed as a novel method of
performing depth sensitive composition analysis [38]. The µSR technique has also
been applied extensively to studies of the vortex lattice in type-II superconductors.
The crossover from a triangle to a square lattice has been observed in the candidate
chiral p-wave superconductor Sr2RuO4 [66], and the technique is sensitive enough
to measure vortex clustering at low temperatures. One field in which µSR excels is
the detection of time-reversal symmetry braking associated with the formation of
superconducting states that feature triplet pairs of electrons [53, 7, 39].

1.1 Thesis overview

Chapter 2, Theoretical overview: A general background to the theory of super-
conductivity is presented, including details from the microscopic theory and the
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penomenological Ginzburg-Landau theory. Results applicable to experimental data
analysis are emphasized.

Chapter 3, Experimental techniques: The wide variety of experimental equip-
ment that has been used to characterize the samples in this thesis is introduced,
with pertinent results applicable to the analysis and interpretation of the raw data
described. This chapter also describes the technique of muon spin spectroscopy in
detail.

Chapter 4, Time-reversal symmetry breaking in La7Ir3: The first experimen-
tal chapter investigates the superconductivity in this noncentrosymmetric intermetal-
lic compound, which appears to exhibit broken time reversal symmetry, and may
therefore have an unconventional superconducting ground-state.

Chapter 5, Probing the noncentrosymmetric superconductor Re3Ta: This
alloy crystallizes in a noncentrosymmetric space group, and exhibits a high amount
of disorder in its structure. This material appears to have a conventional supercon-
ducting ground state, however µSR observations suggest novel vortex dynamics,
which are unusual for such low temperature superconductors.

Chapter 6, Multiband superconductivity in Lu3Os4Ge13: This material has
been found to have an extraordinarily low carrier density, and laboratory measure-
ments suggest that it has multiple superconducting gaps. Muon measurements are
made in an attempt to better understand the superconductivity in this material.

Chapter 7, Superconductivity in LuRuB2 and YRuB2: The boride family of
superconductors have provided a rich variety of interesting Physics, particularly in
the fields of magnetism and superconductivity. This chapter presents a muon study
of a pair of intermetallic ternary boride materials, and investigates the effect of 4f
electrons on the superconductivity.

Chapter 8, Summary and conclusions: A summary of the key findings, chal-
lenges, as well as suggestions for future research are presented.



Chapter 2

Theoretical Background

This section presents an overview of the main features of the theory of superconduc-
tivity, which form a key component of the analysis techniques used in this thesis.
Necessary results from the phenomenological Ginzburg-Landau theory, and the
microscopic theory of Bardeen, Cooper, and Schrieffer, are presented, and some
calculations of the field distribution due to the vortex lattice are outlined.

2.1 Elementary superconductivity

A material is considered to be a superconductor if it exhibits the two distinctive
experimental observations of 1) perfect conductivity, and 2) no magnetic induction,
manifesting below a certain critical temperature, Tc. The first observation tells us
that

ρ = 0 ∀ T < Tc, (2.1)

where ρ is the electrical resistivity. The most convincing evidence for this comes
from measurements of persistent currents in superconducting rings, as depicted in
Fig. 2.1. Upon cooling such a ring below Tc under an applied magnetic field, super-
currents are induced, ensuring that the total flux enclosed by the ring is quantized in
units of the magnetic flux quantum:

Φ0 =
h
2e

≈ 2.068×10−15Wb. (2.2)

Because the resistivity is exactly zero, supercurrent continues to flow upon removal
of the external magnetic field, such that the total flux trapped within the ring remains
constant. Experiments measuring the subsequent time evolution of the trapped field
have found upper bounds on the lifetime of the supercurrent in excess of 100000

4
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Fig. 2.1 Persistent current around a superconducting ring. The current maintains a
constant magnetic flux, Φ, through the superconducting ring.

years, supporting the view that the electrical resistance of a superconductor is exactly
zero. [31].1

Diamagnetism is the tendency of most materials to weakly oppose an applied
magnetic field. A superconductor can be thought of as a perfect diamagnet, in that it
completely expels an applied magnetic field from within its interior, such that the
magnetic induction B⃗ = 0 everywhere. From electrodynamics, we know that the
magnetic induction is related to the applied field, H⃗, and the magnetization, M⃗, by
the equation

B⃗ = µ0(M⃗+ H⃗),

where µ0 is the permeability of free space. This implies that

M⃗ =−H⃗, (2.3)

within the superconductor, i.e. the superconductor acquires a magnetization of the
direction and magnitude required to exactly cancel out any applied magnetic field.
The magnetization is induced by the formation of swirling supercurrents on the
surface of the superconductor. This expulsion of magnetic flux is the Meissner effect,
and is considered to be the true hallmark of superconductivity.

1Strictly speaking this is only true for a type-I material - in type-II superconductors, interactions
between vortices and the crystal structure can lead to a dissipation of energy in the mixed state.
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B(x)=B0e
-
x

λ

λL

B0

Distance

Surface

Fig. 2.2 The London description of the Meissner effect. The applied field B⃗0 is
screened out by surface currents over a characteristic length λL.

One of the first attempts at explaining the Meissner effect was the London theory,
proposed in 1934, which considered the electrodynamics of a perfect conductor. The
main postulate of the model is that some fraction of the conduction electron number
density, n, becomes superconducting at Tc, forming a superfluid with a density ns.
The supercurrent, J⃗s is related to the magnetic vector potential, A⃗, by the equation

J⃗s(⃗r) =− 1
µ0λ 2

L
A⃗(⃗r), (2.4)

where the parameter
λ

2
L =

me

µ0nse2 (2.5)

is the London penetration depth. Equation (2.4) replaces Ohm’s law for a super-
conductor, which is ill-defined in the case of perfect conductivity. The physical
interpretation of λL is made clear by substituting Eq. (2.5) into Ampere’s Law for
the supercurrent, which yields

∇⃗
2B⃗ =

1
λ 2

L
B⃗. (2.6)

The solution of this equation in the case of a constant magnetic field applied to a
superconducting slab is an exponential decay (see Fig. 2.2). The magnetic induction
is screened within a length λL from the surface, approaching B⃗ = 0 deep in the
interior of the superconductor. Thus the Meissner effect emerges naturally from
this theory. Higher superfluid densities, ns, lead to more effective screening of the
magnetic field, and therefore give rise to a smaller London penetration depth.
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Even though superconductivity was discovered as early as 1911, it took some
four and a half decades to construct a satisfactory microscopic description. The 1957
theory of superconductivity presented by Bardeen, Cooper, and Schrieffer (hereafter
denoted BCS theory) remains the framework for modern microscopic theories. The
absence of resistivity below Tc arises as a result of the condensation of free electrons
into a coherent state formed of bound electron pairs. Zero resistivity emerges as a
consequence of this pairing, which can be elucidated by considering scattering in a
normal metal. Scattering centres exist on the crystal lattice, where a typical length
scale is of the order 10−10 m. In a metal, electron velocities are given by the Fermi
velocity, vF, which is typically of order 106 ms−1. Using De Broglie’s relation for
an electron of momentum p = mevF, we find

λ =
h
p
≈ 10−10,

which is the same length scale over which scatterers are distributed. Therefore, we
expect a scattering interaction, which manifests as the phenomenon of resistance.

Under the conventional BCS theory, Cooper pairs are required to have zero total
momentum. The electrons form a spin singlet, and possess equal and opposite linear
momentum. Inserting p = 0 into the De Broglie relation results in a divergence of the
wavelength. This is clearly unphysical, however it does hint at an important property
of the superconducting state: the wavefunction of a superconductor is macroscopic,
and describes all of the Cooper pairs as a coherent ensemble. Evidently, the De
Broglie wavelength of a Cooper pair is orders of magnitude larger than the scattering
centres in the metal. The coherent state of Cooper pairs is thus entirely unaffected by
the scattering centres, allowing unimpeded current flow, and the observed electrical
resistivity is zero as a result.

2.2 Ginzburg-Landau theory

The expulsion of magnetic flux from an ideal superconductor is independent of
whether the magnetic field is applied above or below Tc.2 This independence on the
path chosen through the magnetic phase diagram indicates that superconductivity is
a thermodynamic state of matter, and as such can be described using the language
of thermodynamic potentials. Working with the Gibbs free energy, G(T, H⃗), it can

2Note that this is only strictly true if pinning effects are negligibly small. In real superconductors,
particularly type-II materials, inhomogeneities and impurities in the sample can lead to pinning
centres, which trap magnetic flux and lead to hysteretic behaviour.
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Meissner phase

0 Tc

T0

Hc

H

M
=
-H

HC
H0

M

Fig. 2.3 The first column presents the H-T phase diagram for a type-I superconductor.
The second column shows the associated dependence of the magnetization on the
applied field.

be shown that the difference between the free energies of the superconducting and
normal states in zero field is

Gs(T,0)−Gn(T,0) =−µ0
H2

c
2
, (2.7)

which defines the condensation energy of the superconductor. It is a measure of the
amount by which the total energy is lowered by transitioning to the superconducting
state. The quantity Hc defines the thermodynamic critical field, and is the maxi-
mum strength of an applied field for which superconductivity remains energetically
favourable. Note that baked into this interpretation is the assumption that Eq. (2.3)
remains valid everywhere inside the superconductor. If this is the case, then we
have a type-I superconductor. Most of the elemental pure metal superconductors
are type-I, with Vanadium and Niobium being notable exceptions. The magnetic
phase diagram of a type-I material is presented in Fig. 2.3, together with the expected
dependence of the magnetization on the applied field.

Most superconductors that have been discovered are in fact able to maintain
superconductivity in much higher magnetic fields. In this case we have a type-II

superconductor, where above a certain threshold field, Hc1, the superconductor allows
magnetic flux to partially penetrate its interior. This allows the superconductivity
to persist up to a much higher applied magnetic field strength, Hc2. Above Hc2 the
material returns to the normal state, and below Hc1 the superconductor is fully in the
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Meissner phase

Mixed state

0 Tc

T0

Hc2

Hc1

H

M
=
-H

HC1 HC2HC
H0

M

Fig. 2.4 The first column presents the H-T phase diagram for a type-II superconductor.
The second column shows the associated dependence of the magnetization on the
applied field.

Meissner state. The magnetic phase diagram is depicted in Fig. 2.4, where the region
in which Hc1 < H < Hc2 is called the mixed state. Intuitively, Hc1 and Hc2 are named
the lower and upper critical fields, respectively. The thermodynamic critical field,
Hc also exists for type-II superconductors, however, they do not exhibit any phase
transition at this point. Rather, Hc provides a useful measure of the condensation
energy.

In 1950, Ginzburg and Landau introduced their phenomenological theory of su-
perconductivity (henceforth referred to as GL theory). Whilst it was initially viewed
with some skepticism, it can in fact be derived from the microscopic BCS theory in
the appropriate limit. GL theory has proven to be very powerful in describing the
properties of unconventional superconductors, such as the high-Tc oxides, as well as
superconductors in the dirty limit. The GL theory builds upon Landau’s theory of
second order phase transitions in magnetic materials, postulating the existence of a
complex order parameter which governs the superconductivity:

ψ (⃗r) = |ψ (⃗r)|eiφ (⃗r). (2.8)

ψ is assumed to vanish above Tc, and spontaneously choose a non-zero value below
Tc, in direct analogy to the magnetization in a magnetic material. The modulus of
the superconductor is directly proportional to the superfluid density, ns, and the su-
percurrent is related to the gradient of the phase, ∇⃗φ , throughout the superconductor.
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In the GL theory, it is postulated that the free energy density, f can be written in
the form

fs = fn +α|ψ|2 + β

2
|ψ|4 + h̄

2m
(⃗∇ψ)2 +

1
2
|ψ|2m⃗v2

s +
µ0⃗h2

2
, (2.9)

where v⃗s is the superfluid velocity, and is given by

v⃗s =
1
m
(h̄∇⃗φ −2eA⃗). (2.10)

Here, A⃗ is the magnetic vector potential, which is related to the microscopic field
h⃗ by the equation µ0⃗h = ∇⃗× A⃗. The parameters α and β must be determined
experimentally, where the temperature dependence of α is assumed to follow α =

a(T − Tc), as in the Landau theory. Evidently, if ψ = 0 then the only term that
survives is the free energy density of the normal state, fn. The superconducting
properties are determined by minimising the free energy density with respect to
changes in ψ (⃗r) and A(⃗r).

Two characteristic length scales emerge as a result of the GL theory. The first is
the Ginzburg-landau coherence length, ξ (T ), which can be interpreted as the distance
over which changes in ψ may occur. In general, this depends on the electrical mean
free path, le, and the temperature independent BCS coherence length, defined by
Eq. (2.30). The second is an effective penetration depth, λ (T ), which is proportional
to the London penetration depth λL. Both of these quantities diverge as T → Tc,
however their ratio

κ =
λ (T )
ξ (T )

(2.11)

is expected to be approximately temperature independent. Equation (2.11) specifies
the Ginzburg-Landau parameter, which fully defines the properties of a supercon-
ductor in the GL theory.

Experimentally, one may determine ξ and λ by performing measurements of the
critical fields. The upper critical field yields ξ directly by the equation

µ0Hc2 =
Φ0

2πξ 2(T )
. (2.12)

Hc2 is readily measured via magnetization, resistivity, or heat capacity experiments
in the laboratory. Section 2.6 provides more detail on measurements of the upper
critical field, and details the mechanisms by which magnetic field acts to destroy
superconductivity. The lower critical field is related to the effective penetration depth
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by the equation

µ0Hc1 =
Φ0

4πλ 2(T )
lnκ. (2.13)

Measurements of Hc1 are usually carried out by studying the low-induction mag-
netization behaviour of the superconductor. However, this relies on accurately
determining the point at which flux first begins to penetrate the sample, which is
difficult to determine accurately using this technique. It is better to directly measure
λ using methods such as muon spin rotation in order to calculate the lower critical
field (see Sec. 3.6 for details). The relationship between the two characteristic length
scales and the thermodynamic critical field is given by the GL theory as

µ0Hc =
Φ0

2
√

2πλξ
. (2.14)

Combining Eqs. (2.12) and (2.14), one finds that the Hc2 is related to Hc by

Hc2 = κ
√

2Hc. (2.15)

Clearly if κ < 1/
√

2, then Hc2 < Hc. In this case, no superconductivity exists above
the thermodynamic critical field, and below Hc the superconductor exhibits perfect
flux expulsion. Therefore we have a type-I superconductor. However, if κ > 1/

√
2,

then Hc2 > Hc. Here, superconductivity exists above the thermodynamic critical
field. This is achieved by transitioning into the mixed state, where partial penetration
of magnetic flux occurs. This describes a type-II superconductor. The GL parameter
thus allows us to classify superconductors as type-I or type-II, dependant only on the
value of κ .

2.2.1 Properties of the mixed state

The nature of the mixed state was determined by Abrikosov in 1957 [1]. The key
insight came through calculating the surface energy of interfaces between the normal
and superconducting states in type-I and type-II superconductors. When κ is larger
than 1/

√
2, the surface energy changes from positive to negative. This means that

it becomes energetically favourable to nucleate as many normal-superconducting
interfaces as possible. In the regions of the material which become normal, the
magnetic field is allowed to penetrate, which is why we say that the superconductor
allows partial penetration of magnetic flux in the mixed state. However, the spatial
extent of the normal region is limited by the coherence length, as the superconducting
wavefunction may not change significantly over distances smaller than ξ . Therefore,
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(a) Contour plot of the magnetic field profile
of the vortex lattice.
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(b) Ideal field distribution, P(B), in the
mixed state for different values of λ .

Fig. 2.5 Simulations of the vortex lattice performed using the London model with a
Gaussian cutoff, described in Ref. [43]. The marked points N, •, and � correspond
to the peak field, maximum field, and minimum field, respectively. Simulation
parameters: ⟨B⟩= 300 mT, ξ = 20 nm.

the area of the normal region is proportional to ξ 2. Furthermore, the normal region
must be surrounded by a loop of supercurrent, such that the superconducting region is
screened from the magnetic field contained within. The periodic boundary conditions
on a ring of supercurrent require that the magnetic flux contained within the loop is
an integer number of magnetic flux quanta, Φ0. In the mixed state, the free energy
is minimised when exactly one quantum of magnetic flux is contained within each
normal core.

The picture we start to build up is of an array of magnetic flux filaments, each
containing one flux quantum, penetrating the superconductor in the mixed state.
Each normal core is surrounded by a vortex of swirling supercurrent, which screens
the superconducting region from the magnetic field contained in the core. It must be
the case that the number of vortices per unit area, n, is related to the total magnetic
induction by the equation n = B/Φ0. There is a repulsive force between vortices,
which means that at sufficiently high n the lowest energy configuration is a close
packed triangular vortex lattice. If the applied field is below Hc1, the superconductor
is in the Meissner state, as the free energy gain in allowing partial penetration of
magnetic flux is not beneficial.

The magnetic field profile of a superconductor in the mixed state is displayed
in Fig. 2.5(a). Note that the spatial length scale between vortices is several hundred
nanometers - orders of magnitude larger than the interatomic spacing. The probability
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Fig. 2.6 Field dependence of ⟨∆B2⟩ for a variety of different κ values. This was
calculated using the London model with a Gaussian cutoff following Ref. [19].

distribution associated with this magnetic field profile is displayed in Fig. 2.5(b), and
one can pick out several distinctive features. The peak in the field distribution (�)
corresponds to the saddlepoint in the magnetic field profile. The maximum field (•)
is found in the centre of the normal cores, and the minimum field (N) is found at the
position furthest away from all vortices.

We note from Fig. 2.5(b) that as the penetration depth increases, the field distri-
bution becomes much narrower, and the value of the peak field moves closer to the
average field, ⟨B⟩. In fact, the second moment of the field distribution, ⟨∆B2⟩, can be
directly related to the magnetic penetration depth by the equation

λ
−4 =C⟨∆B2⟩, (2.16)

where C is a parameter that generally depends on the reduced magnetic field, b =

⟨B⟩/Bc2 and the Ginzburg-Landau parameter, κ . The field dependence of ⟨∆B2⟩ is
presented in Fig 2.6, from which some key features can be determined. Starting at
b = 0, the second moment of the ideal vortex lattice increases from zero to a peak
value, before decreasing to zero at b = 1. As κ increases, the peak moves closer to
the point b = 0, and we see that for κ > 50 there is very little variation of ⟨∆B2⟩ in
the vicinity of the peak. In this regime, Eq. (2.16) becomes

⟨∆B2⟩= 0.00371
Φ2

0
λ 4 . (2.17)
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This approximation is only good in the vicinity of the peak value of the second
moment, and we must exclude very small and very large reduced fields, b. In the
limit of very small reduced fields (b ≪ 0.13/κ2), the second moment drops linearly
to zero, and Eq. (2.16) is linear in b:

⟨∆B2⟩= bκ2

8π2
Φ2

0
λ 4 . (2.18)

It should be noted that this is only valid for κ ≥ 5. Also for this κ regime, the
field dependence over almost the entire reduced field range is well described by the
approximation

⟨∆B2⟩= 0.02958
1−b)2

κ4

[
1+1.21(1−

√
b)3
]2
. (2.19)

These approximations are useful when analysing muon spin spectroscopy experi-
ments on type-II superconductors - this will be discussed in detail in Sec. 3.6.

2.3 The microscopic BCS theory

In Sec. 2.1, it was mentioned briefly that the superconducting state occurs when
electrons form Cooper pairs below Tc. In this section we explore this idea in more
detail, and highlight some important results that will be of use in the experimental
chapters of this thesis.

BCS theory is built upon three major insights. The first is that the effective forces
between electrons in condensed matter is not always repulsive as one might expect
in the case of bare electrons. When screening effects are taken into account, the
Coulomb potential decays exponentially with distance; much more rapidly than the
1/r potential that is valid in free space. The nature of the attractive component was
hinted at by the isotope effect. Varying the isotope of elemental superconductors
causes the transition temperature to change, with a functional form that depends
roughly on a power of the atomic mass, M. Because changing the mass of the
atoms in the crystal structure affects the electronic properties, it hints that phonons
play a role in the superconductivity. In fact, the attractive interaction arises due
to phonon emission and absorption between electrons, a phenomenon known as
electron-phonon coupling. In the BCS theory, the interaction potential, Veff, is
assumed to be independent of the wave-vector and frequency of the intermediary
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phonons, and can be written as

Veff(⃗q,ω) =−V. (2.20)

The second key insight underlying BCS theory came when Cooper showed that
electrons at the Fermi surface are unstable in the presence of an arbitrarily small
attractive interaction [27]. By considering two electrons with energies within h̄ωD of
the Fermi energy, EF, Cooper found that these electrons would form a bound state no
matter how small the attractive interaction. The energy of the bound state is given by

E =−2h̄ωDe
− 1

λep , (2.21)

where the dimensionless electron-phonon coupling parameter, λep, is defined by

λep = N(EF)V, (2.22)

and N(EF) is the density of states at the Fermi level. For the elemental superconduc-
tors, λep usually has a value of ∼ 0.3. It is clear from Eq. (2.21) that this bound state
will always exist no matter how small one makes λep.

The final insight for BCS theory is the realization that as long as an attractive
interaction exists at the Fermi level, essentially every electron on the Fermi surface
will form a bound Cooper pair in order to minimise the total energy. In order to treat
this mathematically, Schrieffer proposed a wavefunction that describes a coherent
state of Cooper pairs. A pair creation operator can be defined in terms of the usual
creation operators as

P̂+
k = c+k↑c+−k↓, (2.23)

which has the effect of creating a spin singlet electron pair with zero total crystal
momentum. Then the normalized BCS wavefunction is

|ΨBCS⟩= ∏
k

(
u∗k + v∗kP̂+

k

)
|0⟩, (2.24)

where
|uk|2 + |vk|2 = 1. (2.25)

Here, vk is the probability amplitude that the (⃗k,−⃗k) state is occupied, and uk is
the probability of the empty state. The wavefunction acts on the vacuum state, |0⟩,
which in this case corresponds to the state at the Fermi level with no electrons. To the
find the ground state of the system, it is necessary to minimize the total energy with
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respect to the parameters vk and uk. At T = 0, it is found that a gap forms between
the band of superconducting electrons and the Fermi level. The magnitude of this
gap, |∆|, is the BCS gap parameter, and is related to the parameters of the theory by
the simple equation

|∆|=V ∑
k

ukvk. (2.26)

Above T = 0, the effect of quasiparticle excitations must be accounted for, which
reduce the magnitude of ∆. The temperature dependence of the BCS gap, ∆(T ), is
contained implicitly in the integral equation

1
λep

=
∫ h̄ωD

0
dε

1√
ε2 + |∆(T )|2

tanh

(√
ε2 + |∆(T )|2

2kBT

)
. (2.27)

Here we identify
√

ε2 + |∆(T )|2 as the excitation spectrum for quasiparticles excited
above the BCS groundstate, and the integration variable, ε , is the energy of the
electrons measured with respect to the Fermi level. Solving the BCS gap equation in
the limit as T → 0 leads to the zero temperature value of the energy gap, given by

2∆0

kBTc
= 3.528. (2.28)

Here kB = 8.617×10−2 meVK−1 is the Boltzmann constant, and 2∆0 can be inter-
preted as the energy required to break apart a Cooper pair. Also, at Tc, ∆ → 0, and
we can calculate the BCS equation for Tc:

kBTc = 1.13h̄ωDe
− 1

λep . (2.29)

Note the similarites between this equation and Cooper’s original expression for the
energy of a Cooper pair, Eq. (2.21). The typical spacing of electrons in a Cooper pair
is encoded in the BCS coherence length, ξ0, which is related to the superconducting
energy gap and the Fermi velocity vF by the equation

ξ0 =
h̄vF

π∆
. (2.30)

The Fermi velocity on a spherical Fermi surface is related to the carrier density and
the effective mass by the equation:

n =
1

3π2

(
m∗vF

h̄

)3

. (2.31)
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Approximate formula
Numerical solution
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Fig. 2.7 Data points are the results of a numerical solution to Eq. (2.27). The solid
line is the approximation to the BCS gap, given by Eq. (2.32)

The BCS gap equation may be solved numerically in order to find ∆(T ). Alterna-
tively, an approximation for the temperature dependence is given by

∆(T ) = ∆0 tanh

{
1.82

[
1.018

(
Tc

T
−1
)]0.51

}
. (2.32)

The results of both of these calculations are presented in Fig. 2.7. In calculations,
the approximate form is used in order to improve computation time. As a final
observation, we note that the superconducting gap ∆(T ) fulfills many of the require-
ments placed on the superconducting wavefunction, ψ(T ), in GL theory. It was
shown by Gor’kov in 1960 that GL theory can in fact be derived from the BCS
theory in an appropriate limit, therefore providing a microscopic explanation of ψ as
describing the coherent state formed by superconducting Cooper pairs. Gor’kov also
showed that ψ is directly proportional to ∆, and thus the interpretation of |ψ|2 as the
observable parameter, ns, was verified.

2.4 Unconventional superconductivity

Built into BCS theory is the assumption that the superconducting gap, ∆0, is isotropic
around the Fermi surface. The Cooper pair is a bound state of spin-singlet electrons,
which have zero total angular momentum (l = 0). In the language of atomic orbitals,
this would be denoted as an s-wave state, similar to the ground state of atomic
hydrogen. A superconductor is said to be fully gapped if the gap function at no
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point on the Fermi surface is equal to zero. Superconductors in which the symmetry
of the gap is not the same as in BCS theory are said to exhibit unconventional

superconductivity. This also encompasses systems in which the Cooper pair is formed
of a spin triplet, rather than a spin singlet, pair of electrons. In fact, the structure of
the superconducting gap is determined by the point group symmetry of the crystal
structure of the superconducting material. This is because any transformations which
leave the crystal structure invariant must also transform the superconducting gap
identically. This requirement to obey the symmetries of the crystal structure can
give rise to a k-dependent gap, in which ∆ does not have the same magnitude in
all directions. This can lead to anisotropy in observable parameters, such as the
magnetic penetration depth and the critical fields. Positions on the Fermi surface
where the gap has a zero value are called nodes, and we can distinguish between
point nodes and line nodes. To account for this, an angular dependence can be
included for ∆ by the equation

∆k = ∆(T )F(θ ,φ). (2.33)

Here ∆(T ) is an angle-independent positive value that denotes the magnititude of the
gap, and the function F gives the angular dependence of ∆k on the Fermi surface. In
cyclindrical symmetry, F = F(φ), and for a spherical Fermi surface F = F(θ ,φ),
where θ and φ are the polar and azimuthal angles, respectively.

The BCS theory is only exact in the weak coupling limit. Whilst there is no
universally accepted cutoff, weak coupling is most commonly considered the case
where λep < 1. If the coupling is stronger, then the effect of the electrons on the
phonons must also be taken into account. For example, phonon frequencies are
affected by the interaction with the electrons. In the strong coupling limit, McMillan
has derived an approximate expression for the critical temperature which replaces
Eq. (2.29):

kBTc =
h̄ωD

1.45
exp
(

1.04(1+λ )

λ −µ∗(1+0.62λ )

)
, (2.34)

where µ∗ is the Coulomb pseudopotential, which accounts for the screened Coulomb
potential between the electrons, and typically has a value between 0.1 and 0.15. A
useful reformulation of this equation allows one to estimate λep from Tc and ΘD:

λep =
1.04+µ∗ ln(ΘD/1.45Tc)

(1−0.62µ∗) ln(ΘD/1.45Tc)−1.04
. (2.35)
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The parameters Tc and ΘD are readily measured via heat capacity and magnetization
measurements in the laboratory.

In order to quantify the resulting deviations in the observable parameters of
the superconductor, the alpha model is used [42], such that the value of the zero
temperature energy gap, ∆0, becomes a variable that can be fitted to data. The
temperature dependence of ∆(T ) is still modelled by the expected BCS expression,
meaning that the model is not self consistent. However, it does allow the magnitude
of any deviation from the BCS theory to be quantified. In the alpha model, the BCS
parameter, Eq. (2.28), is rewritten as

2∆0

kBTc
= α, (2.36)

where the value αBCS = 3.528 yields the BCS value in the weak coupling limit.

2.5 The clean and dirty limit

In many superconducting systems, most notably metallic alloys, a high level of
intrinsic disorder exists in the structure. This can lead to very short values for the
electronic mean free-path. Equation (2.30) defines the BCS coherence length, ξ0,
which is the spatial extent of a Cooper pair. It is expected that if the mean free path
is much larger than ξ0, then scattering effects will have a negligible effect on the
superconductivity. We can define two regimes:

• If ξ0/le ≪ 1, then this is called the clean limit.

• If ξ0/le ≫ 1, then we are in the dirty limit.

The Ginzburg-Landau coherence length, ξ (T ), is the length scale over which the
order parameter, ψ , may vary. In the clean limit, where quasiparticle scattering is
assumed to be negligible, these parameters are related by the equation

ξ (T ) = 0.74ξ0

(
Tc

Tc −T

)1/2

. (2.37)

However, in the dirty limit the GL coherence lenth is reduced, and is given by

ξ (T ) = 0.85
√

ξ0le

(
Tc

Tc −T

)1/2

, (2.38)



CHAPTER 2. THEORETICAL BACKGROUND 20

where there is now an explicit dependence on le. Introducing impurities is therefore
expected to decrease the GL coherence length.

The magnetic penetration depth is also affected by the mean free path. In the
clean limit, we have

λ (T ) =
λL√

2

(
Tc

Tc −T

)1/2

, (2.39)

and in the dirty limit:

λ (T ) = 0.64λL

√
ξ0

le

(
Tc

Tc −T

)1/2

. (2.40)

Therefore the effective penetration depth is increased in the presence of impurities.
Scattering electrons can lead to quasiparticle excitations, lowering the superfluid
density, which in turn leads to less effective screening of magnetic fields. The zero-
temperature limit of the effective penetration depth in a dirty superconductor is given
by the important equation [5]

λ (0) = λL(0)

√
1+

ξ0

le
. (2.41)

Also of interest is the relationship between the Ginzburg-Landau coherence length
and the BCS coherence length at low temperatures in the dirty limit. It is possible to
express the ratio of these two parameters by the relation [5]

ξ (0)
ξ0

=
π

2
√

3

(
1+

ξ0

le

)−1/2

. (2.42)

These considerations also lead to a difference in the definition of the GL parame-
ter, κ . In the clean limit, κ is given by

κ = 0.96
λL

ξ0
, (2.43)

and in the dirty limit:

κ = 0.715
λL

le
. (2.44)
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2.6 Pair-breaking mechanisms and the upper critical
field

In general there are two ways in which a magnetic field suppresses superconduc-
tivity. The first mechanism arises as a result of geometrical considerations of the
vortex lattice. In the mixed state, magnetic flux penetrates the sample in filaments
surrounded by vortices, each containing one quantum of magnetic flux. The number
density of vortices per unit area, n, is related to the applied magnetic field, B, by
the equation n = B/Φ0. Therefore as the magnetic field is increased, the intervortex
spacing must decrease. The size of the normal core is given approximately by ξ , the
coherence length, and thus we can see that if B continues to rise the normal cores will
eventually begin to overlap. At this point, superconductivity is effectively ‘squeezed
out’ of the system, giving rise to the orbital critical field, Horb

c2 :

µ0Horb
c2 =

Φ0

2πξ 2(T )
. (2.45)

In single band superconductors, the maximum orbital critical field may be estimated
from experimental measurements of the slope at Tc by the relation

µ0Horb
c2 (0) =−ATc

dHc2(T )
dT

∣∣∣
Tc
, (2.46)

where A = 0.73 and 0.69 in the clean and dirty limits, respectively.
The second mechanism arises due to Zeeman splitting of spin-singlet Cooper

pairs. Under the alpha model, the Pauli limiting field, HP, is given by

µ0HP = 1.86Tc

(
α

αBCS

)
, (2.47)

where the condition is derived by equating the Zeeman energy with the superconduct-
ing condensation energy. The observed Hc2 will generally feature some contribution
from both of these limiting processes, and the relative magnitudes of the orbital and
Pauli limiting effects are encoded in the Maki parameter:

αM =
√

2
Horb

c2 (0)
HP(0)

. (2.48)

In the limit where HP ≫ Horb
c2 , we have αM = 0, in which case the Pauli pair breaking

effect is negligible and the superconductor is orbital limited. Superconductors that
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break the Pauli limit are of interest due to the possibility of unconventional spin
states of the Cooper pairs.

The influence of orbital limiting, Pauli limiting, and spin-orbit scattering of
quasiparticles on the measured upper critical field is modelled by the Werthamer,
Helfand, and Hohenberg (WHH) theory for single-band, dirty limit superconductors.
The upper critical field is calculated implicitly by the equation

ln
1
t
=

∞

∑
ν=−∞

{ 1
|2ν +1|

−
[
|2ν +1|+ h

t

+
(αMh/t)2

|2ν +1|+(h+λso)/t

]−1}
,

(2.49)

where λso is the spin-orbit scattering rate, t = T/Tc, and

h =−
(

4
π2

)
Hc2(T )/Tc

dHc2(T )/dT |Tc

. (2.50)

In order to determine the validity of analysing superconductors in the WHH formal-
ism, it is necessary to compare the value of αM calculated via Eq. (2.48) with the
alternative equation provided by WHH:

αM =−0.528
dHc2

dT

∣∣∣
Tc
. (2.51)

Requiring agreement between the two values justifies usage of the WHH theory to
analyse the superconducting properties of a given material.

2.7 Applications of the theory of superconductivity

In this section, the important ideas discussed in the previous sections will be summa-
rized, and applied to the experiments one can perform in the laboratory to investigate
superconductivity. In particular, it will be shown how to apply the alpha model to
analyse the heat capacity, transport properties, magnetization, and the superfluid
density of superconductors, as these results will be used extensively in the following
chapters. The superconducting properties are intimately linked with those of the
normal state - this is particularly clear when considering how often a term involving
the Debye frequency appears in the BCS theory. Therefore, an outline of the normal
state properties will also be given.
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2.7.1 Heat capacity

The normal state heat capacity contains contributions from the electronic density
of states, and the phonon modes in the crystal. At room temperature, the heat
capacity is dominated by the phonon contributions, whilst at low temperatures the
electronic contributions become dominant. The heat capacity in the normal state
can be calculated over the full temperature range using the following model which
accounts for the electronic and phononic contributions:

C(T ) = γT +CD(T )+CE(T ). (2.52)

The first term accounts fully for the electronic contribution to the heat capacity,
where the Sommerfeld constant, γ , is related to the density of states at the Fermi
level by the equation

γ =
π2k2

B
3

N(EF). (2.53)

The second term in Eq. (2.52) is the contribution from acoustic phonons, given by
the Debye model

CD(T ) = 9NDkB

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex −1)2 dx, (2.54)

where ΘD is the Debye temperature and ND is the molar density of Debye oscillators.
The final term of Eq. (2.52) accounts for optical phonon modes, which are described
by the Einstein model:

CE(T ) = 3RNE

(
ΘE

T

)2 exp(ΘE/T )
(exp(ΘE/T )−1)2 , (2.55)

where ΘE is the Einstein temperature and NE is the molar density of Einstein os-
cillators. At high temperatures, the total heat capacity is expected to approach the
Dulong-Petit limit,

CDP = 3pR, (2.56)

where R is the gas constant and p is the number of atoms per formula unit cell. [48]
The factor of 3 represents the vibrational degrees of freedom of the atoms in the
crystal lattice.

In the superconducting state, the electronic contribution to the heat capacity is
no longer linear in T . In the BCS theory, the Fermi surface is fully gapped, and
therefore there are no states within kBT of the Fermi level when T ≪ Tc. The heat
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Fig. 2.8 Simulation of the heat capacity in the vicinity of Tc for the BCS value of the
energy gap, ∆0, and two values above and below.

capacity in this case has an exponential dependence of the form C ∝ exp(−∆0/kBTc),
which is indicative of a mechanism with an activation energy of ∆0. We can interpret
this as the thermal excitation of quasiparticles. Unconventional superconductors may
exhibit nodes in the gap function, and therefore we expect this to have the biggest
observable effect at low temperatures [70].

The heat capacity below Tc is calculated via the BCS expression for the normal-
ized entropy [17]:

S
γTc

=− 6
π2

∆0

kBTc

∫
∞

0
dε( f (E) ln f (E)+(1− f ) ln(1− f )), (2.57)

where the integral is over the energies of the normal electrons relative to the Fermi
level, ε; E =

√
ε2 +∆2(T ) is the quasiparticle excitation spectrum, and the Fermi-

Dirac distribution, f (E), is given by

f (E) =
[

exp
(

E
kBT

)
+1
]−1

. (2.58)

The heat capacity is then related to the first derivative of the normalized entropy by
the relation

Csc

γTc
= T

d(S/γTc)

dT
. (2.59)
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In order to fit this expression to experimental data, the approximation for ∆(T ) given
in Eq. (2.32) is used, and the value of ∆0 is allowed to vary from the BCS value, as
in the alpha model (Eq. (2.36)). Simulated plots of the heat capacity for values of
α , above, below, and equal to the BCS value of alpha are presented in Fig. 2.8. A
discontinuity arises in the heat capacity at Tc, where the magnitude of the difference
between the superconducting and normal values, ∆C, is equal to 1.426 in BCS theory.
This is extended by the α-model, where the magnitude of the discontinuity is given
by

∆C
γTc

= 1.426
(

α

αBCS

)2

. (2.60)

The magnitude of the discontinuity is readily measured, and thus allows estimation
of the degree of deviation from the conventional theory of superconductivity.

2.7.2 Superfluid density

We have seen that as T approaches Tc, the magnetic penetration depth, λ , diverges.
It is beneficial for data analysis to work with the superfluid density, ρs, as this
quantity is proportional to the inverse square of the penetration depth, and therefore
approaches 0 as T → Tc. For a constant Fermi velocity, the normalized superfluid
density is given by the equation [64]

ρs ≡
λ−2(T )
λ−2(0)

=
∮

FS
dS

1+2
∫

∞

∆

dE
(

∂ f
∂E

)
E√

E2 −∆2
k

 . (2.61)

This equation provides the link between the magnetic penetration depth and the
microscopic theory of superconductivity. Note that we are averaging over the entire
Fermi surface, which allows the penetration depth arising due to a k-dependent
superconducting gap to be calculated. The appropriate surface element, dS, will
depend on whether the FS has cyclindrical or spherical symmetry.

In a fully gapped superconductor, the superfluid density is expected to plateau as
the temperature is lowered. This is because when the thermal energy, kBT , is much
lower than the pair breaking energy, 2∆0, the superconducting electron density will
not be affected by thermal fluctuations. In the presence of a node, arbitrarily small
thermal fluctuations may cause quasiparticle excitation, leading to a depletion of ns.
The superfluid density at low temperature is in this case expected to vary linearly
with T for line nodes, or as T 2 in the presence of point nodes. This is similar to the
expected low temperature behaviour of the heat capacity.
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In the dirty limit, an analytical expression for calculating the superfluid density
is given by:

ρs =
∆(T )
∆(0)

tanh
(

∆(T )
2kBT

)
, (2.62)

where the approximate BCS formula for ∆(T ), Eq. (2.32) is used.

2.7.3 Resistivity

The normal state resistivity is analysed in the framework of the Bloch-Grüneisen
(BG) model, which describes the resistivity arising due to electrons scattering from
longitudinal acoustic phonons. The temperature dependence of the resistivity, ρ(T ),
is modeled as

ρ(T ) = ρ0 +ρBG(T ), (2.63)

where

ρBG(T ) = 4r
(

T
ΘR

)5 ∫ ΘR/T

0

x5

(ex −1)(1− e−x)
dx (2.64)

is the BG resistivity [14]. The parameter, ΘR, is related to the Debye temperature
of the material, and r is a material dependent constant. The residual resistivity, ρ0,
is the value at which the low temperature resistivity levels off, and is related to the
density of states and the mean free path by

ρ
−1
0 =

2
3

N(EF)e2vFle. (2.65)



Chapter 3

Experimental techniques

3.1 Sample preparation

Polycrystalline samples of Re3Ta, La7Ir3, LuRuB2, and YRuB2 were produced using
a tri-arc furnace. This consists of a trio of tungsten electrodes connected to a DC
welding power supply and a water-cooled copper hearth. A high voltage was applied
to the electrodes, and a current was stabilised by touching the tip of the electrodes to
the base of the copper hearth. By pulling the electrodes away and positioning them
above the sample, a stable arc of current is maintained. Stoichiometric quantities of
the constituent elements were measured and arranged on the copper hearth, before
the sample chamber was sealed and evacuated using a rotary pump. In order to
reduce the effect of oxygen contamination, the chamber was flushed with Argon
and re-evacuated at least 5 times before the electrodes were powered on. The melt
was carried out under a continuous flow of Argon, and the sample was flipped
and re-melted at least three times to improve the homogeneity of the final product.
Generally this initial melt was followed by a longer period of annealing at high
temperature. This was achieved by sealing the samples in quartz tubes that had been
evacuated or left under a partial pressure of Argon, and then transferring the tubes to
a box furnace.

3.2 Magnetization

3.2.1 SQUID Magnetometry

Measurements of magnetization as a function of temperature were performed using
a Quantum Design Magnetic Property Measurement System (MPMS) [56]. A

27
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Fig. 3.1 Schematic diagram of the SQUID magnetometer used to make magnetization
measurements. A magnetic field is applied along the axis of the pick-up coils. The
SQUID is housed inside a superconducting shield, which protects it from external
sources of magnetic field.
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schematic diagram of the magnetometer is presented in Fig. 3.1. The MPMS consists
of a sample probe immersed in a liquid helium bath, surrounded by a jacket of liquid
nitrogen. Measurements between 1.8 K and 400 K are possible, and a magnetic
induction of up to 5 T may be applied using the superconducting magnet. The key
components are the superconducting detection coils through which the sample is
moved, and the superconducting quantum interference device (SQUID) - a ring
of superconducting material that contains two Josephson junctions. The detection
coils are configured as a second-order gradiometer, which consists of an upper
clockwise winding, two central anticlockwise windings, and a final lower clockwise
winding. The SQUID provides an extremely sensitive way of measuring magnetic
fields; however in this configuration the SQUID does not directly measure the
magnetization of the sample, but instead behaves as a highly sensitive current to
voltage converter.

To measure the magnetization of a sample, it must be mounted in a non-magnetic
holder. The sample holder is attached to a sample transport rod, which allows the
entire construction to be inserted into the sample space. The top end of the sample
rod is attached to a stepper motor that drives the sample rod vertically through the
detection coils in discrete steps. Discrete steps are possible because the components
of the detection circuit are all made of superconducting materials - the induced
current in the coils due to the motion of the magnetized sample does not decay as
it would in a normal conductor. During a single measurement the sample is moved
symmetrically about the centre of the pick-up coils, typically over a scan length
of 4 cm divided into 32 points. The induced current in the detection coils couples
inductively to the SQUID sensor, which is configured to work as a highly linear
current to voltage converter. Thus the output voltage of the SQUID electronics is
directly proportional to the magnetization of the sample. Calibration using a sample
with known mass and magnetic susceptibility (typically Palladium) thus provides a
highly accurate way of determining the magnetization of unknown samples.

A magnetized sample is expected to behave like an ideal magnetic dipole. In
order for this to be true, the sample must be much smaller than the length of the
detection coils. To find the magnitude of the dipole moment, γ , the experimental
voltage response as a function of position is used to fit the equation

V (x) = α +βx+ γ(2[R2 +(x+δ )2]−
3
2

−[R2 +(x+Ω+δ )2]−
3
2 − [R2 +(x−Ω+δ )2]−

3
2 ),

(3.1)
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Fig. 3.2 Typical voltage response as a function of position for a diamagnetic sample.

where x is the vertical sample position, α is a constant voltage offset, β is a linear
background term, and δ is a vertical offset. The two fixed constants R and Ω are the
longitudinal coil radius (0.97 cm) and the longitudinal coil separation (1.519 cm),
respectively. An example curve is shown in Fig. 3.2 with a plot of Eq. (3.1).

Magnetic units

The MPMS reports magnetization in electromagnetic units, emu, whereas the desired
unit in SI is Am−1. The raw magnetization is first converted into CGS units by
normalizing by the sample volume, where [MCGS] = emu cm−3. The sample volume
may be estimated from the sample mass, and the calculated density based on the unit
cell of the material. This is then converted into the SI system by the simple relation
MSI = 103 MCGS.

The dimensionless magnetic susceptibility, χ , is equal to the ratio of the magneti-
zation and the applied field. The MPMS reports the applied magnetic field in CGS
units of Gauss, which is converted to SI units by the relation HSI = (103/4π) HCGS.
The effective magnetic susceptibility, χeff = MSI/HSI is then expected to lie in the
range [-1,1]. The effects of a finite demagnetization factor, D, may be accounted for
by calculating the corrected value

χ =
χeff

1−Dχeff
. (3.2)
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Setting χ =−1 in Eq. (3.2) (as is expected in the Meissner phase of a superconduc-
tor), leads to an expression for D:

D =
1+χeff

χeff
, (3.3)

where χeff is the measured gradient of the initial magnetization against field.

3.2.2 Vibrating Sample Magnetometry

Measurements of magnetization as a function of field were performed using an
Oxford Instruments Vibrating Sample Magnetometer (VSM). A drawback of SQUID
magnetometry is that the sample must be moved through the pick-up coils after each
temperature and field has been stabilized, such that the magnetization does not change
appreciably over the course of the measurement. This can make measurements of
magnetization as a function of field time-consuming, as the magnetic field must
be stabilized at each value before measuring the magnetization. Use of a VSM
overcomes this, by holding the sample in a fixed position between two pickup coils.
An oscillator is used to stimulate vertical motion of the sample through a small
distance within the coils, with a typical frequency of 60 Hz. The change of flux due
to the motion of the magnetized sample induces a voltage in the coils, which can be
converted into a magnetization based on calibration measurements performed with
a sample of known susceptibility and mass. The VSM used in this work can apply
magnetic fields up to 12 T, and operates between temperatures of 300 K and 1.5 K
with the aid of a Rootes pump.

3.3 Resistivity

Resistivity was measured using a Quantum Design Physical Properties Measurement
System (PPMS), with the alternating-current transport (ACT) option installed. The
system consists of a sample probe mounted in a large helium bath, surrounded by a
nitrogen jacket. A temperature range between 1.8 K and 400 K was attainable, and a
magnetic induction up to 9 T could also be applied.

The four-terminal method was used to make AC transport measurements. As
depicted in Fig. 3.3, two outer wires are used to supply a current to a sample, and two
separate inner wires are used to determine the potential difference across the sample.
The advantage of this method is that the voltage leads draw very little current, which
means that the resistance of the leads and the contacts can be ignored. This allows
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Fig. 3.3 Schematic diagram of a sample configured for a four-probe resistivity
measurement, where L is the distance between the two voltage wires.

very accurate values for the voltage, V , developed across the sample in response to
an input current, I, to be determined. The resistivity, ρ is then calculated using the
equation

ρ =
VA
IL

. (3.4)

Here, A is the cross-sectional area of the sample, and L is the separation of the
voltage wire contacts. These values are measured using Vernier callipers before
preparing the sample for ACT measurements.

Typically, samples were cut into bar shapes with a uniform cross-sectional area,
and four silver wires 0.05 mm in diameter were attached using DuPont 4929N silver
paste. The current leads generate an electric field over the length of the bar shaped
sample, and so it is necessary to attach the voltage wires in line with the current
wires to properly measure the associated potential difference. It is also important
that the current and voltage wires all have distinct contact points, otherwise contact
resistance is no longer negated and can affect the voltage measurement. The wired
sample was then affixed to a sample puck using GE varnish, and the wires were
soldered to the appropriate connectors. The puck was then installed in the sample
chamber using a loading rod.

3.4 Heat capacity

Heat capacity measurements were performed using thermal-relaxation calorimetry
using a Quantum Design PPMS. Temperatures as low as 0.4 K were attainable using
a 3He insert, and measurements were performed in a magnetic induction of up to 9 T.
Samples were prepared with a polished face, which was then mounted on a sapphire
sample stage (chosen for its high thermal conductivity) using Apiezon N or H grease
to ensure good thermal contact. The sample stage has a heater and thermometer
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Fig. 3.4 Heat flow diagram of the heat capacity setup. The heater provides a power P
to the sample platform, and the subsequent evolution of the platform temperature is
monitored. Ideally, the sample has a strong thermal coupling to the platform, such
that Tp ≈ Ts.

attached to the underside, and is suspended on the sample puck by wires attached to a
copper heatsink that is held at a constant temperature. As well as providing electrical
connection for the puck components, the wires allow heat to conduct between the
heat sink and the isolated sample stage.

The heat-flow diagram for the measurement is shown in Fig. 3.4. Here we denote
the unknown heat capacity of the sample by Cs and the combined heat capacity
of the sample mount, including the thermal grease, as an addenda heat capacity
Ca. The thermal conductivity between sample and platform is K2, and the thermal
conductivity between platform and heat sink is K1. Also, we denote the temperatures
of the heat sink, platform, and sample as T0, Tp, and Ts, respectively. If there is very
good thermal conductivity between the sample and the platform (i.e. K2 ≫ K1), then
Tp ≈ Ts, and the heat-balance equation for the system is [50]

P = (Ca +Cs)
dTp

dt
+K1(Tp −T0), (3.5)

where P is the power of the heater. Upon applying a power to the heater, the platform
heats up by an amount ∆T = P/K1. Turning off the heater then allows the sample
and platform to cool to the heat sink temperature T0, following a simple exponential



CHAPTER 3. EXPERIMENTAL TECHNIQUES 34

relaxation of the form
Tp(t) = T0 +∆T exp(−t/τ), (3.6)

where the time constant is given by

τ = (Ca +Cs)/K1. (3.7)

A measurement proceeds by initially applying power to the heater. Measuring
the subsequent thermal relaxation thus allows an exponential model to be fitted,
and the parameter τ to be measured. Thus, the heat capacity of the sample and
addenda can be determined using equation 3.7. Measurements of Ca are usually
made before attaching the sample to the platform, and thus two full temperature
sweeps are required in order to determine first the temperature dependence of Ca,
and then Cs. Also, generally the coupling between the sample and the platform
is not 100%, which leads to a breakdown of the assumption that Tp ≈ Ts. In this
situation, the decay profile of the temperature is the sum of two exponentials of
the form Eq. 3.6, with two relaxation rates τ1 and τ2. It is common that one of the
relaxation rates (generally taken as τ2) is much faster than the other, and corresponds
to thermal relaxation between the platform and the rest of the sample puck. The
software uses the addenda measurements in order to first determine Ca and K1, and
can thus calculate the desired parameter Cs (see Ref. [67] for further details).

It is important to note that this method is most effective if the relative change in
temperature ∆T/T is very small, such that the temperature dependence of the param-
eters Ca and Cs can be ignored over the time of the measurement. This means that
measuring heat capacities close to critical points, such as near the superconducting
transtion, can be challenging, as the heat capacities tend to have a strong temperature
dependence in the vicinity of the critical temperature.

3.5 Structural determination

The atoms in solid materials form ordered structures, which may have a variety
of different symmetry properties. The classical model is that of a crystallographic
lattice of points, of which to each a basis set of atoms is affixed. The entire crystal
structure can be constructed by identifying the basic building block, called the unit

cell, and determining the symmetry of the crystal lattice. Crystal structures have long
range order, and are thus well suited to being studied using diffraction techniques.
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Fig. 3.5 Bragg’s elementary derivation of the scattering law for reflections from
uniformly spaced layers (Eq. 3.10).

The structural characteristics of samples were probed using X-ray powder diffrac-
tion (XRD). The scattering of X-rays or neutrons from uniformly spaced planes
of atoms can be modelled as specular reflections from an array of equally spaced
parallel lines. The geometric arrangement is shown in Fig. 3.5. It can be shown that
if the interplanar spacing is d and the scattering angle is 2θ , then the path distance,
∆L, for rays reflecting from adjacent planes is

∆L = 2d sinθ . (3.8)

In order to observe a peak, we require that the outgoing waves all interfere construc-
tively. This only occurs if the path difference is equal to an integer number n of
whole wavelengths, λ , such that

∆L = nλ . (3.9)

Combining Eqs. (3.8) and (3.9) leads to the Bragg diffraction condition:

nλ = 2d sinθ , (3.10)
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Fig. 3.6 Debye-Scherrer cones for two particular lattice spacings, d1 and d2, in a
powdered sample.

which is the principle underlying all scattering techniques. It states that if we measure
the scattering intensity over a range of scattering angles for radiation of a known
wavelength, we can infer the inter-planar spacing in the atomic structure of a material.

The analysis above assumes a single perfectly ordered array of atomic planes, and
leads to sharp points in space at the diffraction angles which satisfy Eq. (3.10). In
general, growth of a perfect single crystal is one of the primary hurdles in condensed
matter science, and thus it is fortuitous that the diffraction technique of structural
analysis can be equally well applied to powdered samples. These samples consist
of very many crystallites, typically a few microns in size, all of which are expected
to be randomly oriented. If the crystallites are sufficiently randomly aligned, then
illuminating the sample with radiation of wavelength λ will mean that, purely by
chance, the diffraction condition will be met for a proportion of all the different d

spacings present in the structure.
As an example, consider two interplanar distances in an arbitrary crystal structure,

say d1 and d2 (the situation is depicted in Fig. 3.6). For the first d-spacing d1, a
proportion of the crystallites will be correctly aligned with respect to the incident
beam at an angle of θ1, such that the diffraction condition is met and the scattered
radiation interferes constructively. The same situation will occur for a different
d-spacing, d2 - crystallites aligned at the correct angle θ2 satisfying the diffraction
condition will scatter the radiation constructively. The scattering is azimuthally
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symmetric about the direction of the incident beam, that is, the diffraction condition
is met by all planes which are angled azimuthally at θ1,2 with the incident beam.
This leads to conical trajectories of equal scattering known as a Debye-Scherrer
cone.

In a typical powder-XRD instrument, the detectors are moved to different values
of the scattering angle 2θ along a constant azimuthal angle φ . The Debye-Scherrer
cones from each lattice spacing are therefore crossed by the detector as it moves
between scattering angles, and the intensity of the scattered radiation is collected for
a set duration at each position. This intensity as a function of scattering angle data
can then be compared with the expected theoretical XRD spectra for a particular
sample. All the samples produced in this work were polycrystalline in nature, and
structural determination was carried out using a Panalytical X-Pert Pro diffractometer.
Information about the expected unit cell symmetry was used, together with the
TOPAS software, to refine the lattice parameters of the as-synthesized samples,
and compared with published values in order to assess the sample quality. X-ray
diffraction was also used to check the phase purity of the samples, as anomalous
peaks in the spectra can indicate the presence of an impurity.

3.6 Muon spin spectroscopy

As discussed in the previous chapter, the superconducting state is intimately linked
with magnetic effects. For example, the strongest evidence of a superconducting
transition is the observation of perfect diamagnetism as the superconductor expels
magnetic field from its interior. This can be determined using a bulk magnetization
measurement, such as the SQUID magnetometer introduced in Section 3.2. However,
in the vortex state there exists a magnetic texturing, which is modulated over the
range of a few hundred nanometres. Bulk techniques are ill-suited to working out
the subleties of this magnetic structure, and it is for this reason that we turn to a
local probe of magnetism. Muon Spin Rotation and Relaxation (collectively µSR)
involves implanting spin-polarized positive muons into materials, and observing the
subsequent evolution of the spin vector.

The positive muon is a lepton, and has a mass roughly 1/9 that of the proton.
In fact, for the purposes of µSR, the positive muon is best thought of as behaving
like a ‘light proton’. Its positive charge means that upon implantation in a given
sample, it may sit at interstital positions in the crystal structure, in accordance with
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Fig. 3.7 One of the graphite muon targets used at ISIS.

the electrostatics of the local atomic neighbourhood 1. This leads to another useful
property of the positive muon - its lifetime is independent of the material into which
it is implanted, unlike the negative muon which typically is captured by the nuclei
of the local atoms, and therefore has a material dependent lifetime 2. Lastly, the
positive muon is a fermion, which means that it has a non-zero spin, and thus is
sensitive to magnetic fields. The spin vector precesses when placed in a magnetic
field, with a gyromagnetic ratio γµ = 2π·135.5 MHzT−1. This means that if we can
measure the precession rate of the spin vector, we can determine the perpendicular
component of magnetic field experienced in the locality of the muon.

3.6.1 Muon production

The muons used in this work were produced at the ISIS Pulsed Neutron and Muon
source in Didcot, Oxfordshire, and studied using instruments at the European Muon
Facility. At ISIS, protons are accelerated using a synchrotron to energies of 800 MeV,
corresponding to a speed of 0.86 c. The proton beam is separated into two bunches
before being delivered to the muon and neutron targets. Each proton extraction
delivers 4 µC of protons in two pulses each with a full width at half maxima (FWHM)

1Another possibility is the formation of an exotic bound state with an electron called ‘Muonium’.
The field of muon chemistry is devoted to investigating the interaction of Muonium with matter,
however this aspect of µSR will not form the focus of this thesis.

2The material dependent lifetime has been harnessed recently as a method of depth sensitive
compositional analysis, see for example Ref. [38]
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of 70 ns. The synchrotron operates at a frequency of 50 Hz, meaning that an average
current of 200 µA is delivered to the targets. The double pulses are distributed
between target station 1 and 2 in the ratio 4:1.

The muon target is located in target station 1, upstream of the main neutron
target. The target is made of graphite (see Fig. 3.7), and absorbs about 5% of the
proton current. The ensuing high energy interactions between the protons and the
carbon nuclei result in a shower of pions - a few of the most common decay modes
are shown in Fig. 3.8. Positive pions rapidly decay with an average lifetime of 26 ns
into a muon and a neutrino:

π
+ → µ

++νµ . (3.11)

As this is a two body decay, conservation of linear momentum requires that the muon
and neutrino are emitted with equal and opposite momenta in the rest frame of the
pion. Pions that stop at the surface of the graphite target decay into muons with
an energy of 4.1 MeV. It is these surface muons that are used for the experiments
at the European Muon Facility. The π+ is a spin-zero boson, whereas the µ+ and
νµ are both spin-half fermions. Therefore the spin vectors of these decay particles
must be anti-aligned in order to conserve angular momentum. Parity violation in the
weak interaction requires that the spin vector of neutrinos is always antiparallel to its
momentum. Therefore the spin vector of the muons must also be antiparallel to the
momentum. As the pions decay isotropically in space, the surface muons emitted in
any chosen direction must be 100% spin polarized. This remarkable fact is one of
the key reasons why the µSR technique works.

3.6.2 Muon transport to the experiments

Surface muons from the target are directed to the µSR instruments through an array
of deflectors using magnetic and electric fields. Quadrupole magnets are used in
doublets or triplets to focus the beam in the x, y, and z directions, and dipole bending
magnets select muons of the appropriate momentum bite. A further important step
is stripping contaminant particles from the muon beam - typically these are present
due to the decay of neutral pions into photons, and subsequent pair production of
electrons and positrons. A cross-field electrostatic separator serves this purpose, by
passing particles through a region with a vertical electric field, and a magnetic field
perpendicular to the E-field and the beam direction. By balancing the voltage and
magnetic field appropriately, contaminant positrons are vertically deflected from the
beam, whilst the forces on muons with the appropriate momentum are balanced, and
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Fig. 3.8 Potential decay modes that occur when high energy protons strike the
muon target. The green lines lead to µ+ production, whereas the red lines lead to
contaminant e+ in the muon beam. The dark lines lead to the creation of µ−, which
are either captured by the carbon nuclei of the target, or directed out of the beamline
by magnets.
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they are delivered to the experiment unheeded. The separator introduces a 7° rotation
of the muon spin vector, however as this is applied coherently to all the muons in the
pulse the overall spin polarization is maintained.

The muons arrive at the instruments as double pulses, each with a full width at
half maxima (FWHM) of 80 ns, reflecting the pulsed nature of the proton current from
which they were borne.3 The European Muon Facility consists of three instruments -
EMU, MuSR, and HiFi [30, 33, 46]. The double pulse of muons arriving from the
target is distributed between these instruments using an electrostatic kicker, which
consists of three electrodes: a grounded outer pair and a central anode [29]. Before
the first pulse of muons arrives, the potential on the central anode is powered to
32 kV. This has the effect of deflecting the first pulse of muons equally to the left
and right by an angle of approximately 4°. Each half of the deflected muon pulse
arrives in separate septum magnets, which steer each pulse into the EMU and HiFi
instruments. The second muon pulse arrives 330 ns after the first, in which time the
central anode must power down from 32 kV to neutral. This ensures that the second
pulse experiences no deflection, and the entire bunch of muons is delivered to the
MuSR spectrometer.

3.6.3 Muon implantation

Muons striking matter lose kinetic energy through ionisation of atoms, scattering of
electrons, and Muonium formation, ideally coming to rest at interstitial positions in
the crystal structure. This thermalisation process occurs very rapidly, over a timescale
not exceeding a few nanoseconds, and does not involve magnetic interactions. This
means that depolarization effects during the thermalisation process are insignificant,
and the muons maintain 100% spin polarization. Once implanted, the local magnetic
environment that each muon finds itself located in dictates the subsequent evolution
of the spin vector. If the internal field profile is uniform, the muons will retain their
polarization over the course of a measurement. The presence of a transverse magnetic
field component will cause spin precession, at a frequency given by Eq. (3.14). If
there is a significant site-to-site field variation, either temporal or spatial, then the
muon ensemble will become depolarized. By monitoring this depolarization and the
precession rate, a picture of the internal magnetic field profile in a sample may be
constructed.

3Note that this is longer than the proton pulse width of 70 ns. This is because the pulse shape is
broadened due to the 26 ns decay lifetime of the pions in the muon target.



CHAPTER 3. EXPERIMENTAL TECHNIQUES 42

ϕ
μ+

Muon spin vector

53
M
eV
e +

26
M
eV
e
+

A = 1

A = 1

3

A = 0

Fig. 3.9 Variation of the angular distribution function (Eq. (3.13)) for different
asymmetry parameters, A, corresponding to positrons emitted with different energies.

3.6.4 Asymmetry of the muon decay

The positive muon decays into a positron and two neutrinos with a characteristic
lifetime of τµ = 2.2 µs:

µ
+ → e++νe + ν̄µ . (3.12)

As this is a three body decay, there is a spectrum of different energies and momenta
with which the decay positron can be emitted. The decay positron is emitted prefer-
entially in the direction of the muon spin vector, with an angular distribution given
by the probability function

P(φ) ∝ 1+Acos(φ), (3.13)

where φ is the angle between the muon spin vector and the direction of positron
emission. The parameter A defines the asymmetry, and increases monotonically from
zero as a function of energy of the emitted positron, with a maximum value of A = 1
for the highest energy positrons. Figure. 3.9 shows how the probability function
changes as A is varied. If one integrates over all positron energies, the average value
turns out to be A = 1/3. This baseline value can be increased by filtering out low
energy positrons using degrader materials - however this comes at the expense of
count rate. It is therefore possible to determine how the polarization of the muon
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ensemble evolves over time by counting the decay positrons, as long as the direction
in which they are emitted is taken into account. The next section discusses the role
of geometry on the type of µSR experiment that can be carried out.

3.6.5 Experimental geometries

In this section we will focus on the MuSR instrument, as this was the main instrument
used for the experiments in this thesis. MuSR consists of 64 detectors arranged on
two circular arrays, one of which is pictured in Fig. 3.10. The detector arrays are
centred around a hollow sample space where the muon beam enters the instrument,
into which cryostats can be mounted. Each detector is formed of a plastic scintillator,
lightguide, and photomultiplier tube (PMT). The plastic scintillators are arranged
near to the sample space, and it is here that the decay positrons are detected. Scintil-
lation events produce photons that enter the PMTs via the lightguides. These events
are amplified in the PMTs producing voltage pulses, which are fed into discriminator
electronics. The purpose of this step is to attempt to filter out incorrect detection
events, i.e. the voltage must cross a certain expected threshold in order to be consid-
ered a positron detection from muon decay. The electronics are also synchronized to
the ISIS proton pulse, ensuring that events collected between pulses are discarded.

In the MuSR instrument, muons arrive with their spin vector initially antiparallel
to the momentum vector. Directions are labelled as one would label the sides of
a cube, with a ‘beam’s eye view’ naming convention. We therefore are able to
sort directions into three sets of opposing pairs: U (Up), D (Down), F (Forward), B
(Backward), L (Left), and R (Right). The coordinate system and a schematic diagram
of the relative directions is displayed in Fig. 3.11. Thus, the initial spin polarization
vector points towards the B direction. These positions are important to consider for
data analysis, as data from individual detectors is grouped into these directions and
summed together in order to calculate the asymmetry spectrum (see Sec. 3.6.6 for
details).

The primary magnet on MuSR is a water-cooled, conventional electromagnet,
which is able to produce a magnetic induction of 0.25 T. MuSR is also fitted with an
active zero-field system, which consists of three pairs of compensation coils aligned
in the x, y, and z directions. The aim of these coils is to cancel out stray fields from
other sources, such as the Earth and nearby instruments, in order to achieve a true
zero-field at the sample position. This is especially important for measuring very
weak magnetic effects, such as the presence of spin-triplet Cooper pairs. Using
this system, MuSR is able to achieve a zero-field that is stable to within 1 µT. An
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Fig. 3.10 One half of the MuSR instrument at ISIS. The sample space can be seen
through the central hole, and cryostats are craned in from above. The black spokes
are the lightguides, leading from the plastic scintillation material close to the sample
space to the PMTs arranged on the circular array.

advantage of the MuSR spectrometer is its ability to be rotated through 90°. This
changes whether the primary magnetic field is applied parallel or perpendicular to
the initial spin polarization direction. In zero field, this allows measurements to be
made in both directions, which can help distinguish if small signals are intrinsic to
the sample, or are caused by stray fields. Experiments are typicaly carried out in one
of two geometries, which are discussed in the following sections.

Transverse field µSR

Muon spin rotation experiments align the magnetic field perpendicular to the initial
spin polarization direction. A schematic diagram of the setup is displayed in Fig. 3.12
(a), with the appropriate detector groupings labelled. This transverse field (TF) causes
the muon spins to precess in the x− z plane at the Larmor precession frequency,

ω = γµ |B⃗|, (3.14)
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Fig. 3.11 Geometry for a typical µSR experiment: (a) Defining the co-ordinate sys-
tem, where the initial muon beam points along the z axis, and the initial polarization
direction is anti-parallel to z. (b) ‘Beam’s eye view’ directional naming convention,
used when grouping detectors for data analysis.

where B⃗ = µ0H⃗ is the magnetic induction in Tesla. In this case, the polarization
is monitored in the x and z directions, and the detectors are grouped in the BUFD
directions to reflect this.

Longitudinal and zero-field µSR

Rotating MuSR by 90° allows a longitudinal field (LF) µSR experiment to be carried
out, in which the magnetic field is aligned anti-parallel to the direction of the initial
spin polarization. Muon spin relaxation experiments (also commonly called zero-
field (ZF) µSR) are conducted in the same geometry as LF-µSR, however no field
is applied and the muon depolarization is due solely to the internal magnetism of
the sample. For both of these situations, the polarization evolution only needs to be
monitored along the same direction as the initial spin vector - therefore the detectors
are grouped into the F and B directions as depicted in Fig. 3.12(b).

3.6.6 Measuring the asymmetry spectrum

The general procedure for extracting the time-differential asymmetry of the muon
ensemble requires grouping detectors into the appropriate directions (BF for LF
geometry; BFUD for TF geometry), summing the counting histograms from the
detectors in each group, and then calculating the asymmetry between opposing
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Fig. 3.12 Detector groupings for µSR experiments: (a) TF-µSR. The muon spin
initially points towards the B detector, and a magnetic field is applied along the y
axis. The spin vector precesses in the x− z plane, and the detectors are grouped
into the BUFD directions, where the BF pair monitors the spin polarization in the
z direction, and the UD pair monitors the polarization in the x direction. (b) LF
and ZF-µSR. The magnetic field direction is along the z axis, in which case no
precession is expected. Only the z component of the spin polarization vector needs
to be monitored due to symmetry, which requires only BF detector groupings. Note
that ZF-µSRis the limiting case where H⃗ = 0.

detector groups. In the following example we will consider the B and F groups,
however the mathematics is similar for the U and D directions.

As described previously, the direction of the initial spin polarization is always
pointing towards the backwards direction. The number of counts NB,F detected in
the B and F detectors will be given in general by

NB = N0 exp
(
− t

τµ

)
(1+A0Gz(t)) (3.15a)

αNF = N0 exp
(
− t

τµ

)
(1−A0Gz(t)) (3.15b)

Here α measures the relative efficiencies of the F and B detectors, A0 = A(t = 0) is
the initial asymmetry (which can be assumed to be the same for each detector), N0

is a normalization constant, and Gz(t) is the (unknown) time evolution of the muon
polarization along the z axis. It is the goal of any µSR experiment to determine the
form of Gz(t), as it is this function that contains information about the magnetic
environment in the sample being studied. The exponential term simply describes
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Fig. 3.13 Extracting asymmetry from counts in µSR experiments. The left hand
column is simulated counting data from Eqs. (3.15), with pseudo-random noise added.
The right hand column shows the result of applying Eq. (3.16) to the simulated data.
The underlying polarization function has been varied between rows - the physical
interpretation behind each one is discussed in Sec. 3.6.8. Simulation parameters:
N0 = 106, A0 = 0.28, α = 1.

.
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Fig. 3.14 Simulated decay of the maximum asymmetry as a function of applied
transverse field for TF-µSR. The points highlight commonly used transverse fields
on the MuSR instrument.

the decay of muons into positrons with a lifetime of τµ = 2.2 µs, and the final term
in brackets comes from Eq. (3.13) with φ = 0 and φ = π for the B and F detectors,
respectively. The experimental asymmetry A(t) is then calculated by combining
Eqs. (3.15):

A(t) = A0Gz(t) =
NB(t)−αNF(t)
NB(t)+αNF(t)

. (3.16)

The relative efficiency parameter, α , is generally sample position and environment
dependent, and must be measured independently for each experiment by applying a
weak transverse field - the correct value will cause the calculated asymmetry spectra
to oscillate symmetrically about the time axis. Figure. 3.13 shows a few different
examples of how asymmetry may be calculated from the raw histogram counts for a
few different functional forms of Gz(t), the significance of which will be discussed
in Sec. 3.6.8.

Transverse-field asymmetry spectra

A subtlety arises when analysing TF data that is not important in the LF geometry.
As the muon spin precesses about the magnetic field vector, the oscillation detected
in each individual detector will differ by some phase difference from all of the other
detectors. Now, when it comes to grouping the detectors into U, D, B, and F groups,
the histograms from each individual detector are summed. If the phase difference is
not accounted for, then this process has the effect of reducing the total asymmetry of
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the signal, which is not desirable - we are effectively throwing away a portion of the
data by naively summing the histograms.

One method of reducing this error is to make the detector groupings smaller.
Rather than having 4 groups of 16 detectors each, it is possible to segment the
detectors into 8 groups of 8 detectors, or 16 groups of 4 detectors. This reduces the
phase problem, however, it does make data analysis much harder, as now 8 or 16
separate datasets must be simultaneously processed in order to find the polarization
function Gz(t).

In this thesis, a different method was adopted, which is discussed in detail in
Ref. [65]. By considering the phases of each individual detector, the data from all of
the histograms can be ‘squashed’ into two histograms with orthogonal phases. The
phases are simply related to the position that each detector is located on the circular
array. This method has the advantage of not throwing away any data, and therefore
not artificially reducing the initial asymmetry. The orthogonal histograms may be
processed simultaneously in order to determine Gz(t).

At the time of these experiments, it was possible to apply a magnetic field of
up to 0.25 T using the main MuSR electromagnet, however this is only feasible
for experimental work in LF geometry. The maximum TF that may be applied is
limited by the finite size of the muon pulse width. To see this, consider that the pulse
has a FWHM of 80 ns. Muons at the forefront of the pulse will have entered the
sample, thermalised, and settled at interstitial positions ready to sample the internal
magnetic field before the muons at the back-end of the pulse have even entered the
sample space. In the presence of a transverse magnetic field, the spins of these initial
muons begin to precess immediately, which leads to some initial depolarization of
the muon ensemble, and thus to a loss of initial asymmetry. Mathematically, this
is a convolution of the ideal signal, Eq. (3.15) and the muon pulse shape. For a
Gaussian pulse shape with a width τ ≈ FWHM/2.35, the decay of the asymmetry
as a function of applied field B = ω/γµ is given by the equation

A/A0 = e−
1
2 γ2

µ τ2B2
, (3.17)

which is plotted in Fig. 3.14 for the muon pulse width FWHM = 80 ns.

3.6.7 Sample environment

Samples are mounted on high purity silver sample holders using GE varnish, as
shown in Fig. 3.15. Silver is used as it gives a non-depolarizing background sig-
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Fig. 3.15 (a) A sample of Lu3Os4Ge13 mounted on a silver sample holder using GE
varnish. (b) The sample is covered with a thin layer of silver foil, which improves
thermal stability and acts as an additional heat shield.

nal, which is easily accounted for during data processing.4 The sample holder is
typically mounted in one of a variety of different cryostats that are available on
MuSR. Temperatures as low as 20 mK are attainable using dilution refrigerators,
and a standard He4 cryostat is available for work requiring temperatures no lower
than 1.8 K. Commonly used in this thesis was a sorbtion cryostat, which operates
effectively for temperatures in the range 350 mK to 50 K. In order to reach the lowest
temperatures using this cryostat, He3 is condensed close to the sample, which allows
a finite time at sub-1.8 K temperatures.

3.6.8 Polarization functions

Until now, the form of Gz(t) has been largely ignored. We now consider the expected
forms of this polarization function for a variety of common internal field distributions.
In any system, the local field experienced by a muon originates from the combined
dipolar interactions of nearby nuclear and electronic spins, and the external magnetic
field.

Randomly oriented static field, unique |B⃗|

We first consider a system where each muon experiences a unique magnitude of the
local magnetic field, however each field vector is randomly oriented. The vectors
are also constrained to be static with respect to the muon lifetime, which means that
their fluctuation rate is much lower than the muon decay rate. Consider the evolution

4In LF-µSR the silver adds a constant background term to the asymmetry spectra, whereas in
TF-µSR muons stopped in silver contribute a non-decaying oscillation at a frequency corresponding
to the applied field.



CHAPTER 3. EXPERIMENTAL TECHNIQUES 51

Sμ

B


cos2θ

sin2θ cos(γμBt)

θ

Fig. 3.16 Muon spin precession around the internal magnetic induction vector B⃗.
The muon spin S⃗µ is initially aligned along the z direction, and θ is the angle
between B⃗ and S⃗µ . The projection of the spin vector on the z axis is thus formed
of a time-independent part proportional to cos2 θ , and a time-dependent component
proportional to sin2

θ . The time dependence comes from the precession of the spin
vector about the magnetic field vector at the Larmor frequency, γµB.

of the spin polarization S⃗µ of a single muon in such a local field, B⃗, making an angle
θ with the spin vector as depicted in Fig. 3.16. The spin vector is coaligned with the
z axis, and the muon spin precesses around B⃗ at the Larmor precession frequency.
The z component of the muon spin as a function of time, σz(t), is given by

σz(t) = cos2
θ + sin2

θ cos(γµ |B⃗|t). (3.18)

The average value of the ensemble polarization is found by spatially averaging
Eq. (3.18) over all solid angles, dΩ = sinθdθdφ . Thus the precession function is
given by

Gz(t) =
1

4π

∫
π

0

∫ 2π

0
σz(t)sinθdθdφ

=
1
3
+

2
3

cos(γµ |B⃗|t). (3.19a)
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Randomly oriented static field, Gaussian distributed B⃗

The above argument works for a single magnitude of the magnetic field. However,
in a system of randomly oriented nuclear spins, the resulting dipolar field is well
modelled as a Gaussian distribution. We model the three components of the magnetic
field vector B⃗ = (Bx,By,Bz) as Gaussian distributions, with mean zero and a standard
deviation ∆/γµ :

Bi ∼ N

(
0,

∆2

γ2
µ

)
. (3.20)

The square of the Bi will thus be distributed according to a χ2 distribution with 1
degree of freedom:

B2
i ∼ χ

2(1). (3.21)

The sum of the B2
i , which is equal to the magnitude of the vector squared, |B⃗|2, is

thus distributed according to a χ2 distribution with three degrees of freedom:

|B⃗|2 ∼ χ
2(3). (3.22)

Therefore, the local magnetic field strength, |B⃗| is distributed according to the χ

distribution with three degrees of freedom. After normalizing to ensure the total area
is equal to unity, we find that the probability distribution of |B⃗| is given by

PG(|B⃗|) =
√

2
π

γ3
µ

∆3 |B⃗|
2 exp

(
−

γ2
µ |B⃗|2

2∆2

)
. (3.23)

The corresponding polarization function for this distribution of magnetic fields is
found by integrating the product of Eqs. (3.19) and (3.23) over all field magnitudes,
0 ≤ |B⃗| ≤ ∞. These are standard integrals, and are readily evaluated to give the
Gaussian Kubo-Toyabe polarization function:

GKT
z (t) =

1
3
+

2
3
(1−∆

2t2)exp
(
−1

2
∆

2t2
)
. (3.24)

The first row of Fig. 3.13 was simulated using Eq. (3.24) as the polarization function,
with a field width of ∆ = 0.3 µs−1. This asymmetry spectrum is characteristic of
materials in which the primary contribution to the internal fields is from randomly
oriented nuclear dipole moments.

Applying a longitudinal field shifts the direction of B⃗ towards the z axis. This
has the effect of boosting the 1/3 component, and reducing the 2/3 time dependent
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component. Suppressing the relaxation component of the LF depolarization is
referred to as ‘decoupling’, and allows one to estimate the strength of the local fields.

Fluctuating spins

If the spins giving rise to the dipolar field are fluctuating on a time scale similar or
smaller than that of the muon lifetime, then the muons will experience a time-varying
local magnetic field. In the fast fluctuation (FF) limit, where the fluctuation rate ν is
much larger than the field width ∆, the fluctuations have the effect of averaging out
the local field experienced by the muon ensemble. This ‘motional narrowing’ of the
local field leads to a slower overall relaxation of the spin polarization, which can be
modelled by an exponential function:

GFF
z (t) = exp(−λ t), (3.25)

where the decay rate λ = 2∆2/ν . Fields originating from electronic moments tend
to fluctuate in the fast fluctuation limit, as opposed to nuclear dipole fields, which
are static with respect to the muon lifetime.

Short-range magnetic order

Compounds which order magnetically tend to exhibit a distinct magnetic field
distribution over the unit cell, the strength and direction of which is dependent
on the details of the alignment and interaction type of neighbouring atomic spins.
Muons implanted in such a material will precess at only one, or several, distinct
frequencies, corresponding to the magnitude of the magnetic field at each possible
muon implantation position. Thus the polarization function will consist of a sum of
n oscillatory functions,

Gosc
z =

n

∑
i=1

wi cos(γµBit), (3.26)

where wi is the spectral weight of the i’th oscillation, and Bi is the field magnitude at
each muon implantation position.

Long-range magnetic order

The flux line lattice formed by a superconductor in the mixed state gives rise to a
distinctive field distribution, the shape of which depends in general on the Ginzburg-
Landau parameter κ and the strength of the applied magnetic field. The muons
implanted in the sample effectively randomly sample this field distribution, as



CHAPTER 3. EXPERIMENTAL TECHNIQUES 54

the length scale of the magnetic unit cell tends to be several hundred nanometers.
In principle, the depolarization of the muon ensemble can be used to calculate
the exact form of the internal field structure. However, due to effects such as
polycrystalline averaging, vortex disorder, and the intrinsic instrument response, the
ideal structure is broadened to look like an asymmetric Gaussian distribution. In
general, the polarization time spectra can be modelled as the sum of n Gaussian
damped oscillatory functions [43]:

GGD
z =

n

∑
i=1

wi cos(γµBit)exp
(
−1

2
σ

2
i t2
)
, (3.27)

where σi/γµ is the width of the i’th Gaussian field distribution centred on Bi. From
this we are able to calculate the first and second moments of this distribution:

⟨B⟩= 1
wT

n

∑
i=1

wiBi, (3.28a)

⟨∆B2⟩= 1
wT

n

∑
i=1

wi

[
σ2

i
γ2

µ

+(Bi −⟨B⟩)2

]
, (3.28b)

where wT = ∑wi.

Composite polarization functions

It is very often the case that the local magnetic environment contains contributions
from multiple sources of depolarization or precession. A composite polarization
function may be constructed by multiplying together each of the polarization func-
tions introduced previously. For example, in magnetic materials, the oscillations are
often exponentially damped due to the presence of fast magnetic fluctuations. In this
case, a trial depolarization function can be constructed by multiplying Eqs. (3.26)
and (3.25).

A very commonly observed depolarization behaviour is an exponentially damped
Gaussian Kubo-Toyabe function:

Gexp−KT
z (t) = GFF

z (t)GKT
z (t)

= e−λ t
[

1
3
+

2
3
(1−∆

2t2)exp
(
−1

2
∆

2t2
)]

. (3.29a)

One physical interpretation of this is the coexistence of fast spin fluctuations, and a
static Gaussian nuclear dipole field.
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The role of Fourier transforms

The link between the time domain and the frequency domain can be made clearer
by considering Fourier transformations. A Dirac-delta function in frequency space
corresponds to a pure oscillatory signal in the time domain. In the language of
muons, the frequency distribution is directly proportional to the field distribution,
P(B), as the constant of proportionality is the gyromagnetic ratio γµ . A broad peak
in the frequency domain corresponds to a damped oscillation in the time spectra, and
so a broader field distribution will be observed as a faster depolarization rate in µSR
spectra.



Chapter 4

Time-reversal symmetry breaking in
La7Ir3

4.1 Introduction

In centrosymmetric materials, parity is a good quantum number and no mixing of
pair states is expected. Systems lacking a centre of inversion symmetry exhibit
a nonuniform lattice potential, and give rise to antisymmetric spin-orbit coupling
(ASOC). This leads to a splitting of the Fermi surface into a spin up and spin down
contributions [4]. Cooper pairs are formed of electrons that belong to different parts
of this split Fermi surface - a completely different situation from the conventional
case, which leads to rich and interesting new physics. Another effect of ASOC is the
presence of spin fluctuations, which tend to mix spin-singlet and spin-triplet super-
conducting channels [77]. This mixed-parity state means that NCS superconductors
might be expected to exhibit broken time-reversal symmetry, and non-trivial line
nodes in the order parameter [10].

Whilst non-centrosymmetric superconductors have been known about for a rel-
atively long time [16], it took the discovery of heavy fermion superconductivity
in CePt3Si [9] to catalyse a new era of theoretical and experimental interest in the
field. The discovery was quickly followed by pressure induced superconductivity in
CeRhSi3 [45], CeIrSi3 [76] and CeCoGe3 [68], all of which order antiferromagneti-
cally at ambient pressure. The strong electron correlations present in these systems
tend to complicate the study of the effect of non-centrosymmetry on the superconduc-
tivity. Recently, focus has switched to looking at non-centrosymmetric compounds
formed of the transition metal elements, as the complicating heavy fermion behaviour
due to the presence of f -electrons is avoided. Unconventional superconductivity has

56
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Fig. 4.1 Crystal structure of La7Ir3. La atoms are the large green spheres, whereas the
Ir atoms are smaller, in blue. The a, b and c crystallographic axes are also labelled.

been reported in LaNiC2 [39], however this behavour is relatively rare, as a large
part of this family seems to exhibit conventional spin-singlet superconductivity - for
example, CaPtSi3, CaIrSi3 [72]. Of particular interest in these systems is the effect
of adjusting the spin-orbit coupling by doping of atoms of differing masses. A recent
study found that LaPdSi3 is changed from a type-I to a type-II superconductor by
exchanging Pd for Pt, with both materials exhibiting a fully gapped order parameter
[74]. These results are not incompatible with the thoeretical expectations of NCS
superconductors - they merely suggest that the triplet channel in these materials are
severely suppressed by impurity scattering.

La7Ir3 is a member of a large family of binary 7 : 3 compounds, in which many
members exhibit magnetism or superconductivity. The prototypical structure is given
by Th7Fe3, which crystallizes in the P63mc space group (see Fig. 4.2). Supercon-
ductivity has been reported in La7Ir3 with a transition temperature of Tc = 2.24 K,
although the significance of the lack of inversion symmetry was not noted by the
original authors [32, 75]. The superconducting properties of the related compounds
La7T3 (T = Pd, Rh, Ru) were investigated in Ref. [60]. The superconductivity in
these materials appears to be weakly coupled, especially in the Ru compound.

In this chapter, the superconductivity of La7Ir3 has been characterized using
magnetization, heat capacity, and µSR measurements. Zero-field µSR reveals the
presence of spontaneous static or quasi-static magnetic fields below the superconduct-
ing transition temperature Tc= 2.25 K - a clear indication that the superconducting
state breaks time-reversal symmetry. Furthermore, TF-µSR rotation measurements
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Fig. 4.2 Room-temperature XRD spectra of the La7Ir3 sample. The lower plot is the
difference between the data and the refined spectrum.

suggest that the superconducting gap is isotropic, and that the pairing symmetry of
the superconducting electrons is predominantly s-wave. The results indicate that the
superconductivity in La7Ir3 may be unconventional, and paves the way for further
studies of this family of materials.

4.2 Sample synthesis

A polycrystalline sample of La7Ir3 was prepared by arc-melting stoichiometric
quantities of La (99.9%, Alfa-Aesar) and Ir (99.99%, Alfa-Aesar) using a tri-arc
furnace. After the initial melt, the sample was turned and remelted several times
to ensure homogeneity of the constituent elements. The sample was then sealed
in an evacuated quartz tube, and annealed for 5 days at 800 ◦C. The final material
was very brittle, and crushed easily into a powder for the characterization and µSR
experiments. The material is air sensitive, rapidly developing a dark blue surface
discolouration if exposed to atmosphere. The sample was stored in a glove-box
under an Argon atmosphere, and all preparatory work (e.g. powdering for XRD and
µSR experiments) took place in an inert atmosphere.

4.3 Crystallography

Powder X-ray diffraction measurements were performed using a Panalytical X-Pert
Pro diffractometer, with the resulting data presented in Fig. 4.2. The total count time
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Table 4.1 Crystallographic parameters obtained from the structural Rietveld refine-
ment of the room-temperature powder XRD data of La7Ir3. The goodness of fit is
1.183.

Structure Th7Fe3
Space-group P 63 m c (No. 186)
Lattice parameters

a (Å) 10.2376(4)
c (Å) 6.4692(3)
Vcell (Å3) 587.19(5)

Atom Wyckoff Position x y z

La1 2a 1/3 2/3 0
La2 6c 0.125(1) 0.875(2) 0.224(1)
La3 6c 0.541(2) 0.459(1) 0.023(3)
Ir1 6c 0.812(2) 0.188(1) 0.270(1)

was limited to less than an hour due to the air sensitivity of the sample. The crystal
structure was Rietveld refined using the TOPAS software [26], and is described well
by a model with only a single phase of the expected Th7Fe3 non-centrosymmetric
structure. The refined lattice parameters are a = 10.2376(3)Å and c = 6.4692(3)Å,
with the full results given in Tab. 4.1. This is in good agreement with previously
reported values [32]. No impurity phases were detected in the sample to within the
sensitivity of the measurement.

4.4 Magnetization

Low temperature magnetization measurements were performed using a Quantum
Design 5 T MPMS, as described in Sec. 3.2.1. A small piece of polycrystalline
sample of roughly tetrahedral shape was used, with a mass of 39.600 mg. Fig 4.3
shows the low-temperature magnetic susceptibility χ(T ). The sample was initially
cooled to 1.8 K in zero field, at which point a field of 1 mT was applied. Data
were collected as the sample was warmed to 5 K, and subsequently as the sample
was cooled again under the applied field. A clear superconducting transition is
visible at Tc = 2.25 K, at which point the magnetization of the sample drops sharply.
The data have been corrected with a demagnetization factor D = 1/3, yielding a
value of χ that is close to −1 at the lowest temperatures measured, indicating bulk
superconductivity in this sample.
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Fig. 4.3 Temperature dependence of the magnetic susceptibility, collected in zero-
field cooled (ZFC) and field cooled (FC) regimes under an applied field of 1 mT.
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Fig. 4.4 Field dependence of the magnetization at 1.5 K and 1.8 K after cooling in
zero field. The applied field H has been corrected for demagnetization effects.
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Fig. 4.5 Field dependence of magnetization collected above and below Tc. The upper
critical field is the field where the two curves become irreversible.

The field dependent magnetization was measured using an Oxford Instruments
Vibrating Sample Magnetometer. Figure 4.4 displays low-induction magnetization
against field data after correcting for demagnetization. Below Hc1, the sample is a per-
fect diamagnet, and the magnetic response is linear with gradient M/H =−1. Above
Hc1, flux begins to penetrate the sample, and the magnetization response begins to
deviate from linearity. The data suggest values of µ0Hc1(1.8 K) = 0.90(5)mT and
µ0Hc1(1.5 K) = 1.40(5)mT.

Figure 4.5 presents a high-induction magnetization hysteresis loop, collected
at a temperature of 1.5 K. The upper critical field is taken as the point where
the magnetic behaviour becomes irreversible, giving µ0Hc2(1.5 K) = 0.42 T and
µ0Hc2(1.8 K) = 0.23 T, above which point the sample returns to the normal state.
Solving Eqs. (2.12) and (2.13) simultaneously, we find estimates of λ (1.5 K)= 600 nm
and ξ (1.5 K) = 28.0 nm. Therefore we can classify La7Ir3 as a type-II superconduc-
tor, as κ = 21.4 ≫ 1/

√
2.

Table 4.2 Summary of the superconducting properties of La7Ir3 determined from
magnetization measurements.

T (K) Hc1 (mT) Hc2 (mT) ξ (T ) (nm) λ (T ) (nm) κ(T )

1.5 1.4(1) 420(5) 28.0(2) 600(20) 21.4(9)
1.8 0.9(1) 227(5) 38.1(4) 740(50) 19(1)
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Fig. 4.6 Temperature dependence of the heat capacity in zero-field plotted on a log-
log scale, with a fit to Eq. (2.52). Inset: close up of the superconducting transition
with the position of Tc marked.

Following Ref. [5], the high field data collected in the normal state at T = 5 K
have been fitted to the following model:

M(H) = Ms +χH, (4.1)

where Ms is the saturation magnetization, and χ is the intrinsic magnetization. This
yields Ms = 78.1(3)Am−1 and χ = 3.885(8)×10−5. The diamagnetic contribution
to the susceptibility from the atoms is found to be χcore = −1.00×10−5 using the
values published in Ref. [57].

4.5 Heat Capacity

Zero-field heat capacity data collected in the temperature range 1.8 K ≤ T ≤ 300 K
are displayed in Fig. 4.6. There is a discontinuity at TC = 2.25 K, indicating the
transition to bulk superconductivity. The discontinuity is slightly rounded from
the ideal peak, however does rise sharply at Tc. The heat capacity in the normal
state has been used to fit the Debye-Einstein model of Eqs. (2.52)-(2.55), with the
results presented in the upper half of Tab. 4.3. At high temperatures, the total heat
capacity approaches the Dulong-Petit limit of 3pR = 249 Jmol−1 K−1, where p = 10
is the number of atoms per formula unit [48]. The magnitude of the heat capacity
discontinuity yields an estimate of αHC = 1.51(5) using Eq. (2.60), which is smaller
than the BCS value of αBCS = 1.764.
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Table 4.3 Summary of the superconducting and normal state properties of La7Ir3
determined from heat capacity measurements. Reported values for La7Rh3 from
Ref. [60] are also presented for comparison.

Property La7Ir3 (present work) La7Rh3 [60]

Normal state

γ (mJmol−1 K−2) 47(1) 48
ΘD (K) 158.8(8) 160
ΘE (K) 46.9(5) -
ND/NE 13.4(6) -

Superconducting state

Tc (K) 2.25(1) 2.6
∆C (mJmol−1 K−1) 110(7) -
∆C/γTc 1.04(7) 1.4
αHC 1.51(5) 1.75
λep 0.61(3) 0.64

4.6 Muon spin rotation and relaxation

4.6.1 Transverse field

Transverse field µSR (TF-µSR) was performed in the field range 10 ≤ µ0H ≤ 50 mT.
The field was applied above Tc before cooling through the superconducting transition
to a temperature of 100 mK, in order to stabilize a well-ordered flux line lattice
in the mixed state of the superconductor. Asymmetry signals collected above and
below Tc are shown in Fig. 4.7. The time evolution of the asymmetry is described
by a sinusoidal function damped with Gaussian relaxation, plus a non-decaying
oscillation that originates from muons stopping in the silver:

GTF(t) = A1 exp
(
−σ2t2

2

)
cos(γµB1t +φ)

+A2 cos(γµB2t +φ). (4.2)

Here, A1 and A2 are the sample and background asymmetries, B1 and B2 are the
average fields in the superconductor and silver, φ is a shared phase offset, and
γµ/2π = 135.5 MHz T−1 is the muon gyromagnetic ratio. The depolarization rate,
σ , is related to the variance of the magnetic field distribution in the superconductor.
The σ values, determined by fitting the data to Eq. (4.2), are displayed in Fig. 4.8(a).
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Fig. 4.7 Representative TF-µSR signals collected (a) above and (b) below Tc in an
applied magnetic field of 30 mT.

The field distribution of the flux line lattice is broadened by the presence of randomly
oriented nuclear magnetic moments in the sample. The depolarization due to this
nuclear dipolar field σN is assumed to be temperature independent, and adds in
quadrature to the contribution from the flux line lattice σFLL:

σ
2 = σ

2
FLL +σ

2
N. (4.3)

A background term was included to account for the nuclear contribution in our
analysis, with the approximately field independent value σN = 0.116±0.003 µs−1.

The depolarization dataset was transposed to show σ as a function of field in
Fig. 4.8(b). The field dependence is calculated using the equations described in
Sec. 2.2.1, and the results of fitting the parameters λ (T ) and Hc2(T ) to the data
are given by the solid lines in the figure. The full temperature dependence of the
inverse-squared penetration depth extracted in this manner is displayed in Fig. 4.9,
with fits to isotropic s-wave gaps in the clean and dirty limits. The full list of fitted
parameters in the clean and dirty limits are presented in Tab. 4.4. The resultant
values for the energy gaps are ∆0|clean = 0.369(3)meV and ∆0|dirty = 0.305(9)meV,
with corresponding values of α|clean = 1.96(2) and α|dirty = 1.57(5). Within error,
the dirty limit value is in agreement with the estimate from the heat capacity of
αHC = 1.51(5). The value of α in this limit is slightly smaller than αBCS = 1.764.
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as described in Sec. 2.2.1.

Fig. 4.8 TF-µSR depolarization rate collected in a range of fields between 10 and 50
mT.

Table 4.4 Results of fitting the inverse squared penetration depth to clean (Eq. (2.61))
and dirty (Eq. (2.62)) models.

Property Unit Clean Dirty

λ−2(0) µm−2 4.31(3) 4.32(3)
Tc K 2.25(2) 2.24(2)
∆0 meV 0.370(6) 0.305(9)
αµ ≡ ∆0/kBTc 1.90(3) 1.57(5)
λ (0) nm 482(2) 482(2)

The absolute value of the magnetic penetration depth at T = 0 is given by both
models as λ (0) = 482(2) nm.

4.6.2 Longitudinal and zero-field

We now consider the results from the zero-field (ZF) and longitudinal-field (LF)
experiments. Figure 4.10 shows the relaxation spectra collected above and below
the superconducting transition temperature in ZF. There is a clear change in the
relaxation behaviour on either side of the transition. The increased relaxation below
Tc has been verified with the MuSR instrument in both longitudinal and transverse
geometries, which requires a physical rotation of the zero-field coils by 90°. There
is no hint of an oscillatory component in the spectra, which would otherwise suggest
the presence of an ordered magnetic structure. In the absence of atomic moments,
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Fig. 4.9 Extracted temperature dependence of the inverse magnetic penetration depth
squared. The results of fitting isotropic s-wave models for the gap in the clean and
dirty limits are displayed as solid and dashed lines, respectively. These correspond
to Eqs. (2.61) and (2.62), respectively.

the depolarization of the muon ensemble is due to the presence of static, randomly
oriented nuclear moments. This behaviour is modeled by the Gaussian Kubo-Toyabe
equation [36]

GKT(t) =
1
3
+

2
3
(1−σ

2
ZFt2)exp

(
−

σ2
ZFt2

2

)
(4.4)

where σZF measures the width of the nuclear dipolar field experienced by the muons.
The spectra are well described by the function

G(t) = A0GKT(t)exp(−Λt)+Abg, (4.5)

where A0 and Abg are the sample and background asymmetries, respectively, and Λ

measures the electronic relaxation rate.
The parameters A0 and Abg are found to be approximately temperature inde-

pendent. The nuclear depolarization rate σZF remains approximately flat, except
as T → 0 K where a slight increase is observed. The electronic relaxation rate Λ

shows a systematic increase below the superconducting transition temperature (see
Fig. 4.11). An exponential relaxation process is generally attributed to the field
distribution arising from electronic spins fluctuating quickly enough to motionally
narrow the effective depolarization of the muons. However, a weak magnetic field of
only 5 mT is enough to fully decouple the muon from this exponential relaxation
channel. This implies that the relaxation mechanism is actually static or quasi-static
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Fig. 4.10 ZF and LF-µSR spectra collected above and below Tc, with least-squares
fits using the model of Eq. (4.5) (solid lines). The effect of applying a small LF field
of 5 mT is also shown.

with respect to the muon lifetime. Furthermore, spin fluctuations associated with the
proximity to a quantum critical point would be expected to exhibit a Curie-Weiss-like
temperature dependence, as opposed to the onset at Tc observed [35].

Thus, it is likely that the source of the ZF signals observed below Tc is unique to
the La7Ir3, and corresponds to the onset of a superconducting channel that breaks
time-reversal symmetry. Aoki et al. have discussed the probable sources of the
spontaneous field in superconductors with TRSB [7]. In systems where the Cooper
pairs have non-zero spin and orbital moments, regions in the sample where the order
parameter becomes spatially inhomogeneous, such as grain boundaries, surfaces,
and impurity sites, act as field sources due to the undamped supercurrents that arise
there [25]. Alternatively, if the Cooper pairs have only non-zero spin moments, a
hyperfine field may be generated at the interstial µ+ sites.

The TRSB signals are observed in the Λ relaxation channel, akin to the NCS
LaNiC2 and Sr2RuO4 [53]. This implies that the sources of field are dilute, producing
a Lorentzian field distribution that is randomly sampled by the muons. If the
field sources are caused by inhomogeneities in the order parameter, one would
expect the Cooper pairs to possess a non-zero orbital momentum. However, the
temperature dependence of the magnetic penetration depth is well described by
an isotropic s-wave model. A further complication for NCS is that the ground
state may be an admixture of spin-singlet and spin-triplet superconductivity. If the
Cooper pairs do indeed have an orbital momentum, it is likely that the effect of
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Fig. 4.11 Temperature dependence of the electronic relaxation rate Λ and the Gaus-
sian relaxation rate σZF. A clear increase at Tc is observed in Λ, whereas σZF remains
relatively constant throughout TC.

polycrystalline averaging, coupled with an assumedly large relative strength of the
singlet to triplet channels, have made its detection difficult, given the sensitivity of
the current experiment.

4.7 Discussion

4.7.1 Critical fields

The T -dependence of the upper critical field as determined from measurements of
χ(H) and µSR are shown in Fig. 4.12. In order to fit the data, we used the WHH
(Werthamer, Helfrand and Hohenberg) theory, which takes into account the effect
of Pauli limiting and spin-orbit scattering of quasiparticles on Hc2 [82]. The result
of the fit is shown as the solid line in Fig. 5.15, and yielded a value for the Maki
parameter of αM = 0.311(7). The upper critical field at T = 0 K is also found to
be µ0Hc2(0) = 0.97(3)T. The validity of using the WHH theory for this sample is
shown by evaluating Eq. (2.51). A linear fit to the upper critical field in the vicinity of
Tc yields dHc2/dT = −0.6 TK−1, which results in the WHH estimate of αM = 0.32.
As this is close to the value of the fitted parameter, the WHH theory is valid.

The Maki parameter measures the relative contributions of the orbital and Pauli-
limiting depairing mechanisms on the measured upper critical field. Using Eqs. (2.47)
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Fig. 4.12 Determination of the upper critical field via magnetization and µSR mea-
surements. The solid line is the result of fitting the WHH model to the data.

and (2.48), the Pauli limiting field is found to be HP(0) = 4.53(6)T, with the orbital
limit HOrb

c2 (0) = 1.00(3)T. To within error, the experimental upper critical field is
equal to the orbital limit. Therefore we can conclude that Pauli limiting effects are
not important in the superconductivity of La7Ir3.

An estimate for the thermodynamic critical field can be made using the α-model
equation [42]

Hc(0) = αTC

(
6γnV

π

)1/2

, (4.6)

where γnV is the Sommerfeld coefficient per unit volume, and is calculated from the
molar volume in units of erg cm−3 K−2. For La7Ir3, γnV = 2660(60) erg cm−3 K−2,
leading to µ0HC(0) = 30.6(5)mT. The low temperature value of κ can then be
calculated using the equation (c.f. Eq. (2.15))

κ =
Hc2√
2Hc

. (4.7)

Using Hc2(0) = 0.97(3)T and µ0HC(0) = 30.6(5)mT yields κ = 22.4(6), confirm-
ing type-II superconductivity in La7Ir3. This is in good agreement with the estimates
of κ made in Sec. 4.4. The T = 0 value of the lower critical field HC1 is estimated
from κ and HC using the equation

HC1 = HC
lnκGL√

2κGL
, (4.8)
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Fig. 4.13 Temperature dependence of Hc1, estimated from magnetization measure-
ments. The zero temperature value was calculated using Eq. (4.8) as described in the
text. The solid line is a plot of Eq. (4.9), with the power δ = 2.5.

which using the above values is HC1 = 3.00(8)mT. This value, as well as the two
values determined from magnetization measurements, are plotted in Fig. 4.13. The
lower critical field can be modelled with the equation

HC1(T ) = HC1(0)

[
1−
(

T
Tc

)δ
]
, (4.9)

where the power, δ , is equal to 2 in the conventional case. The observed Hc1 values
are consistent with δ = 1.6, as plotted in Fig. 4.13. Also, the effective penetration
depth may be estimated from Hc1(0) and Hc(0) by the equation (c.f. Eq. (2.13))

λ
2(0) =

Φ0Hc2(0)
4πH2

C(0)
, (4.10)

which yields λ (0) = 500(20) nm. Within error, this is in agreement with the µSR
value of λ (0) = 482(2) nm. This shows that the results from the µSR study are
consistent with the calculations based on the magnetization and heat capacity experi-
ments.

4.7.2 Electronic properties

In order to find a self-consistent description of the microscopic properties of Re3Ta,
the results of the heat capacity, magnetization, and µSR measurements can be
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combined. The Sommerfeld constant, γ , determined from low temperature heat
capacity, is related to the electronic properties of the system by the equation

γ =
(

π

3

)2/3 k2
Bm∗n1/3

h̄2 , (4.11)

where m∗ is the effective mass of quasiparticles, and n is the quasiparticle number
density per unit volume. A closely related property is the London penetration depth,
which is defined by the normal state properties:

λL =

(
m∗

µ0ne2

)1/2

. (4.12)

In the clean limit, it is possible to use measured values of λ and γ from µSR and
heat capacity measurements to simultaneously solve these equations to find m∗

and n. However, in dirty limit superconductors, this ratio is larger than unity, and
therefore the scattering of electrons in Cooper pairs is expected to interfere with
the superconducting ground state. One consequence is that the penetration depth is
expected to be longer than the (ideal) London penetration depth, where the effective
penetration depth at T = 0 is given by

λ (0) = λL

(
1+

ξ0

le

)1/2

. (4.13)

The GL coherence length is also affected by this dirty limit correction. The rela-
tionship between the BCS coherence length, the mean free path, and the Ginzburg-
Landau coherence length at T = 0, xi(0), is given by [5]

ξ (0)
ξ0

=
π

2
√

3

(
1+

ξ0

le

)1/2

. (4.14)

Equations (4.11)-(4.14), together with Eqs. (2.30) and (2.31), form a system of
equations that can be solved simultaneously to find estimates of the parameters m∗,
n, le, and xi0. This was carried out using the Solve routine in the Mathematica
software, where the measured values γ = 47 mJmol−1 K−2, λ (0) = 482 nm and
ξ (0) = 18.4 nm. The calculation also requires that a value for ∆0 is fixed. The effect
of using the values discerned from the µSR penetration depth measurement in the
clean and dirty limits has been compared in Tab. 4.5.

The BCS coherence length calculated in this manner is smaller than the electronic
mean free path, for both the clean and dirty limit values of the superconducting gap
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Table 4.5 Electronic properties of La7Ir3.

Property Unit Clean (∆0 = 0.370 meV) Dirty (∆0 = 0.305 meV)

m∗/me 13.3 13.0
n 1027 m−3 1.89 2.04
ξ0 nm 18.8 24.0
le nm 116 84.2
ξ0/le 0.163 0.285
λL nm 447 425
vF ms−1 33200 34881

energy. Both values of the ratio ξ0/le are intermediate between the dirty limit, where
ξ0/le ≫ 1, and the clean limit, where ξ0/le ≪ 1. This implies that La7Ir3 is in the
intermediate regime, and may explain why the WHH calculations are applicable to
the upper critical field data.

The values of m∗ and ns can be used to calculate an effective Fermi temperature
for the superconductivity using the equation kBTF = (h̄2/2)(3π2ns)

2/3/m∗. This
yields TF = 522 K, with the ratio TC/TF = 0.0043. Uemura et al. have described a
method of classifying superconductors based on the ratio of the critical temperature
Tc to the effective Fermi temperature, TF. It has been observed that the heavy fermion,
high-TC, organic, fullerene, as well as many other unconventional superconductors
all lie in the range where 0.01 ≤ TC ≤ 0.1 [78, 80, 79]. La7Ir3 is located outside of
this ‘band of unconventionality’, even though the observation of TRSB is highly
unconventional.

4.8 Summary & Conclusions

In conclusion, TF- and ZF-µSR measurements have been carried out on the non-
centrosymmetric superconductor La7Ir3. A spontaneous magnetization is clearly
observed at the superconducting transition temperature, confirming that time-reversal
symmetry is broken in the superconducting state. However, the superconducting
order parameter is described well by an isotropic gap with s-wave pairing symme-
try and enhanced electron-phonon coupling. The results imply that La7Ir3 has a
superconducting ground-state that features a dominant s-wave component, with the
exact nature of the triplet component undetermined. In order to determine if the
superconductivity is nonunitary, further experimental work on high quality single
crystals is vital, coupled with group theory calculations to determine the allowed
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Table 4.6 Properties of the normal and superconducting states in La7Ir3. In order:
superconducting transition temperature; electron-phonon coupling constant under
the McMillan formalism; superconducting energy gap; alpha parameter; Sommerfeld
constant; Debye temperature; Einstein temperature; relative weight of Debye and
Einstein heat capacities; upper critical field; Maki parameter; Pauli limiting field;
orbital limiting field; thermodynamic critical field; lower critical field; GL coher-
ence length; magnetic penetration depth; London penetration depth; GL parameter;
quasiparticle effective mass; superconducting carrier density; BCS coherence length;
electronic mean free path; dirty limit correction; Fermi velocity; Uemura parameter.

Property Unit Value

Tc K 2.25(2)
λep 0.61(3)
∆0 meV 0.370(6)
∆0/kBTc 1.91(2)
γ mJmol−1 K−2 47(1)
ΘD K 158.8(8)
ΘE K 46.9(5)
ND/NE 13.4(6)
µ0Hc2(0) T 0.97(2)
αM 0.311(9)
µ0HP(0) T 4.53(6)
µ0HOrb

c2 (0) T 1.00(3)
µ0Hc(0) mT 30.6(5)
µ0Hc1(0) mT 3.00(8)
ξ (0) nm 18.4(2)
λ nm 482(2)
λL nm 447
κGL 22.4(6)
m∗ me 13.3
n 1027 m−3 1.89
ξ0 nm 18.8
le nm 116
ξ0/le 0.163
vF ms−1 33200
Tc/TF 0.0043
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pairing symmetries. This work paves the way for further studies of the large number
of superconductors in the Th7Fe3 family, in the hunt for unconventional behaviour.



Chapter 5

Probing noncentrosymmetric Re3Ta

5.1 Introduction

Recently work has focused on the superconductivity in the transition metal solid
solutions containing Re, which solidify in the α-Mn NCS crystal structure. A strong
spin-singlet and triplet admixture has been reported in Re6Zr [73], yet a similar
study on Re3W found a weakly coupled spin-singlet superconducting state [12].
Continuing the line of this investigation, we have conducted a detailed study of the
superconductivity in Re3Ta using bulk measurements of the magnetization, heat
capacity, resistivity, and muon spectroscopy. Superconductivity in this material was
first reported by Blaugher and Hulm [16], however no mention was made of the
significance of the non-centrosymmetric structure. To supplement the laboratory
based measurements, we have performed muon spin relaxation and rotation (µSR)
measurements. Spin-triplet Cooper pairs have a non-zero total angular moment, and
thus produce a spontaneous field throughout the sample upon transitioning into the
superconducting state. Zero-field µSR is sensitive to fields as low as 0.1 G, and
can be used to detect the field distribution setup upon the formation of spin-triplet
superconductivity. It is thus an unambiguous method of detecting time-reversal
symmetry breaking, and is a clear signal of unconventional superconductivity. In
transverse-field µSR, the muons randomly sample the field distribution setup by the
flux line lattice in the mixed state, and provide a direct measurement of the magnetic
penetration depth λ . Tracking the temperature dependence of λ establishes whether
the superconducting order parameter is fully gapped, or whether there exist point or
line-nodes on the Fermi surface.
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Fig. 5.2 Powder-XRD data for the Re3Ta sample, with a refinement to a single phase
with the non-centrosymmetric α-Mn structure.

5.2 Sample synthesis

Stoichiometric quantities of Re (99.99%) and Ta (99.999%) were melted together
in a tri-arc furnace under a high-purity Ar atmosphere. A Ti getter was utilized in
order to reduce the effect of gaseous impurities. The as-cast ingot was flipped and
remelted to ensure thorough mixing of the constituent elements. The sample was
sealed inside an evacuated quartz tube and annealed at 800 ◦C for 1 week in order to
stabilise the α-Mn structure and improve sample homogeneity. The final material
was very brittle, and crushed easily to form powders for XRD and µSR experiments.
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Table 5.1 Crystallographic parameters obtained from the structural Rietveld refine-
ment of the room-temperature powder XRD data of Re3Ta. The goodness of fit was
1.314.

Structure α-Mn noncentrosymmetric
Space-group I 4̄ 3 m (No. 217)
Lattice parameters

a (Å) 9.69067(3)
Vcell (Å3) 910.042(8)

Atom Wyckoff Position x y z

Re1 2a 0 0 0
Re2 24g 0.3583(2) 0.3583(2) 0.0440(2)
Re3 24g 0.0901(2) 0.0901(2) 0.2823(2)
Ta1 8c 0.3185(3) 0.3185(3) 0.3185(3)
Ta2 24g 0.3583(2) 0.3583(2) 0.0440(2)

5.3 Crystallography

Powder X-ray diffraction measurements were performed using a Panalytical X-Pert
Pro diffractometer, with the resulting data presented in Fig. 5.2. The crystal structure
was Rietveld refined using the TOPAS software [26], and is described well by a
model with only a single phase of the expected α-Mn non-centrosymmetric structure.
The refined lattice parameter is a = 9.69067(3)Å, with the full results given in
Tab. 5.1. This is in good agreement with published literature [21, 20]. No impurity
phases were detected in the sample to within the sensitivity of the measurement. The
refined structure is not stoichiometric, indicating that there is some uncertainty in
the occupancy of the atomic positions, similar to Re3W [13].

5.4 Magnetization

A Quantum Design 5 T MPMS was used to measure the low temperature magnetic
susceptibility. Figure 5.3 shows the recorded χ(T ) data measured under an applied
field of 1 mT. Both zero-field cooled and field-cooled regimes exhibit a clear dia-
magnetic signal at Tc = 4.68 K. The data have been corrected for the demagnetizing
effect of the sample geometry, and are consistent with a 100% Meissner volume
fraction. The field-cooled data do not return to perfect diamagnetism, indicating that
a portion of magnetic flux is pinned within the body of the superconductor.

The field dependent magnetization was measured using an Oxford Instruments
Vibrating Sample Magnetometer. Figure 5.4(a) displays low-induction magnetization
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Fig. 5.3 Temperature dependence of the magnetic susceptibility, collected via zero-
field cooled (ZFC) and field cooled (FC) methods under an applied field of 1 mT.
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results of fitting to Eq. (5.1) as described in
the text.

Fig. 5.4 Determination of Hc1 from magnetization measurements.
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(b) Normal state magnetization at T = 6 K.

Fig. 5.5 Field dependence of magnetization collected above and below T − c.

against field data after correcting for demagnetization. Below Hc1, the sample is a
perfect diamagnet, and the magnetic response is linear with gradient M/H = −1.
Above Hc1, flux begins to penetrate the sample, and the magnetization response
begins to deviate from linearity. In order to more accurately determine this point, the
deviation from linearity ∆M was calculated. Hc1 was taken as the point at which ∆M

crossed a threshold value of 2 Am−1. A power-law model of the form

HC1(T ) = HC1(0)

[
1−
(

T
Tc

)δ
]

(5.1)

was used to provide an estimate for the lower critical field of µ0Hc1(0) = 2.76(5)mT,
with the power δ = 2.8(1) (see Fig. 5.4(b)). This is larger than the conventional
value of δ = 2.0. The data are also well described by Eq. (5.1) with α fixed to
the conventional value, and this yields a higher value of µ0HC1(0) = 3.22(6)mT,
however the fit is better with the parameter left free. Therefore our estimation for the
lower critical field is µ0HC1(0) = 2.76(5)mT.

Figure 5.5 presents high-induction magnetization hysteresis loops, collected
at temperatures of 1.5 K and 6.0 K. The magnetic behaviour becomes irreversible
below µ0HIrr = 2.3 T, above which point the applied field becomes strong enough
to depin vortices. The transition to the normal state is apparent as a subtle change
of gradient at a much higher field of µ0HC2 = 6.1 T. Solving Eqs. (2.12) and (2.13)
simultaneously allows estimates for the penetration depth and coherence length to
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be made for the temperatures studied. The results of this are presented in Tab. 5.2.
The average value of the Ginzburg-Landau parameter is κ = 65(4), and so we
can classify Re3Ta as a strongly type-II superconductor. This is typical of other
members of this family of superconductors, for example, in noncentrosymmetric
Re3W κ = 50(1) [12].

Table 5.2 Summary of the superconducting properties of Re3Ta determined from
magnetization measurements.

T (K) Hc1 (mT) Hc2 (T) ξ (T ) (nm) λ (T ) (nm) κ(T )

1.8 2.6(3) 5.8(1) 7.48(6) 510(30) 68(4)
2.2 2.4(3) 5.0(1) 8.05(4) 530(30) 66(4)
2.6 2.3(2) 4.5(2) 8.5(1) 550(30) 64(4)
3.0 1.8(2) 3.8(1) 9.2(1) 610(30) 66(4)
3.4 1.6(2) 5.1(1) 10.2(2) 650(30) 64(4)
3.8 1.2(1) 2.32(8) 11.8(2) 750(40) 63(3)

The data collected in the normal state just above TC have been fitted to the model:

M(H) = Nµ tanh
(

µH
kBT

)
+χH, (5.2)

where the first term is the Langevin paramagnetic equation for a two level spin
system, and the second term provides the intrinsic volume magnetic susceptibil-
ity χ . The assumption of a two spin system is justified by the observation of a
Schottky anomaly in the heat capacity at high applied magnetic fields. Fitting the
data in this manner yields N = 31.4(7) f.u.−1 with an associated magnetic mo-
ment µ = 8.7(1)×10−6 µB, and the dimensionless intrinsic volume susceptibility
χSI = 4.75(1)×10−5.

5.5 Electrical Resistivity

Electrical properties were measured using a Quantum Design 7 T PPMS, using
an AC transport option as described in Sec. 3.3. The resisitivity of Re3Ta as a
function of temperature for 1.8 K ≤ T ≤ 300 K in zero applied field is shown in
Fig. 5.6. A sharp superconducting transition is observed at Tc = 4.7 K, with a width
∆TC ≤0.1 K. There is a small dip in the resistivity at TI = 6.9 K, which is most
likely due to the presence of a small amount of superconducting impurity with a
higher transition temperature than the bulk material. No sign of this fraction has
been observed in magnetization, heat capacity, or our µSR results, and there was
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(a) Superconducting transition in zero-field
at TC = 4.7 K. The dashed line is the extrap-
olated Bloch-Grüneisen model showing the
residual resistivity.
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(b) The normal state resistivity, which in-
dicates that Re3Ta is a poor metal. The
solid line is the result of the fit to the Bloch-
Grüneisen model.

Fig. 5.6 Temperature dependence of the resistivity in zero field. A small supercon-
ducting impurity is apparent at TI = 6.9 K, the significance of which is discussed in
the text.

no sign of a secondary phase in the powder XRD spectrum. We therefore conclude
that the results presented here are indicative of the majority α-Mn phase of Re3Ta,
and that the impurity content is negligible. The effect on Tc of applying a magnetic
field is shown in Fig. 5.7. TC is suppressed and the width of the superconducting
transition increases as the magnitude of the applied field is increased.

It is noteworthy that the value of TI = 6.9 K is extremely close to the value
of Tc = 6.78 K reported for this material in the original paper by Blaugher and
Hulm. [16] As there is no temperature dependent data presented in the original
work, it is likely that a similar impurity content produced a misleading value for the
bulk transition temperature. A similar issue occurred in the study of Re3W, [13] in
which the Blaugher paper reports a value of 9 K for the superconducting transition
temperature of the noncentrosymmetric phase. In fact, this is closer to the value
of 9.4 K reported in the phase-pure centrosymmetric Re3W compound, with the
noncentrosymmetric structure becoming superconducting at the lower temperature
of 7.8 K. If a similar mechanism is at play in this system, then it suggests that TI

corresponds to the superconducting transition temperature of a centrosymmetric
form of Re3Ta, which exists as a small impurity phase in our sample.
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Fig. 5.7 Effect of applying magnetic fields of varying strengths on Tc. The fields
were applied in the range 1 T to 5.5 T, in steps of 0.5 T.

In the normal state, Re3Ta is a poor metal, with a shallow negative gradient for
ρ observed upon cooling from room temperature - see Fig. 5.6(b). At 300 K, the
resistivity is 257(1) µΩcm, flattens off to a residual value of ρ0 = 248.5(30) µΩcm
by 10 K. These values yield a residual resisitivity ratio (RRR) of 1.04(1). This
low value for the RRR coupled with the high residual resistivity is similar to the
NCS Re3W. It is likely that a combination of strong electronic scattering, with a
large temperature independent resistivity due to the instrinsic disorder in the Re
and Ta occupancies is responsible for the poor conductivity. The ρ(T ) data above
TC are well described by the Bloch-Grüneisen (BG) model of resistivity (discussed
in Sec. 2.7.3) where acoustic lattice vibrations scatter conduction electrons. [14]
The data have been fitted using Eqs. (2.63) and (2.64), yielding the fit parameters
ρ0 = 248.52(2) µΩcm, ΘR = 300(4)K, and r = 8.9(1) µΩcm. ΘR is an estimate
of the Debye temperature from the resistivity data, and r is a material dependent
constant.

5.6 Heat Capacity

Zero-field heat capacity, C, data collected in the temperature range 0.3 K ≤T ≤ 300 K
are displayed in Fig. 5.8(a). The heat capacity in the normal state has been calculated
over the full temperature range using Eqs. (2.52)-(2.55), with the fit parameters
presented in Tab. 5.3. The Debye temperature calculated in this way is in reason-
able agreement with the estimate of ΘR = 300(4) from the BG model applied to
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with a fit to Eq. (2.52).
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(b) Detail of the superconducting discontinu-
ity, presented as C/T against T 2. The solid
line is the result of the fit to a single-gap
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Fig. 5.8 Temperature dependence of the heat capacity in zero-field.

Table 5.3 Summary of the superconducting and normal state properties of Re3Ta
determined from heat capacity measurements. Reported values for Re3W from
Ref. [13] are also presented for comparison.

Property Re3Ta (present work) Re3W [13]

Normal state

γ (mJmol−1 K−2) 13.1(2) 15.9(6)
ΘD (K) 284.2(2) 228(6)
ΘE (K) 123.4(3) 292(15)
ND/NE 6.84(5) -

Superconducting state

Tc (K) 4.68(2) 7.80(5)
αHC 1.83(2) 1.85(2)
λep 0.64(3) 0.83(4)
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the resistivity data. At high temperatures, the total heat capacity approaches the
Dulong-Petit limit of 3pR = 99.8 Jmol−1 K−1, where R is the gas constant and p = 4
is the number of atoms per formula unit [48].

Figure 5.8(b) displays a close-up of the superconducting heat capacity discontinu-
ity in zero-field. There is a sharp transition at TC = 4.68 K, indicating the bulk nature
of the superconductivity. No discontinuity is apparent at TI = 6.9 K, which supports
the view that the superconducting impurity observed in the electrical resistivity is
negligibly small, and as such the results presented here are representative of the
majority α-Mn Re3Ta phase. The peak of the transition is slightly rounded below TC.
An estimation of the magnitude of the change in heat capacity immediately before
and after becoming superconducting is ∆C/γTC = 1.49±0.05, taking into account
the uncertainty in the exact position of the peak. This is slightly larger than the BCS
expectation of 1.426 for superconductivity in the weak coupling limit.

The low temperature heat capacity data were modelled using Eqs. (2.57)-(2.59),
with the result represented by the solid line in the figure. Under the alpha model,
this yields a value of the parameter αHC = 1.83(1), which is larger than the BCS
value of αBCS = 1.764. This is also consistent with the value estimated from the
magnitude of the discontinutity using Eq. (2.60), which yields αHC = 1.80(2) using
the values of γ and ∆C given in the preceding paragraphs. Thus the shape of the
temperature dependene and the magnitude of the discontinuity are well described by
a BCS model for a single-gap, isotropic superconductor.

Figure 5.9(a) shows the effect of applying a field on the superconducting transi-
tion in heat capacity. The general shape of the transition stays the same, and TC is
suppressed further from the zero-field value as the field is increased. Also apparent
is the increase of the intercept at T = 0 as the applied field strength is increased. A
plot of the field variation of the intercept, γ(H), is presented in Fig. 5.9(b), where
the data have been estimated from linearly extrapolating the measured heat capacity.
It can be seen that γ(H) varies approximately linearly with increasing field, which is
expected for nodeless superconductors [23]. In the presence of nodes the density of
states, and therefore γ , is expected to vary as the square root of the applied field [81].
This suggests that Re3Ta is a conventional s-wave superconductor.

At high magnetic fields (µ0H > 6 T) there is a evidence of a Schottky anomaly,
which arises due to spin states in paramagnetic systems becoming frozen out at low
temperatures (see Fig. 5.10). The Schottky contribution to the heat capacity may be
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Fig. 5.9 Evidence for nodeless superconductivity.

modelled by the addition of a term [85]

CSch = n
(

Eg(H)

kBT

)2 exp(Eg(H)/kBT )
(1+ exp(Eg(H)/kBT ))2 . (5.3)

Here n is the concentration of paramagnetic centres, and

Eg(H) = gµB

√
H2 +H2

0 (5.4)

is the Zeeman energy of the two energy levels, with g the Landê factor, and H and
H0 the magnitudes of the applied and crystal fields, respectively. Fitting the low
temperature heat capacity collected at 7 T and 9 T, we find estimates for the energy
gap of Eg(7T )= 25.6 µeV and Eg(9T )= 29.9 µeV. Solving Eq. (5.4) simultaneously
for these two values then yields estimates of g = 0.05 and H0 = 6.4 T. In order to
obtain better estimates of these parameters, it would be necessary to measure the heat
capacity at much higher fields, as only a portion of the Schottky peak is observed at
9 T.
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Fig. 5.10 Detail of the low temperature heat capacity in an applied field of 9 T. The
superconductivity is completely suppressed, and there is a evidence of a Schottky
anomaly. The solid line is a fit assuming the anomaly is caused by paramagnetic
centres with two energy levels given by Zeeman splitting.

5.7 Muon-spin Rotation & Relaxation

5.7.1 Zero-field

Muon spin rotation and relaxation experiments have also been carried out in order to
further understand the superconducting nature of this material. Muon spin relaxation
measurements in zero-field can be used to detect the tiny spontaneous magnetization
associated with broken time-reversal symmetry in the superconducting state. The
ZF-µSR spectra collected above and below Tc presented in Fig. 5.11 do not exhibit
a noticeable difference when the sample is superconducting, indicating that time-
reversal symmetry is preserved in Re3Ta. Depolarization of the initially 100% spin-
polarized muon ensemble occurs because of the randomly oriented array of nuclear
dipole moments, as well as electronic spin fluctuations. The nuclear relaxation
component is modelled by the Gaussian Kubo-Toyabe equation [36]

GKT(t) =
1
3
+

2
3
(1−σ

2
ZFt2)exp

(
−

σ2
ZFt2

2

)
, (5.5)

where σZF measures the width of the nuclear dipolar field experienced by the muons.
The asymmetry spectra are well described by the function

A(t) = A1GKT(t)exp(−Λt)+ABG, (5.6)
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Fig. 5.11 Muon spin relaxation spectra collected in zero-field above and below the
superconducting transition temperature. The solid line is the result of a fit to Eq. (5.6)

where A1 is the sample asymmetry, ABG is the time independent background con-
tribution from muons stopped in the silver sample holder, and Λ measures the
electronic relaxation rate that is usually attributed to ‘fast-fluctuation’ effects that
occur on a timescale much shorter than the muon lifetime. Both high and low tem-
perature datasets are found to be well described by Eq. (5.6) with the fit parameters
A1 = 0.1706(4), ABG = 0.0600(8), σZF = 0.278(2) µs−1 and Λ = 0.010(3) µs−1

(solid line in Fig. 5.11).

5.7.2 Transverse field

TF-µSR was performed in the field range 10 mT ≤ µ0H ≤ 50 mT. Typical asymme-
try spectra collected above and below Tc in a field of 30mT is displayed in Fig. 5.12.
The enhanced depolarization rate below Tc is due to the field distribution, P(B),
formed by the flux line lattice in the mixed state of the superconductor. Measuring
the width of this field distribution allows the magnetic penetration depth, λ , to be
calculated, as discussed in Sec. 2.2.1. The TF spectra are modelled as a sum of n

sinusoidal oscillations, each within a Gaussian relaxation envelope:

Gx(t) =
n

∑
i=1

Ai exp
(
−σ2

i t2

2

)
cos(γµBit +φ), (5.7)

where Ai is the initial asymmetry, σi is the Gaussian relaxation rate, and Bi is the
first moment of the i’th component in the field distribution. There is a phase offset φ ,
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Fig. 5.12 Representative TF-µSR signals collected (a) above and (b) below Tc in
Re3Ta under an applied magnetic field of 30 mT. The solid lines are fits using
Eq. (5.7).

which is shared by each oscillating component, and γµ/2π = 135.5 MHzT−1 defines
the muon gyromagnetic ratio. Our sample was modelled well with n = 2, where
the depolarization rate of the second component σ2 was fixed to 0 during the fitting
process to account for the non-depolarizing muons that stop in the silver sample
holder. In this case, the second moment of the sample is completely determined
by σ1 = σ . Figure 5.13 displays the extracted temperature dependence of the fit
parameters σ and B1,2.

In order to isolate the depolarization due to the flux line lattice, the broadening
due to nuclear dipolar fields, σN, must be subtracted in quadrature from the measured
depolarization rate, σ :

σ
2
FLL = σ

2 −σ
2
N. (5.8)

σN is assumed to be temperature independent, and is determined by measurements
made in the normal state just above Tc. Because κ ≫ 5 and H/Hc2 ≪ 1 in this
material, no field dependence of the depolarization rate is expected. In this regime,
this also means that a simple numerical prefactor relates the second moment of the
vortex lattice field distribution and the inverse squared magnetic penetration depth,
i.e. σFLL ∝ λ−2. Therefore, σFLL is directly related to the superfluid density by the
equation

σFLL(T )
σFLL(0)

=
λ−2(T )
λ−2(0)

. (5.9)
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Fig. 5.13 Transverse field µSR fit results for data collected after field cooling under
an applied field of 30 mT.

Table 5.4 Results of fitting the depolarization rate collected in 30 mT to the model of
Eq. (5.10).

Property Value

σFLL(0) (µs−1) 0.228(2)
Tc (K) 3.97(7)
∆0 (meV) 0.83(7)
αµ ≡ ∆0/kBTc 2.1(2)
σN (µs−1) 0.2603(7)

Combining these equations with the expression for the superfluid density in the dirty
limit (Eq. (2.62)) provides a model for the temperature dependence of the measured
depolarization rate below Tc:

σ(T ) =

√
σ2

FLL(0)
∆2(T )
∆2(0)

tanh2
[

∆(T )
2kBT

]
+σ2

N. (5.10)

The four adjustable parameters are σFLL(0), ∆0, Tc and σN. The results of applying
this model to the data of Fig. 5.13(a) are presented in Tab. 5.4.

The magnitude of the superconducting energy gap leads to a value of αµ = 2.1(2)
This is much larger than the BCS value of 1.724, and is also larger than the estimate
from the heat capacity, αHC = 1.83(2). The zero-temperature value of λ can be
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Fig. 5.14 (a)-(e) Temperature dependence of σ1 over the range of fields studied. (f)-
(j) Temperature dependence of the flux expulsion from the superconductor. between
and internal field.

estimated directly from the value of σFLL(0) using the relation (c.f. Eq. 2.17):

σ2
FLL(0)

γ2
µ

= 0.00371
Φ2

0
λ 4(0)

(5.11)

to give λ = 686(3) nm. This is much larger than the value that seems to be suggested
by the magnetization calculations presented in Tab. 5.2. This discrepancy is discussed
further in Sec. 5.8.3.

A puzzling feature of the fit results is the severely suppressed value of Tc = 3.97(7)K.
Figures 5.14 (a)-(e) show the measured temperature dependences of σ in applied
fields of 10 mT to 50 mT. Upon inspection, it can be seen that σ1 is approximately
field independent above 10 mT, which is to be expected for high-κ superconductors
in the low-field limit. Close to HC1 = 2.90(7)mT the depolarization rate is expected
to increase in value. It is clear from the figure that the onset temperature TCσ at each
field does not appear to coincide with TC = 4.68 K. This cannot be accounted for by
the suppression of Tc with field, as HC2 is several orders of magnitude larger than the
applied field. Evidence that the sample does indeed enter the superconducting state
at the correct temperature is evidenced from the field shift ∆B = B1 −B2, which is
displayed in Fig. 5.14(f)-(j). A clear diamagnetic shift occurs at TC ≈ 4.68 K for all
fields measured. Therefore, the apparent onset temperature in the depolarization data
does not necessarily correspond to the superconducting transition temperature. This
is discussed further in Sec. 5.8.3.
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Fig. 5.15 Determination of the upper critical field via resistivity, magnetization and
heat capacity measurements. Also shown is the irreversibility line, below which
the magnetization hysteresis becomes irreversible. The solid lines are WHH fits as
described in the text.

5.8 Discussion

5.8.1 Critical field calculations

The T -dependence of the upper critical field as determined from measurements of
M(H), C, and ρ , is shown in Fig. 5.15. The data were modelled under the WHH
theory, which takes into account the effect of Pauli limiting and spin-orbit scattering
of quasiparticles on Hc2. The result of the fit is shown as the solid line in Fig. 5.15,
and yields a value for the Maki parameter of αM = 1.31(4), with λSO = 1.3(4). The
upper critical field at T = 0 K is thus found to be µ0Hc2(0) = 7.0(2)T. The spin-orbit
scattering time τSO can be calculated from the fitted spin-orbit scattering parameter
λSO = h̄/(3πkBTCτSO) which produces τSO = 0.13(3) ps. 0.97(3)T. The validity of
using the WHH theory for this sample is shown by evaluating Eq. (2.51). A linear fit
to the upper critical field in the vicinity of Tc yields dHc2/dT = −2.3 TK−1, which
results in the WHH estimate of αM = 1.2. As this is close to the value of the fitted
parameter, the WHH theory is valid, and we can infer that the superconductivity in
La7Ir3 is in the dirty limit. This is backed up by the large residual resistivity, and
small RRR in this sample. The extent of the dirty limit is quantified in a later section.

The Maki parameter measures the relative contributions of the orbital and
Pauli-limiting depairing mechanisms on the measured upper critical field. Us-
ing Eqs. (2.47) and (2.48), the Pauli limiting field in the dirty limit is found to be
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µ0HP(0) = 9.03 T, with the orbital limit µ0HOrb
c2 (0) = 8.4 T. The observed upper

critical field, µ0Hc2(0) = 7.0(2)T, is evidently smaller than both of these fields. The
maximimum field is also suppressed due to spin-orbit scattering.

An estimate for the thermodynamic critical field can now be made using the α

model relation [42]
HC(0)√
γNVT 2

C

=

√
6
π

α. (5.12)

where γNV is the Sommerfeld coefficient per unit volume, and is calculated from the
molar volume in units of erg cm−3 K−2. For Re3Ta, γNV = (3470(50)) erg cm−3 K−2,
leading to µ0HC(0) = 69.7(9)mT.

The Ginzburg-Landau parameter κGL is related to HC and HC2 by the relation

κGL =
HC2√
2HC

, (5.13)

which using HC2(0) = 7.0(2)T and HC(0) = 69.7(9)mT yields κGL = 71(2). This
classifies Re3Ta as a strong type-II superconductor, as this is many times greater than
the threshold value of κGL = 1/

√
2. The lower critical field HC1 is obtained from

κGL and HC using the equation

HC1 = HC
lnκGL√

2κGL
, (5.14)

and using the above values we find HC1 = 2.95(8)mT. This is in excellent agreement
with the values previously estimated from magnetization measurements, and in fact,
fixing the value of HC1(0) in Eq. (5.1) to this calculated value and refitting the data
yields the best description of the data, with the power δ = 2.53(5) (c.f. Fig. 5.4 in
Section 5.4). The characteristic Ginzburg-Landau coherence length at T = 0 K, ξ (0),
is obtained from

HC2(0) =
Φ0

2πξ 2(0)
(5.15)

where Φ0 = 2.068×10−15 Wbm−2 is the magnetic flux quantum. For Hc2 = 7.0(2)T,
ξ (0) = 6.86(10) nm. The effective penetration depth at T = 0, λ (0), can be esti-
mated from the calculation of Hc(0) and the measured HC2(0) by

λ
2 =

Φ0HC2(0)
4πH2

C(0)
, (5.16)
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Table 5.5 Properties of the critical fields in Re3Ta.

Property Unit Value

µ0Hc2(0) T 7.0(2)
αM 1.31(4)
λSO 1.3(4)
µ0HP(0) T 9.0
µ0HOrb

c2 (0) T 8.4
µ0Hc(0) mT 69.7(9)
µ0Hc1(0) mT 2.95(8)
ξ (0) nm 6.86(10)
λ nm 487(9)

which gives the value λ = 487(9) nm. This calculation is consistent with the values
for λ derived from the measured upper and lower critical fields presented in Tab. 5.2.
However, it is much smaller than the value estimated from the µSR experiments,
where λ = 686(3) nm. Possible explanations for this are discussed in Sec. 5.8.3.

5.8.2 Microscopic properties of the superconducting state

In order to find a self-consistent description of the microscopic properties of Re3Ta,
the results of resistivity, heat capacity, and magnetization measurements can be
combined. The Sommerfeld constant, γ , determined from low temperature heat
capacity, is related to the electronic properties of the system by the equation

γ =
(

π

3

)2/3 k2
Bm∗n1/3

h̄2 , (5.17)

where m∗ is the effective mass of quasiparticles, and n is the quasiparticle number
density per unit volume. A closely related property is the London penetration depth,
which is defined by the normal state properties:

λL =

(
m∗

µ0ne2

)1/2

. (5.18)

In the clean limit, it is possible to use measured values of λ and γ from µSR and
heat capacity measurements to simultaneously solve these equations to find m∗ and
n.

In Re3Ta, we suspect that we are in the dirty limit. The evidence for this primarily
comes from the resistivity measurements; however the suppression of Hc2 due to
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scattering from the orbital limit is further evidence of dirty limit superconductivity.
As discussed in Sec. 2.5, the ratio of the BCS coherence length to the electronic mean
free path, ξ0/le, has important ramifications on the superconductivity. In dirty limit
superconductors, this ratio is larger than unity, and therefore scattering of electrons
in Cooper pairs is expected to interfere with the superconducting ground state. One
consequence is that the penetration depth is expected to be longer than the (ideal)
London penetration depth, where the effective penetration depth at T = 0 is given by

λ (0) = λL

(
1+

ξ0

le

)1/2

. (5.19)

The electrical mean free path can be estimated from the residual resistivity, ρ0, by
the equation

le =
3π2h̄3

e2ρ0m∗2v2
F
, (5.20)

where the Fermi velocity is related to the effective mass and the carrier density by

n =
1

3π2

(
m∗vF

h̄

)3

. (5.21)

Finally, a relationship between the BCS coherence length, the mean free path, and
the Ginzburg-Landau coherence length at T = 0, xi(0), is given by [5]

ξ (0)
ξ0

=
π

2
√

3

(
1+

ξ0

le

)1/2

. (5.22)

Equations (5.17)-(5.22) form a system of four equations, which can be simulta-
neously solved for the parameters m∗, n, le, and xi0. This was carried out us-
ing the Solve routine in the Mathematica software, where the measured values
γ = 13.1 mJmol−1 K−2, λ (0) = 487 nm, ξ (0) = 6.86 nm, and ρ0 = 248.5 µΩcm
have been used. The results are presented in Tab. 5.6.

The BCS coherence length calculated in this manner is larger than the electornic
mean free path, with ξ0/le = 2.36. This justifies our previous suspicion that super-
conductivity in Re3Ta occurs in the dirty limit, and thus should be modelled with
the appropriate equations. The low value for the mean free path reflects the intrinsic
disorder in the structure of this material, and accounts for the low RRR and ρ0 that
have been measured. The effective mass is rather large, and using λel−ph = 0.64
yields a value for the bare band-structure effective mass of m∗

band = 10.2 me. We can
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Table 5.6 Electronic properties of Re3Ta.

Property Unit Value

m∗/me 12.6
n 1027 m−3 5.04
ξ0 nm 4.13
le nm 1.75
ξ0/le 2.36
λL nm 266
vF ms−1 48600

calculate the value of the London penetration depth from our values for m∗ and ns by
using Eq. (5.18), which yields λL = 266 nm.

The values of m∗ and ns can be used to calculate an effective Fermi temperature
for the superconductivity using the equation kBTF = (h̄2/2)(3π2ns)

2/3/m∗. This
yields TF = 990 K, with the ratio TC/TF = 0.0047. Uemura et al. have described a
method of classifying superconductors based on the ratio of the critical temperature
Tc to the effective Fermi temperature TF. It has been observed that the heavy fermion,
high-TC, organic, fullerene, as well as many other unconventional superconductors
all lie in the range where 0.01 ≤ TC ≤ 0.1 [78, 80, 79]. Re3Ta is located outside
of this ‘band of unconventionality’, supporting the view that the superconducting
mechanism is primarily conventional.

5.8.3 Discrepancies between muons & bulk measurements

Penetration depth

The estimate of the penetration depth determined from the µSR measurements is
much larger than the estimates one would expect from the critical fields. From the
muon calculations, one estimates λ (0) = 677(6) nm, however this is inconsistent
with the measurements of the critical fields, from which one expects λ (0)= 487(8) nm.
To try and understand this discrepancy, the ideal field distribution from the flux line
lattice for these two penetration depth values has been modelled in Fig. 5.16(a). It
can be seen that the main difference is in the tails of the distribution - the maximum
cut-off field is much larger when λ = 487 nm. The measured field distribution can be
extracted from the µSR time spectra using a maximum entropy method - the result
of doing this is displayed in Fig. 5.16(b), with the simulations overlaid. Evidently
the broadening is the dominant component in what we measure. There is also a
peak at 29 mT, which corresponds to the background signal from muons stopping in
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(a) Ideal field distribution for a vortex lattice
with λ = 487 nm and 677 nm. The other
simulation parameters are ξ = 6.85 nm and
⟨B⟩= 28 mT, which have been kept the same
between the two plots. Inset is a detail of the
tails of the distribution.
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(b) The (un-normalized) maximum entropy
spectrum extracted from the µSR time spec-
tra collected at T = 0.3 K, under an applied
field of 30 mT. Overlaid are the (normalized)
simulations of P(B) from part (a).

Fig. 5.16 Comparing the maximum entropy spectrum constructed from the experi-
mental data with simulations of the ideal field distribution for two different values of
the penetration depth.

the silver sample holder. Many different sources may be causing this broadening,
including the nuclear dipolar field, vortex disorder, polycrystalline averaging, as well
as the intrinsic response function of the instrument.

In order to construct a model for this, the ideal field distribution has been con-
volved with a Gaussian. The nuclear depolarization rate has been measured to have
the field independent value of 0.2603 µs−1. In general, a Gaussian relaxation rate in
the time domain is directly related to the second moment of a Gaussian peak in the
field (frequency) domain, by the equation

⟨∆B2⟩= σ2

γ2
µ

. (5.23)

For the nuclear dipolar field, we find ⟨∆B2
N⟩1/2 = 0.306 mT. At the very minimum,

this is the smallest broadening to which the ideal flux line lattice is subjected to. To
this convoluted distribution, a Dirac-delta function is added at the position of the
background. This sharp peak corresponds to the muons stopping in silver, which do
not depolarize. The relative weight of the background peak to the sample response
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Fig. 5.17 Here.

peak is calculated from the relative asymmetries, A1/A2, and is found to be split
in the ratio 5.2 : 1, sample to background. The entire mixture distribution is then
convolved with another Gaussian of width ⟨∆B2

g⟩1/2, which models the instrument
response broadening. Using ⟨∆B2

g⟩1/2 = 0.23 mT, and the same simulation values as
before, yields the two figures presented in Fig. 5.17. The two models are extremely
similar, and the effect of the long tails in the ideal field distribution is lost due to the
broadening effects.

This problem is typical for high-κ superconductors in the low induction limit,
in which the field distributions tend to feature sharp peaks, with very long tails that
are easily lost due to noise in a real measurement. This can lead to over estimations
of λ , and care needs to be taken when one is measuring these strongly type-II
superconductors with µSR. In this case, it is likely that the value of λ = 686 nm
calculated using Eq. (5.11) is overestimated. The laboratory measurements suggest
a much lower value of λ = 487 nm, and it has been shown that the µSR data is not
in conflict with this if broadening effects are taken into account.

Suppression of the critical temperature

Another puzzling feature of the µSR data is the clear suppression of Tc in the
temperature dependence of the depolarization rate, observed in Fig. 5.18. This is
not explainable as a thermometry calibration error, as the internal field experienced
by the muons exhibits clear flux expulsion at the expected transition temperature.
The explanation may lie in the details of the vortex dynamics in the vicinity of Tc.
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Fig. 5.18 Log plot of the onset temperature determined by the muon spin depolariza-
tion rate collected in a variety of fields, µ0Hµ . For comparison, the corresponding
values of the upper critical field (calculated using the WHH model) and the irre-
versibility line are presented.

Thermal motion of flux lines can lead to motional narrowing of the field distribution
experienced by the muons. In the high-Tc superconductor, BSSCO, a shoulder in
the muon depolarization rate corresponds to the onset of thermal motion of vortices,
and a subsequent narrowing of the field distribution [51]. Motion of the vortex
lattice requires that thermal fluctuations are sufficiently energetic that vortices can be
depinned from the lattice. However, this effect is usually observed experimentally in
the high temperature superconductors, as typically the energy of thermal fluctuations
at the temperatures required for superconductivity in conventional superconductors
are far lower than the energy required to depin vortices.

It has been observed that the magnetization is not reversible throughout the entire
H −T phase diagram, with the depinning line shown in Fig. 5.15. The exact shape
of the depinning line is actually dependent on the sample geometry, and thus cannot
be treated as an intrinsic property of the superconductor [18]. The depinning line
does not represent any form of phase transition, however, its existence does inform
us that the pinning strength is weak in Re3Ta. Thermal and quantum fluctuations are
mechanisms by which depinning may occur. The strength of thermal fluctuations is
quantified by the Ginzburg number [15]:

Gi =
1
2

(
µ0kBTc

εB2
c(0)ξ 3(0)

)
, (5.24)
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which measures the ratio of the critical temperature and the condensation energy in a
coherence volume. The parameter ε measures the anisotropy, which we assume to be
approximately equal to unity for cubic Re3Ta. Using Tc = 4.68 K, ξ = 6.85 nm, and
Bc(0) = 69.7 mT gives a value of Gi = 8.5×10−6. Finally, the quantum resistance
can be calculated from the residual resistivity by the equation

Qu =
e2ρ0

h̄εξ (0)
, (5.25)

where this accounts for the effect of macroscopic quantum fluctuations that can
lead to depinning of vortices. Performing the calculation for ρ0 = 243 µΩcm yields
Qu = 8.6×10−2.

Reference [15] summarises the differences between conventional low temper-
ature superconductors and the high temperature superconductors in terms of Gi

and Qu, and the pinning strength in the material. Conventional superconductors
tend to exhibit strong pinning, with very weak thermal and quantum fluctuations -
charactierized by values of Gi ∼ 10−8 and Qu ∼ 10−3. On the contrary, high tem-
perature superconductors have very weak pinning, primarily due to the extremely
small coherence lengths in these materials. However, the higher transition tem-
peratures and poor resistivity of the parent materials leads to much larger typical
values of Gi ∼ 10−2 and Qu ∼ 10−1. We find that the values of Gi = 8.5×10−6

and Qu = 8.6×10−2 calculated for Re3Ta lie in the intermediate region between
the expectation for conventional low temperature superconductors and the high
temperature superconductors. Pairing this with the observation of weak pinning in
this material, it seems reasonable to suggest that the apparent narrowing of the field
distribution observed in the µSR experiment at Tcσ may be caused by novel low
temperature vortex dynamics.

5.9 Summary & Conclusions

A thorough investigation of the superconducting and normal state properties of
the noncentrosymmetric superconductor Re3Ta has been conducted, using detailed
magnetization, electrical resistivity, heat capacity, and µSR measurements. The
material is well described by the conventional BCS theory, and has been characterized
as a strongly type-II superconductor with a nodeless, isotropic superconducting gap.
No evidence for time-reversal symmetry breaking has been detected in the µSR
experiments. The results of all of the experimental techniques have been combined
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to self consistently calculate the electronic properties of the system, from which it
has been shown that superconductivity in Re3Ta is in the dirty limit. The measured
and derived superconducting properties of Re3Ta are summarized in Tab. 5.7.

µSR measurements have revealed the possible existence of unconventional low
temperature vortex dynamics. This conclusion has been reached based on the obser-
vation of a narrowing of the measured field distribution below Tc, as well as analysis
of the pinning, thermal fluctuations, and the quantum resistance. Future experiments
at a continuous muon source could investigate the full H −T phase diagram of this
material. Also, the morphology of the vortex lattice in single crystals could be studied
directly using small angle neutron scattering or STM techniques. The current results
add to the body of work surrounding non-magnetic noncentrosymmetric supercon-
ductors with strong spin-orbit coupling. Further studies in neighbouring systems will
aim to elucidate the connection between anti-symmetric spin-orbit coupling and the
relative strengths of the singlet and triplet superconducting channels.
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Table 5.7 Properties of the normal and superconducting states in Re3Ta. In order:
superconducting transition temperature; electron-phonon coupling constant under
the McMillan formalism; superconducting energy gap; alpha parameter; Sommerfeld
constant; Debye temperature; Einstein temperature; relative weight of Debye and
Einstein heat capacities; Bloch-Grüneisen estimate of Debye temperature; residual
resistivity ratio; residual resistivity; upper critical field; Maki parameter; spin orbit
scattering parameter; Pauli limiting field; orbital limiting field; thermodynamic
critical field; lower critical field; GL coherence length; magnetic penetration depth;
London penetration depth; GL parameter; quasiparticle effective mass; supercon-
ducting carrier density; BCS coherence length; electronic mean free path; dirty limit
correction; Fermi velocity; Uemura parameter.

Property Unit Value

Tc K 4.68(2)
λep 0.64(3)
∆0 meV 0.74(1)
∆0/kBTc 1.83(3)
γ mJmol−1 K−2 13.1(2)
ΘD K 284.2(2)
ΘE K 123.4(3)
ND/NE 6.84(5)
ΘR K 300(5)
RRR 1.04(1)
ρ0 µΩcm 248.5(30)
µ0Hc2(0) T 7.0(2)
αM 1.31(4)
λSO 1.3(4)
µ0HP(0) T 9.0
µ0HOrb

c2 (0) T 8.4
µ0Hc(0) mT 69.7(9)
µ0Hc1(0) mT 2.95(8)
ξ (0) nm 6.86(10)
λ nm 487(9)
λL nm 266
κGL 71(2)
m∗/me 12.6
n 1027 m−3 5.04
ξ0 nm 4.13
le nm 1.75
ξ0/le 2.36
vF ms−1 48600
Tc/TF 0.0047



Chapter 6

Superconductivity of the ternary
borides (Lu/Y)RuB2

6.1 Introduction

Rare-earth ternary boride superconductors are a class of materials which have been
observed to exhibit relatively large values of the superconducting transition tempera-
ture, Tc. The transition-metal borides with atomic formular RT4B4 (where R is the
rare-earth atom and T is a transition metal) can crystallize in a number of polytypes,
including primitive tetragonal, [55] body-centred tetragonal, [41] or orthorhombic
crystal structures. [86] In all these polytypes, the boron atoms are found to have
dimerized into non-interacting B2 units. The highest values of Tc have been found
in the tetragonal polytypes, where the transition metal atoms cluster into isolated
tetrahedra and form linear or zigzag chains. In the orthorhombic structure, the T

atoms form an extended three-dimensional cluster that interpenetrates. The super-
conducting transition temperatures are systematically lower in the orthorhombic
polytype than the tetragonal compounds across the whole range of rare-earth ele-
ments, implying that the dimensionality of the T clusters plays an important role in
the superconductivity. [40]

A new structural phase in the transition-metal ternary boride family was reported
in 1980, after anomalous superconducting transitions were observed with Tc’s that
did not match known structures. [69] The stoichiometrically distinct RT B2 phase
crystallizes into an orthorhombic structure with the Pnma space group. The key
feature in this material are zig-zag chains of rare-earth atoms, with dimerized boron.
The boron dimers weakly interact, forming straight chains that run in parallel to
the direction of the main R−R zig-zag chain, and are perpendicular to planes of R

102
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Fig. 6.1 Crystal structure of the RRuB2 ternary borides. The R atoms (large spheres)
form zig-zag chains that run parallel to the b crystallographic axis. The B atoms
(small spheres) form weakly interacting dimers, with the Ru atoms (medium spheres)
isolated.

and T atoms (see Fig. 6.1). Only compounds with non-magnetic R atoms exhibit
superconductivity, whereas the inclusion of magnetic atoms is accompanied by
magnetic ordering with critical temperatures up to 46 K. [49]

Two materials in this family, LuRuB2 and YRuB2, are important as reference
materials for studying the entire family tree - the 4 f electron shell is full in the Lu
compound, and empty in the Y compound. Superconductivity has been reported
in the Lu compound at temperatures of 9.7 K - 10.1 K, and in the Y compound at
temperatures of 7.2 K - 7.8 K, with large values for the upper critical field µ0HC2

of 5.7 T and 4.8 T, respectively. [49, 52] These large values indicate that the super-
conductivity might be expected to be strongly coupled, with a high superconducting
carrier density. However, NMR measurements have identified that these materials
appear to lie in the weak-coupling limit of the conventional BCS theory. [47, 8]
In this paper, we report the results of a muon-spin rotation and relaxation (µSR)
study of the superconducting properties in this pair of materials. We combine the
results with previously reported findings in order to further characterize the electronic
properties of the superconducting state.
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Fig. 6.2 Temperature dependence of the magnetic susceptibility, collected in zero-
field cooled (ZFC) and field cooled (FC) regimes under an applied field of 1 mT.

6.2 Sample synthesis

Polycrystalline samples of LuRuB2 and YRuB2 were prepared by arc-melting stoi-
chiometric quantities of high-purity Y/Lu, Ru, and B in a tri-arc furnace under an
Ar (5N) atmosphere on a water cooled copper hearth. Each sample was flipped and
remelted several times in order to improve the homogeneity of the as-cast ingot.
The samples were subsequently sealed in evacuated quartz tubes, and annealed at
1050 ◦C for one week.

6.3 Magnetization

The superconducting transition temperature, Tc, for each sample was checked via
dc magnetic susceptibility measurements using a 5 T Quantum Design Magnetic
Property Measurement System. The temperature dependence of the magnetic suscep-
tibility in an applied field of 1 mT is displayed in Fig. 6.2. The observed transition
temperatures for the Lu and Y compounds are approximately 9.8 K and 7.8 K, in
agreement with previous reports. [49, 52] After correcting for demagnetization, a
full superconducting volume fraction is found in both samples. The Meissner frac-
tion, χFCC/χZFCW, in the Y compound is 11 times larger than in the Lu compound,
indicating that flux pinning is much weaker in YRuB2. The dc susceptibility data
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highlights no irregularites or anomalies that may be due to impurities in the sample
ordering magnetically or become superconducting.

6.4 Muon Spectroscopy

Muon-spin relaxation measurements in zero-field (ZF) and muon-spin rotation ex-
periments in transverse-field (TF) were carried out on the MuSR spectrometer at the
ISIS pulsed neutron and muon source. Powdered samples were mounted on silver
sample plates using GE varnish. In ZF, silver produces a time-independent back-
ground, whilst in TF it contributes a non-decaying oscillation; both cases are easy
to account for during data analysis. Both samples were mounted in a 3He sorption
cryostat with a temperature range of 0.3 to 50 K. For the ZF measurements, samples
were cooled in zero applied field, and data points were collected in increments upon
warming. Stray fields at the sample position are actively cancelled to within 1 µT
by a flux gate magnetometer and an active compensation system controlling three
pairs of correction coils. The TF experiments were conducted in a field of 30 mT.
The samples were field cooled to base temperature in order to promote the formation
of a well-ordered flux line lattice, and data points were collected upon incremental
warming.

6.4.1 Zero & longitudinal-field muon-spin relaxation

Results from the ZF-µSR relaxation experiments are presented first. Figure 6.3
shows the time evolution of the muon-spin polarization in both samples collected
above and below Tc. There is a clear change in the relaxation behaviour on either
side of the transition in both compounds, although the difference is much subtler in
the Y compound. There is no evidence for an oscillatory component, which indicates
that there is no coherent field associated with magnetic ordering. In the absence of
atomic moments, the depolarization of the muon ensemble is due to the presence
of static, randomly oriented nuclear moments. This behaviour is modeled by the
Gaussian Kubo-Toyabe equation [36]

GKT(t) =
1
3
+

2
3
(1−σ

2
ZFt2)exp

(
−

σ2
ZFt2

2

)
, (6.1)
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Fig. 6.3 Time evolution of the spin polarization of muons implanted under zero-
field conditions in (a) LuRuB2 and (b) YRuB2 at temperatures above and below
Tc. The time independent background due to muons stopping in silver has been
subtracted, and the data normalized to the initial asymmetry - the muons are 100 %
spin-polarized at t = 0 s. The solid lines are the results of fitting the data to Eq. (6.2).

where σZF measures the width of the nuclear dipolar field experienced by the muons.
The spectra are well described by the function

Gz(t) = GKT(t)exp(−Λt), (6.2)

where Λ measures the electronic relaxation rate, and is usually attributed to ‘fast-
fluctuation’ effects that occur on a timescale much shorter than the muon lifetime.

The nuclear term σZF is found to remain temperature independent in both com-
pounds. As the temperature is increased from base, there is an exponential decrease
in Λ in both materials (see Fig. 6.4). This is reminiscent of the ‘critical slowing down’
behaviour of spin-fluctuations in the vicinity of phase transitions to magnetically
ordered states. [28] In both materials a small longitudinal field of 10 mT is sufficient
to completely decouple the Gaussian component of the relaxation. Furthermore, the
electronic component is almost completely suppressed from the ZF values, implying
that the fluctuations reponsible for this relaxation channel are in-fact static or qua-
sistatic with respect to the muon lifetime. There is no clear anomaly at Tc in either
material, indicating that the process responsible for these fluctuations is independent
of the superconductivity. We conclude that we do not see any evidence for broken
time-reversal symmetry.
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Fig. 6.4 Temperature dependence of the electronic relaxation rate in LuRuB2 (tri-
angles) and YRuB2 (circles), collected in ZF and in an applied longitudinal field of
10 mT. The solid lines are guides to the eye, indicating the exponential decay of Λ

in ZF as T is increased.

6.4.2 Transverse-field muon-spin rotation

In order to characterize the flux-line lattice, TF-µSR was performed in a field of
30 mT in both materials. A selection of typical polarization spectra collected above
and below Tc is displayed in Fig. 6.5. The enhanced depolarization rate below Tc

is due to the field distribution P(B) formed by the flux line lattice in the mixed
state of the superconductor. Measuring the second moment ⟨∆B2⟩ of this field
distribution allows the magnetic penetration depth, λ , to be calculated to a high
degree of accuracy. In order to determine ⟨∆B2⟩, the TF spectra are modelled as a
sum of n sinusoidal oscillations, each within a Gaussian relaxation envelope:

Gx(t) =
n

∑
i=1

Ai exp
(
−σ2

i t2

2

)
cos(γµBit +φ), (6.3)

where Ai is the initial asymmetry, σi is the Gaussian relaxation rate, and Bi is the
first moment of the i’th component in the field distribution. There is a phase offset φ ,
which is shared by each oscillating component, and γµ/2π = 135.5 MHzT−1 defines
the muon gyromagnetic ratio. The number of components required is generally in
the range 1 ≤ n ≤ 5, with the requirement determined by the superconducting char-
acteristics of the material. Strongly type-II superconductors with large penetration
depths are often modelled well by a single oscillation, whereas low-κ materials, in
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Fig. 6.5 Representative TF-µSR polarization signals collected (a) above and (b)
below Tc in LuRuB2 under an applied field of 30 mT. A non-decaying background
oscillation due to muons stopping in the silver has been subtracted, and the data
normalised to the initial asymmetry. The solid lines are fits using Eq. (6.3).

which the coherence length plays a more important role in the structure of P(B), may
require up to 5 separate oscillating components. [43] Treating the data in this way is
equivalent to modelling the internal field distribution in the superconductor P(B) as
a sum of n individual Gaussians, [54]

P(B) = γµ

n

∑
i=1

Ai

σi
exp

(
−

γ2
µ(B−Bi)

2

2σ2
i

)
. (6.4)

The second moment of this field distribution is thus

⟨∆B2⟩=
σ2

eff
γ2

µ

=
n

∑
i=1

Ai

Atot

[
σ2

i
γ2

µ

+(Bi −⟨B⟩)2

]
, (6.5)

where Atot = ∑
n
i=1 Ai and ⟨B⟩= A−1

tot ∑
n
i=1 AiBi is the first moment of P(B). Finally,

the extra broadening from the nuclear moments σN must be subtracted in quadrature
from the total effective depolarization rate σeff to yield the contribution of the flux-
line lattice σ2

FLL = σ2
eff −σ2

N. σN is assumed to be temperature independent, and is
determined by measurements made in the normal state just above Tc.

Two oscillating components were required to adequately describe the LuRuB2

spectra, whereas three were required for the YRuB2 - a non-decaying background
oscillation due to muons stopping in the silver sample holder has been subtracted
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from the spectra presented in Fig. 6.5. Above Tc a single oscillation suffices in both
materials to describe the depolarization.

The temperature dependences of σeff in both compounds are presented in Fig .6.6.
In superconductors with large critical fields and hexagonal flux line lattices, there
exists a simple relationship between the Gaussian depolarization rate σFLL and the
magnetic penetration depth, as long as the average field is a very small fraction of
the upper critical field µ0HC2. For both compounds B/µ0HC2 ≈ 0.005 and so we
can use the expression [19]

σ2
FLL(T )

γ2
µ

= 0.00371
Φ2

0
λ 4(T )

, (6.6)

where Φ0 is the magnetic flux quantum. The magnetic penetration depths at T = 0 K
are thus found to be λLu(0) = 221(2) nm and λY(0) = 190(1) nm for the LuRuB2

and YRuB2 materials, respectively.

6.5 Results & Discussion

Assuming London local electrodynamics, the temperature dependence of λ can
be calculated for an isotropic s-wave superconductor in the clean limit using the
following equation:

λ−2(T )
λ−2(0)

= 1+2
∫

∞

∆(T )

(
∂ f
∂E

)
E dE√

E2 −∆2(T )
, (6.7)

where f = [1+exp(E/kBT )]−1 is the Fermi function and ∆(T )=∆(0) tanh{1.82[1.018(Tc/T −
1)]0.51} is the BCS approximation for the temperature dependence of the energy gap.
The normalized inverse-squared penetration depth, or superfluid density, is displayed
in Fig. 6.7 for both materials, with fits to the data using this model. The resultant
values for the energy gaps are ∆Lu(0) = 1.36(3)meV and ∆Y(0) = 1.10(1)meV.
The BCS theory proposes a universal proportionality between the energy gap and the
superconducting transition temperature. This is conventionally encoded in the BCS
parameter, 2∆(0)/kBTc, which has the theoretical value of 3.52 in the weak coupling
limit. For the Lu and Y compounds, the BCS parameters are found to be 3.3(2)
and 3.4(1), respectively. This seems to classify the (Lu/Y)RuB2 ternary borides as
conventional, weakly coupled BCS type-II superconductors, in agreement with the
NMR results. [47]
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Table 6.1 Superconducting properties of the ternary borides determined from the
µSR experiments.

Property Unit LuRuB2 YRuB2

λ nm 221(2) 190(1)
∆0 meV 1.36(3) 1.10(1)
∆0/kBTc 3.3(2) 3.4(1)
m∗/me 9.83 15.0
n 1028 m−3 2.73 2.17
ξ0/le 3.9 0.85
λL nm 10.5 14.6
TF K 3910 2190
Tc/TF 0.002 0.003

The magnetic penetration depth is directly related to the electronic properties of
the superconducting state by the expression

λ (0) =
[

m∗/me

4πnsre

(
1+

ξ

l

)] 1
2

, (6.8)

where m∗ is the effective mass of charge carrying electrons, ns is the superconducting
charge carrier density, and re and me are the classical radius [22] and rest mass of
the electron, respectively. The ratio of superconducting coherence length to the
mean free path, ξ/l, encodes the dirty limit correction, which for the Lu and Y
compounds has been found to take on small values of 3.9 and 0.85, respectively. [52]
Equation (6.8) can be coupled with the expression for the Sommerfeld constant γ ,
which is also related to the electronic properties of the system: [37]

γ =
(

π

3

) 2
3 k2

Bm∗n
1
3
e

h̄2 , (6.9)

where ne is the electronic carrier density and kB is Boltzmann’s constant. By as-
suming that ne at Tc is equivalent to ns as T → 0 K, Eqs. (6.8) and (6.9) can be
solved simultaneously to find values for m∗ and ns. Consequently an effective Fermi
temperature can be calculated using the relation kBTF = (h̄2/2)(3π2ns)

2/3/m∗. The
results of following this procedure are displayed in Table 6.1.

Uemura et al. have described a method of classifying superconductors based on
the ratio of the critical temperature Tc to the effective Fermi temperature TF, which is
found to be 1/414 and 1/304 for the Lu and Y compounds, respectively. [78, 80, 79]
This places the ternary borides in the vicinity of the ‘band of unconventionality’
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described by Uemura. This is the first indication that the superconductivity in
these compounds may not be entirely conventional. In fact, both compounds find
themselves occupying the same region in the Uemura diagram as the borocarbide
superconductors, and the rare-earth hexaborides. [37] High transition temperatures
are a common theme in these families of materials, as well as the intriguing interplay
between the superconductivity and the complex magnetic order associated with the
rare-earth 4 f electrons.

6.6 Conclusions

In conclusion, TF and ZF-µSR measurements have been carried out on the rare-
earth ternary borides (Lu/Y)RuB2. Both superconductors are well described by the
conventional BCS theory of superconductivity in the weakly coupled limit, with
fully gapped s-wave order parameters and preserved time-reversal symmetry in the
superconducting state. The ZF-µSR measurements reveal spin fluctuations that
exhibit a critical slowing down behaviour as the temperature is decreased, implying
that both systems may be close to quantum critical points. Calculations of the
electronic properties of the superconducting state reveal that the rare-earth ternary
borides share similarities with the hexaboride and borocarbide superconducting
families.
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Fig. 6.6 (Color online) TF-µSR effective depolarization rates in (a) LuRuB2 and (b)
YRuB2, calculated from the σi (insets) as described in the text. The solid line is a fit
to Eq. 6.7, which is valid as there is a simple numerical coefficient relating σeff and
λ−2.
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Chapter 7

Multiband superconductivity in
Lu3Os4Ge13

7.1 Introduction

The superconducting and physical properties of the ternary intermetallic compound
Lu3Os4Ge13 has recently been the focus of a number of studies due to several unusual
features. This material crystallizes in a cubic structure, with the centrosymmetric
spacegroup Pm3̄n, and exhibits superconductivity at 3.1 K [63]. The structure is
analogous to that of the Skutterudites where the RuGe6 trigonal prisms create
cages containing a single Ge atom - three views of the structure are presented in
Fig. 7.1. Heat capacity measurements performed on Lu3Os4Ge13 single crystals
have suggested that the superconductivity may feature multiple gaps, or is at least
anisotropic in nature (see Fig. 7.2) [62]. Another interesting feature of these data is
the observed field dependence of the Sommerfeld constant, γ , in the superconducting
state. For nodeless superconductors, this relationship is expected to be linear, as we
observed in Re3Ta in Fig. 5.9. This interpretation arises because the Sommerfeld
constant is directly related to the density of states [81]. In superconductors with
nodes or anisotropy in the gap, a power law is expected for γ as a function of field,
and this is indeed what has been observed in Fig. 7.3.

A further noteworthy property of this material is that the upper critical field
extracted from a WHH fit is very close to the calculated Pauli limiting field [61].
If Lu3Os4Ge13 is indeed a multi band superconductor, then it could be expected to
exceed the Pauli limiting field due to upwards curvature of Hc2. Finally, magnetiza-
tion measurements show that this material is exhibits Pauli paramagnetism. It has

114
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(a) [100] direction. (b) [110] direction. (c) [111] direction.

Fig. 7.1 Structure of Lu3Os4Ge13.

been reported that in systems with spin-triplet superconductivity, paramagnetism can
greatly enhance the possibility of a non-unitary spin-triplet ground state [39].

With these considerations in mind, a µSR study has been carried out to try and
determine the pairing symmetry of the superconducting electrons. We have also
searched for evidence of broken time-reversal symmetry in zero-field.

7.2 Sample synthesis

The sample used in the µSR experiment was produced using the Czochralski method
in a tetra-arc furnace. Stoichiometric quantities of the constituent elements were first
melted together in a tri-arc furnace, in order to make 10 g boules. These were then
melted in the tetra-arc furnace, and single crystals were pulled from the melt using a
tungsten seed rod, withdrawn at a rate of 10 mmh−1. The sample used in this study
was crushed into a powder for the µSR experiments, and was produced in the same
batch as the sample studied in Refs. [61–63].

7.3 Magnetization

Magnetization measurements were performed using a 5 T QD MPMS and a 12 T
Oxford Instruments VSM in order to compare the quality of our sample with the
published results. Figure 7.4(a) presents low temperature magnetization data, show-
ing the onset of the superconducting transition at Tc = 3.1 K. The transition is rather
broad, and a full superconducting volume fraction is not realized in the temperature
regime studied. This is in agreement with the results published in Ref. [62], where
the superconducting transition also appears to be broad. Magnetization against field
loops collected at a temperature of 1.5 K is displayed in Fig. 7.4(b). The loop follows
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Fig. 7.2 The heat capacity of this material appears to be well described by a two-gap
model. X-ray diffraction shows that the sample investigated is phase pure, such that
any impurity that could explain the data would also be visible in the X-ray spectrum.
Figures and data are reproduced from Ref. [62].
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Fig. 7.3 Field dependence of the Sommerfeld constant, where a power law of the
form ∝ H0.38 has been fitted. This can be an indicator of nodeless superconductivity,
and suggests that the superconducting ground state is unconventional [81]. Figures
and data are reproduced from Ref. [62].
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Fig. 7.4 Magnetic susceptibility measurements performed on the polycrystalline
sample of Lu3Os4Ge13.

the characteristic hysteretic behaviour associated with pinning of vortices in type-II
superconductors, and it is also clear that the material is paramagnetic.

7.4 Muon spin rotation and relaxation

7.4.1 Transverse-field

Transverse-field µSR experiments were performed on the MuSR spectrometer at
ISIS, in an attempt to measure the temperature dependence of the superfluid density.
A powdered sample of Lu3Os4Ge13 was mounted on a silver sample holder and
placed in a dilution refreigerator operating between 60 mK and 4 K. Measurements
were made in the field range (5 ≤ µ0H ≤ 60) mT, and a full temperature dependence
was arried out for µ0H = 40 mT. Representative µSR signals collected above and
below Tc are presented in Fig. 7.5. The broadening due to the vortex lattice was
modelled by a Gaussian damped oscillation of the form:

Gx(t) =
n

∑
i=1

Ai exp
(
−σ2

i t2

2

)
cos(γµBit +φ), (7.1)
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Fig. 7.5 Representative TF-µSR signals collected (a) above and (b) below Tc in an
applied magnetic field of 40 mT.

where Ai is the initial asymmetry, σi is the Gaussian relaxation rate, and Bi is the
first moment of the i’th component in the field distribution. There is a phase offset
φ , which is shared by each oscillating component, and γµ/2π = 135.5 MHzT−1 de-
fines the muon gyromagnetic ratio. For this sample, n = 2 modelled the distribution
adequately, with σ2 fixed to zero in order to account for the non-depolarizing back-
ground signal. The extracted temperature dependence of the depolarization rate, σ ,
attributed to the sample is presented in Fig. 7.6. The laboratory measurements have
determined that the upper critical field is large (µ0Hc2 = 5.4 T), which means that the
reduced field, H/Hc2 for these experiments is ∼ 0.01. Also, κ has been estimated to
have a large value of ∼ 61 [62, 63]. We therefore expect the depolarization rate to be
field independent in this regime, and this has been confirmed in the inset of Fig. 7.6.
We are also in the regime described by Brandt, in which the depolarization rate is
related to the superfluid density by a simple numerical prefactor (see Sec. 2.2.1).

The temperature dependence of σ exhibits a number of unusual properties.
Qualitatively, the apparent onset temperature of the increased depolarization rate due
to the vortex lattice is much lower than the bulk measurements of Tc = 3.1 K. The
transition also appears to be very broad, and looks approximately linear down to
very low temperatures, at which point a small plateau can be seen. As discussed in
Sec. 2.7.2, the low temperature behaviour of the superfluid density can indicate the
presence of nodes or anisotropy in the superconducting gap, as it implies quasiparticle



CHAPTER 7. MULTIBAND SUPERCONDUCTIVITY IN LU3OS4GE13 120

μ0H = 40 mT

T = 60 mK

0 1 2 3 4

0.15

0.20

0.25

0.30

T (K)

σ
(
µ
s
-
1
)

0 20 40 60

0.2

0.3

μ0H (mT)

σ
(
µ
s
-
1
)

Fig. 7.6 Temperature dependence of the TF depolarization rate, collected in an
applied field of 40 mT. Inset: the depolarization rate at T = 60 mK collected under
applied fields between 5 mT and 60 mT, showing it’s approximate field independence
in this range.

Table 7.1 Results of fitting the depolarization using a variety of different models.

Model σ(0) (µs−1) σN (µs−1) ∆0 (meV) χ2
red

Single-gap s-wave 0.239(4) 0.144(2) 0.264(9) 2.81
Double-gap s-wave (w = 0.5(1)) 0.246(2) 0.140(2) 0.44(9) 0.86

0.18(3)
Anisotropic s-wave (a = 0.57(5)) 0.246(3) 0.140(2) 0.46(3) 0.92
d-wave 0.259(4) 0.140(2) 0.44(2) 2.12

excitations are occurring at much lower temperatures than would be expected by a
fully gapped superconductor.

The currently available experimental data suggest that the superconductivity
in Lu3Os4Ge13 exhibits either two-gap superconductivity, or has an anisotropic
gap. The field dependence of γ presented in Fig. 7.3 could also be supportive of a
superconducting gap that exhibits nodes [81]. To investigate the possible nature of
the gap, four models have been fitted to the measured depolarization rate: (a) s-wave,
(b) s+s-wave, (c) anisotropic s-wave, and (d) d-wave [43].

Over a spherical Fermi surface, Eq. 2.61 for the superfluid density becomes [44]:

ρs = 1+
1
π

∫ 2π

0
dφ

∫
∞

∆

dE
(

∂ f
∂E

)
E√

E2 −∆2(T,φ)
. (7.2)
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The gap function now has the form ∆(T,φ) = ∆(T )F(φ), where ∆(T ) is the approxi-
mation for the BCS temperature dependence of the gap (Eq. 2.32), and F(φ) encodes
the angular dependence of the gap around the Fermi surface at an angle, φ . For s-
wave superconductors, the gap is isotropic, and therefore we have Fs(φ) = 1. For the
d-wave gap, Fd(φ) = |cos(2φ)|, which leads to the formation of line nodes around
the Fermi surface with four-fold symmetry. An anisotropic s-wave gap is given by
FsA(φ) = (1+ acos4φ)/(1+ a), where the parameter a measures the anisotropy.
Varying a from 0 to 1 interpolates smoothly from an isotropic gap, to a gap featuring
line nodes. Finally, for a two-gap, s+ s-wave model, one assumes that the total
superfluid density is the sum of two components [44, 24]:

ρs = w
λ−2(T,∆0,1)

λ−2(0,∆0,1)
+(1−w)

λ−2(T,∆0,2)

λ−2(0,∆0,2)
. (7.3)

The results of fitting these models to the depolarization rate are presented in Figs. 7.7a(a)-
(d), with the numerical values reported in Tab. 7.1. Also plotted as an inset for each
figure is the corresponding angular dependence of the superconducting gap. The
transition temperature, Tc, was fixed to the experimentally observed bulk value of
3.1 K for all fitting routines.

To compare the models, the reduced χ2 has been calculated for each fit, and is
displayed in the final column of Tab. 7.1. Evidently, the isotropic s-wave model
provides a very poor fit to the data, as is confirmed by visual inspection. This is
also true of the d-wave model. The calculated χ2

red values for the s+ s-wave model
and the anisotropic s-wave models are 0.86 and 0.92, respectively. Thus, these both
provide reasonable fits to the data, however, the fact that both values are less than
one implies that the model is too restrictive. If the uncertainties on the data have
been overestimated, then this could account for the small values of χ2

red in both cases.
However, we can conclude that the superconducting gap is most likely nodeless,
with either two gaps or a single anisotropic gap based on this analysis, as opposed to
having an isotropic gap or exhibiting line-nodes.

The gap to Tc ratio for the anisotropic model is equal to 1.7(1). The corresponding
value given by an anisotropic fit to the heat capacity data presented in Fig. 7.2 is
1.62(1). These are seemingly in good agreement, however, visual inspection of
Fig. 7.2 reveals that this model describes the heat capacity data very poorly. A
much better fit to the heat capacity data is provided by a two-gap model, where
the authors of Ref. [62] calculate ∆0,1/kBTc = 1.84(2) and ∆0,2/kBTc = 0.17(1).
Comparing this to the µSR results, the results of our modelling suggest values of
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(b) Two-gap s-wave model.
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(c) Anisotropic s-wave model.
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(d) Single-gap d-wave model.

Fig. 7.7 Results of fitting four different models for the structure of the gap to the
depolarization data. The dashed line depicts the position of the bulk supercon-
ducting transition temeperature, Tc = 3.1 K. Inset: angular dependence of the gap
corresponding to the fitted parameters for each model.
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Fig. 7.8 Temperature dependence of the superfluid density, extracted by fitting the
muon TF depolarization to a 2-gap isotropic s-wave model.

∆0,1/kBTc = 1.6(3) and ∆0,2/kBTc = 0.7(1). To within uncertainty, the value of the
larger gap is in agreement. However, the estimates for the smaller gap are not in
agreement. To compare the two models directly, the superfluid density has been
calculated from the depolarization rate using Eq. (5.11), after first subtracting off the
nuclear dipole broadening in quadrature. The superfluid density is plotted in Fig. 7.8,
with plots of the two-gap models obtained from the heat capacity measurements and
the µSR results.

The zero temperature value of the penetration depth is calculated to be λ (0)= 728(5) nm.
This is extraordinarily large, and is very likely an overestimation, based on the ar-
guments made in Sec. 5.8.3. A separate estimate of λ = 474 nm has been made in
Ref. [62], however this relies on measurements of the lower critical field, which are
notoriously difficult. This will be discussed in a future section. For now, we turn to
the results of the zero-field µSR study.

7.4.2 Zero and longitudinal-field

Figure 4.10 shows the relaxation spectra collected above and below the supercon-
ducting transition temperature in zero-field. There is a large change in the relaxation
behaviour on either side of the transition. The increased relaxation below Tc has been
verified with the MuSR instrument in both longitudinal and transverse geometries,
which requires a physical rotation of the zero-field coils by 90°. There is no hint of an
oscillatory component in the spectra, which would otherwise suggest the presence of
an ordered magnetic structure. The spectra collected in ZF are well described by an
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Fig. 7.9 ZF and LF-µSR spectra collected above and below Tc, with least-squares
fits using the model of Eq. (4.5) (solid lines). The effect of applying a small LF field
of 5 mT is also shown.

exponentially damped Gaussian Kubo-Toyabe function of the form Eq. (4.5), where
σZF measures the width of a Gaussian field distribution, assumed to originate from
the nuclear dipolar field, A0 and Abg are the sample and background asymmetries,
respectively, and Λ measures the electronic relaxation rate.

The sample and background asymmetries, A0 and Abg, are found to be temper-
ature independent. Both the Gaussian deoplarization rate, σZF, and the electronic
relaxation rate, Λ, exhibit a systematic increase below the superconducting transition
temperature, as displayed in Fig. 7.10. However, there is no obvious correlation
with the onset temperatures observed in these parameters and the superconducting
transition temperature. The Gaussian relaxation rate is flat until a temperature of 1 K,
at which point it sharply increases and levels off. The electronic relaxation rate is
also level above a temperature of ∼ 2 K, at which point it increases in value before
levelling off at low temperature. The shape of this transition is remininscent of the
shape of the depolarization rate collected in the TF experiments. If the source of
this signal is the superconductivity, then it wuld fit into the overall picture of this
material, as both the superfluid density and the magnetization exhibit very broad
transitions at Tc.

An exponential relaxation process is generally attributed to the field distribution
arising from electronic spins fluctuating quickly enough to motionally narrow the
effective depolarization of the muons. However, a weak magnetic field of only 5 mT
is enough to fully decouple the muon from this exponential relaxation channel. This
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Fig. 7.10 Temperature dependence of the electronic relaxation rate Λ and the Gaus-
sian relaxation rate σZF.

implies that the relaxation mechanism is actually static or quasi-static with respect
to the muon lifetime. Furthermore, spin fluctuations associated with proximity to a
quantum critical point would be expected to exhibit a Curie-Weiss-like temperature
dependence [35]. This is not the case here, as both parameters level off at low
temperatures. Some possible interpretations of these signals are discussed in the next
section.

7.5 Discussion

Using the same methodology as in Sec. 5.8.2, the microscopic properties of Lu3Os4Ge13

have been calculated, using reported values from Ref. [62] and the penetration depth
measurement from this study. The result of using the estimate from the laboratory
measurements has also been compared, with the full results presented in Tab. 7.2. The
biggest change is in the interpretation of the dirty limit correction. Using the longer
value of λ = 728 nm results in ξ0/le = 0.163, which would place Lu3Os4Ge13 in the
clean limit. Performing the same calculations with λ = 474 nm yields ξ0/le = 4.38,
which is classified as lying in the dirty limit. However, some usedul bounds are placed
on the values of the quasiparticle mass, and the carrier density, in the framework of
the superconductivity.

The source of the signal observed in the ZF experiment needs to be carefully
considered before one can claim to have observed TRSB. The main problem is the
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Table 7.2 Electronic properties of Lu3Os4Ge13.

Property Unit λ = 728 nm λ = 474 nm

m∗ me 6.61 4.90
n 1027 m−3 1.36 3.32
ξ0 nm 4.38 3.71
le nm 1.54 0.85
ξ0/le 0.163 4.38
λL nm 371 204
vF ms−1 60000 109000
TF K 785 1921

lack of alignment with the superconducting onset temperature. Another potential
problem is that the size of the signal is very large, an order of magnitude higher than
the signal see in La7Ir3, as well as other superconductors that have been shown to
break time reversal symmetry [73, 7, 11, 39].

The TF data seem to corroborate the heat capacity observations of multiband
superconductivity in this material. Band structure calculations have shown that three
bands cross the Fermi surface, giving rise to a complex structure. One could envision
that a gap could open at each of these crossing points, requiring a description
of superconductivity arising from more than two bands. The recent interest in
the Fe based high-Tc superconductors has prompted theoretical investigations of
superconductors in which superconductivity arises from multiple bands on complex
Fermi surfaces. It has been shown that in systems where there exists repulsive
interband interactions, frustration between the bands can lead to phase transitions
between TRSB and conventional BCS states below the superconducting transition
temperature [83, 84]. The solutions of these equations for three superconducting
bands can give rise to kinks in the gap functions of each band - see Fig. 7.11 for
an example reproduced from Ref. [83]. Whether or not this could explain the
experimental observations of Lu3Os4Ge13 requires theoretical work, however, there
are currently no experimental observations of this phenomenon. The prospect of
observing this highly unusual phenomenon in this system is an exciting one.

7.6 Summary & Conclusions

The superconducting properties of the semi-metal superconductor Lu3Os4Ge13 have
been investigated using µSR. Strong evidence for the existence of a two-gap or
anisotropic ground state has been observed, and the data are in agreement with previ-
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Fig. 7.11 Numerical solution to three-band BCS equations, exhibiting a kink at
T/Tc ≈ 0.45. The superconductivity breaks TRSB below this point, and is conven-
tional above. Figure reproduced from Ref. [83].

ously published results. The observations in zero-field have revealed the presence of
a strong signal in both the electronic and the Gaussian relaxation channels, however,
we hesitate to claim that this is time-reversal symmetry breaking at this point. Rather,
it is necessary to investigate the multi-gap nature of this material in more depth,
especially with regards to the three bands that cross the Fermi surface, in order to
determine if the superconductivity is unconventional.



Chapter 8

Conclusions & further work

The field of superconductivity provides one of the richest and most diverse play-
grounds for experimentalists and theoreticians alike. The discovery of the high-
temperature superconductors catalysed a new era of research, characterized by the
search for the unconventional superconductor, and reignited the quest for room
temperature superconductivity. Such unexpected discoveries and advances have
occurred throughout the history of this field, beginning with the very first unexpected
observation by Onnes in 1911. Researching these materials for the sake of pure
knowledge is a worthy goal, as it is only by pursuing these interests that the next
groundbreaking discovery will be made.

This thesis has presented a selection of the experiments undertaken by the author
over the past four years. The over arching theme is the application of muon spin
spectroscopy to studies of the superconducting state, with the aim to understand how
best to use this experimental tool in conjnction with laboratory based techniques.
Also of interest is the application of experimental results to the calculation of
microscopic properties, while ensuring that the description is as self consistent
as possible. A number of new insights as well as challenges have been encountered
during the analysis of these materials, as will be summarized in this final section.

In Chapter 4, a study of the intermetallic compound La7Ir3 has been presented.
This material has a noncentrosymmetric crystal structure, which means that its
superconducting ground state is expected to exist as an admixture of spin-singlet and
spin-triplet superconductivity. La7Ir3 is a type-II superconductor, which becomes
superconducting at Tc = 2.25 K, and has an upper critical field of 0.97 T. This
material has no strong magnetic correlations, which makes it desirable for studying
spin-triplet superconductivity without these theoretical complications. Zero-field
µSR measurements have observed a spontaneous magnetization appearing below Tc,
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the source of which is interpreted as the formation of spin-triplet Cooper pairs. This
is the first observation of TRSB in this family of materials, and opens a new direction
for theoretical and experimental research efforts. Transverse-field measurements of
the superfluid density suggest that the superconductivity is fully gapped, and appears
to be isotropic s-wave. Theoretical analysis of the space group of the crystal structure
now needs to be performed in order to determine whether the observation of TRSB
allows the existence of a spin-triplet component in the superconductivity.

One particular point of interest relates to the particular relaxation channel in
which the TRSB signal is observed. For La7Ir3, the signal was primarily observed
as an exponential decay component, with some small contributions to the Gaussian
relaxation channel at low temperatures. This is not the case for all observations of
TRSB. For example, LaNiC2 exhibits TRSB as an exponential decay component [39],
however in the Re based α-Mn superconductors the signal is seen strongly in the
Gaussian relaxation channel [73]. Further theoretical work to investigate what
information, if any, we can infer about the TRSB signal from these observations
could prove to be an interesting project.

In Chapter 5, a full investigation of Re3Ta, another member of the Re based
superconductors with noncentrosymmetric α-Mn structure, has been carried out.
Re3Ta has previously been reported to be superconducting, however only recently has
this family been subjected to intense research efforts [12, 71]. An attempt has been
made to draw together all of the different experimentally observed properties, in order
to build up a self-consistent picture of the microscopic properties of this system.
There is no evidence for broken time-reversal symmetry in the superconducting
state, and the superconductivity appears to be fully gapped with s-wave symmetry.
Discrepancies between laboratory and µSR measurements for the absolute value
of the magnetic penetration depth have led to some insights regarding some of the
limitations of the µSR technique in high-κ superconductors.

Re3Ta has provided some unexpected parallels to the physics of the high-
temperature suprconductors, by way of its potentially interesting vortex dynamics in
the vicinity of Tc. Magnetization measurements have shown that the vortex lattice
becomes depinned at a field much lower than the upper critical field. Effectively,
there exists a large region of the phase diagram where pinning is weak, and vortices
are free to move. Also, µSR measurements have shown that the internal field appears
to be motionally narrowed as the temperature approaches Tc, where the motional
narrowing is assumed to come from vortices. This behaviour is unusual for such a
low Tc material, as typically thermal fluctuations are not energetic enough to depin
vortices at such low temperatures. The calculated Ginzburg number and Quantum
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resistance of this material lie in the intermediate range between typical values for
high-Tc superconductors and conventional low-Tc materials.

The ternary borides LuRuB2 and YRuB2 were investigated in Chapter 6. These
materials exhibit superconductivity with relatively high critical temperatures of 9.8 K
and 7.8 K, respectively, and have large upper critical fields of 5.7 T and 4.8 T. They
are important reference materials, as the 4 f band is completely filled in the Lu
compound, and empty in the Y material. The TF measurements of the superfluid
density reveal that both of these materials lie in the weak coupling limit, which is
interesting given their high transition temperatures. Zero-field measurements have
also revealed the presence of spin fluctuations coexisting with the superconducting
state, in both of these materials. These fluctuations are very weak, as they are
decoupled with a small longitudinal magnetic field; however, they exhibit a critical
slowing down behaviour as the temperature is lowered. This suggests that both of
these materials may lie in the vicinity of a quantum critical point. Further research
could clarify whether this is the case, for example by investigating the effect of
doping on the superconductivity in these materials.

Finally, the semi-metal Lu3Os4Ge13 has been investigated using µSR in Chapter
7. This low temperature superconductor exhibits a number of unusual features. Its
upper critical field is almost as large as the Pauli limiting field, and may be larger
if the assumptions of the WHH theory do not hold for this material. This could
be the case in a material with multiple superconducting gaps, as WHH theory is a
single gap model for the upper critical field. The heat capacity of this compound
is well described by an s+ s-wave, double-gap model, and the field dependence
of the Sommerfeld constant, γ , is not linear. Because γ is directly related to the
carrier density, this can indicate that the superconducting gap is anisotropic, and
possibly contains nodes. The µSR investigation of the superfluid density appears to
corroborate this story, as both two-gap and anisotropic s-wave models adequately
describe the data. In ZF, a signal was observed in both the exponential and Gaussian
relaxation channels, with onset temperature of ∼ 2 K and 1 K, respectively. As
these do not coincide with the bulk measurement of Tc, we can not immediately
ascribe this to being an observation of broken time-reversal symmetry. However,
it does provide clues as for how to proceed with the theoretial analysis of this
material. Band structure calculations have shown that the Fermi surface is cut by
three different bands, leading to a complicated structure. It seems reasonable to
envision superconducting gaps forming at these crossing points, in which case we
could have a system with three superconducting gaps. The existence of a repulsive
interaction between two of these bands could lead to a novel frustrated state, in which
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the system can transition to a phase with broken time-reversal symmetry below Tc.
Such an experimental observation has never been confirmed, however it has been
predicted in multiband superconductors [83].

In conclusion, this work has contributed to the overall understanding of super-
conductivity, by describing the superconductivity of several unusual members of
the vast phase space from which there are many compounds to investigate. µSR
has proven to be an invaluable experimental technique that allows insights beyond
traditional laboratory methods. It is only through persevering with as many of these
studies as possible that any headway can be made towards the ultimate goal of a full
understanding of this most unusual quirk of nature.
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