Neutrino Factory R&D

John Back
University of Warwick
1st March 2007
Outline

• Why do we need a Neutrino Factory?
• A sample of UK R&D work
 – Front End Test Stand @ RAL
 – Target Studies
 – Other work
• Summary
Motivation for ν Factory

- Experimental evidence of ν oscillations
 - Implications for Standard Model: ν’s have mass
 - Need more data to explore neutrino physics:
 - $\sin^2 2\theta_{13}$, CP-violation ($\sin\delta$), mass hierarchy

- Neutrino Factory will produce ν’s “on demand”
 - Accelerator complex to produce ν’s at the required energies in a controlled way.
 - Point ν’s from μ decay to detectors around the world (long-baseline method)
 - Extensive international R&D programme underway to address the technological challenges, most of which is beyond current state-of-the-art…
ν Factory Requirements

- Need 10^{21} μ/yr for physics programme
 - Very low ν interaction cross-section in detectors
 - Approx. several hundred ν events/yr at a large detector on other side of the Earth (hep-ph/9906487)
- μ from π decays, which are created by smashing protons onto a solid or liquid target
- Proton beam with 4 MW power
 - A challenge to create a target that can withstand this much power and the resulting thermal shock
 - Studies focusing on large solid or liquid target within a very strong B field
- Focus & accelerate μ’s to required energies, then allow them to decay to ν’s:
 - $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$
 - $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$
Schematic of Neutrino Factory

- **Proton Driver**
- **HARP**
- **MICE**
- **Muon Cooling**
- **Muon Accelerators**

Key Points:
- Neutrino factory at RAL
- Muon make ~500 turns
- Various energy levels and systems involved in the process.
Front End Test Stand (FETS) @ RAL

- FETS is part of CCLRC’s contribution to accelerator R&D for next generation facilities
 - Spallation sources, Factory, waste transmuters, tritium production

- Collaborative effort between
 - CCLRC RAL ISIS/ASTeC Intense Beams group
 - Imperial College
 - Warwick University
 - University of the Basque Country, Spain (new participants)

- Main aim is to demonstrate the technology for a high brightness H⁻ ion source and a very high speed beam chopper.

- New design based on the proton driver system already in operation at ISIS, RAL (neutron production facility).
H⁻ ion source LEBT Radio Frequency Quadrapole (RFQ)

- H⁻ ion source: I = 60mA, KE = 65keV
- Low Energy Beam Transport: focus H⁻ beam to RFQ
- RFQ accelerates beam up to 3MeV
- Chopper will divide the beam into bunches
- Diagnostics along the FETS line will measure the beam parameters, and hence the performance of the various accelerator components
H⁻ Ion Source (D. Faircloth, RAL)

Development goals *(done, to do)*

- Increase pulse length: 200µs to 1.5ms
- Increase output current: 35mA to 75mA
- Reduce emittance ε *(size & divergence of beam)*
 - Now: $\varepsilon \sim 1\pi$ mm mrad. Need: $\varepsilon \sim 0.25\pi$ mm mrad
- Maximise lifetime

01/03/07 Seminar
Example Current Distribution

Discharge Current (A)
Beam Current (mA)
Extract Volts (kV)

Time (us)
Pepperpot Emittance System (S. Jolly, IC)

- A way to measure the initial beam size and shape from the ion source; needed to finalise LEBT design
- Beam segmented by tungsten screen.
- Beamlets drift ~10mm before producing an image on a phosphor screen.
- Copper block prevents beamlets from overlapping and provides cooling.
- CCD camera records image of light spots.
Pepperpot Mk1 Equipment

Tungsten screen with 100µm holes in 25x25 array. Cu mount with 2mm holes to prevent beamlet crossover and help thermal conduction. Scintillator (e.g. P46) mounted 13mm from tungsten. Mounted to Al frame: rulers give calibration.

2048 x 2048 pixel, 15.3 x 15.6 mm² CCD camera mounted on movable arm. Light-tight bellows connects camera system to vacuum window.

At present, Mk2 is being constructed: larger screen, quartz scintillator (survives beam unlike P46); better cooling, support structure and improved data analysis.
Pepperpot Mk1 Images

P46 phosphor scintillator image of H- beamlets

Beam image using only pure quartz scintillator

Burn marks on P46 scintillator

01/03/07
Low Energy Beam Transport (LEBT)

The LEBT will focus the H$^-$ beam from the ion source into the RFQ.

Design optimisation: Vary drift lengths d_2 and d_3 and the solenoid lengths and B fields.

Look for solutions where the beam is focused (converging) into the RFQ.

Constraints:
- $B < 0.6$ T, solenoids long enough to ensure flat axial field ($d \geq 25$ cm)
- $d_1 = 25$ cm, $d_4 = 15$ cm (minimum for vacuum equipment and diagnostics)
- Overall length must not be too long (cost)
Beam profile for ideal input beam

Vertical lines:
Drift and solenoid regions

RFQ Acceptance Ellipse

End of LEBT:

01/03/
Beam profile using Mk1 pepper-pot data

Initial beam distribution based on pepper-pot data $\varepsilon_{\text{rms norm}} \sim 0.9 \pi \text{ mm mrad}$

At end of LEBT

Performance will improve:
- better pepperpot data soon,
- work is starting to reduce emittance of beam from the ion source
FETS RFQ (A. Kurup, P. Savage, IC)

- Requirements:
 - Accelerate 60mA H\(^{-}\) beam from 65keV to 3MeV. Input emittance is 0.25\(\pi\) mm mrad and transmission efficiency is \(~95\%\).
- Frequency of operation: 324 MHz

- 4-rod will be difficult to cool adequately; 4-vane is the preferred option
- Simulations are ongoing to get best design. Total length will be 4m.

01/03/07 Seminar
RFQ Cold Model

- Cold model components of one section of the RFQ has been constructed at IC (and with some help from Daresbury)
 - Measurements of the frequency and Q value will be compared with simulations used to optimise RFQ design
Beam Chopper

(M. Clarke-Gayther, RAL)

Main aim of FETS program is to demonstrate fast chopping of the H⁻ ion beam. Below is a schematic drawing of the chopper (Medium Energy Beam Transport).

H⁻ beam from RFQ

Re-buncher cavities

Chopper 1
(fast transition)

Chopper 2
(slower transition)

3.2 m
Beam Chopper Scheme

- **FAST CHOPPER**
- **SLOW CHOPPER**

BEAM CURRENT
- 5.0 ns
- 9.0 ns

FPG WAVEFORM

FAST CHOPPED BEAM CURRENT
- 9.0 ns (10 - 90 %)

SPG WAVEFORM

FAST & SLOW CHOPPED BEAM CURRENT

TIME →
Refurbishment of work areas in R8
3MW 324 MHz Klystron for RFQ now in R8
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure setup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion source programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEBT programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFQ Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chopper programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH (DTL) - Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run FE accelerator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green: R&D phase
Yellow: Design & Construction phase
Red: Installation and Commissioning phase
Target Studies

• Create $\pi (\rightarrow \mu \rightarrow \nu)$ by bombarding target with protons.
• Proton beam power of 4 MW required to get $10^{21} \mu/\text{yr}$.
 – Solid targets can generally only cope with ~ 1.5 MW before breaking/melting…
• Extreme heating, shock and radiation damage suggest:
 – Moving, large, solid target with extensive cooling
 – A liquid metal (Hg) jet target
• UK studies focusing on solid targets (RAL, Sheffield, Warwick)
 – Investigating best material (i.e. survives beam)
 – Optimising target geometry
 • Size/shape/arrangement of solid target (maximise π yield)
 • Amount of cooling and shielding required
 • Solenoid configuration to get 20T field to focus π and μ
Target Geometry & B Field (based on BNL Study-II)

- SC coils
- Cu coils
- Fe plug
- Inclined p beam
- Target rods in 20T region
- Shielding (tungsten carbide) $r_{xy}: 7.5\text{cm}-18\text{cm}$
- B field lines
- Beam dump placed within shielding
Selection of target material

• Experimental work at RAL (by R. Bennett et al.) investigating material lifetime for a solid target
 – BNL and MERIT @ CERN testing liquid Hg targets

• RAL Wire Test:
 – Induce thermal shocks by passing high current pulses at 50Hz through thin wires of material (Ta, W)
 – Wire is heated to T~2000K, simulating conditions in a ν Factory target
 – Find out how long the wire survives without breaking/melting

• Computer simulations (with LS-DYNA) done in parallel to understand shocks inside the solid target (G. Skoro, Sheffield)
 – Not much data for T > 1000K to compare with theory, hence the experimental work at RAL
Example wire test done at RAL on 16 Dec’05

Wire is fixed at one end and gets white hot as high current passes through it. Photo shows bending/ripples in the wire – stresses inside the material.

Achieved $T_{\text{max}} \approx 2350\text{K}$ for 15 mins
Latest Wire Test Results

• Ta is not strong enough ($T_{\text{max}} \sim 1500\text{K}$ before breaking)
• W looks promising. Able to reach $T\sim 2000\text{K}$.
• W results from Jan 2007:
 – 0.5mm diameter wire ran for 10,075,000 pulses at 6200A. Equivalent to 3.6 or 7.8MW in 2 and 3cm diameter targets, respectively.
 – Wire broke after a further 2,688,000 pulses for 7500A-8000A ($\sim 6\text{MW in 2cm diameter target}$). $T_{\text{max}} \sim 1900\text{K}$.

01/03/07 Seminar
Target Stress Analysis

LS-DYNA computed stress as a function of proton beam pulse length

- **Stress in tungsten wire** (5 kA, 800 ns long pulse)
- **Stress in real target** (4 MW, 50 Hz, 6 GeV)
Pion Production Yield

- Optimise target rod size and beam energy to maximise π production
 - Count π's leaving rod surface (cylinder)
 - Total π rate = $(n_\pi \text{ at surface})/(E_p \times N_p)$
 - Total π rate$/E_{\text{heat}}$ where E_{heat} = energy in target
 - Assume constant 20T B field along z axis
 - Use MARS simulation code for analysis

$B = 20 \text{ T}$

Solid Target

p

E_p

π

1cm

20 cm

20 cm
Pion Production vs Energy

\[
\pi^- \text{ and } \pi^+ \text{ rates}
\]

\[
\pi^- \text{ and } \pi^+ \text{ rate}/E_{\text{heat}}
\]

Heat within target w.r.t.
5 MW p beam

\[
y = (E_{\text{heat}}/E_p) \times 5 \text{ MW}
\]
Re-absorption of π and μ

- Solid target geometry could be toroidal ring arrangement ($R \geq 10\text{m}$), containing 30cm-long cylindrical rods separated by spaces of $\sim 10\text{cm}$
- Is there any re-absorption of π and μ (from decaying π) by cylindrical W rods in front of original rod in the 20 T field?
- Assume worst case scenario: rods are along same (z) axis as the beam
 - Measure fraction of π and μ stopped by rods 2 and 3

- Re-absorption fractions (using Study-II solenoid/shielding geometry and B field)
 - $\sim 35\%$ ($\sim 20\%$) at end-plane 3 (2) for rod $d = 1\text{cm}$
 - $\sim 50\%$ ($\sim 25\%$) at end-plane 3 (2) for rod $d = 2\text{cm}$
 - $\sim 60\%$ ($\sim 33\%$) at end-plane 3 (2) for rod $d = 3\text{cm}$
Other R&D Work

• End-to-end simulations of the ν Factory (ASTeC group@RAL)
 – Accelerator schemes for protons and muons

• **Muon Ionisation Cooling Experiment @ RAL**
 – Need to reduce size of muon beam to accelerate it to required energies (10-50GeV) before it decays to ν
 – Pass muon beam through absorber to reduce transverse momentum, accelerate it along the z axis to the next absorber
 – Repeat until the transverse spread of the beam is reduced so that the beam can fit inside accelerator components downstream

• **Electron Model for Many Applications @ Daresbury to investigate non-scaling Fixed Field Alternating Gradient accelerators**
 – B field has gradient which follows increase in particle energy
 – Non-scaling means that the particle orbits do not have the same shape

• Improving manufacture and performance of RF cavities for accelerating protons/muons (Lancaster/Cockcroft Institute)
 – Collaborations with UK industry

• Investigating detector technologies
 – Magnetised iron and/or liquid argon calorimetry etc..
Two year (’05-’06) international effort to identify baseline options for major components of a Neutrino Factory.

ISS baseline design (Aug. ’06)

Target: 4MW, 10GeV, 50Hz, 4 bunches per pulse, 2ns bunch length

Baseline target: liquid Hg - however, there are issues with radiation activation, cavitation & containment (preventing spillage)

Picture from M. Zisman, ISS/NuFact’06
Summary

• Neutrino Factory is the best way to measure properties of neutrinos
 – Increase understanding of the flavour sector of the Standard Model

• Shown part of the UK R&D efforts for a future Neutrino Factory
 – All aspects of a Neutrino Factory are being studied in the UK: proton driver, target, end-to-end simulations, muon cooling, accelerator schemes, RF cavity construction and detectors.
 – UK expertise in designing and constructing such a facility

• International Design Study (IDS) is starting, continuing on from the International Scoping Study (ISS)
 – Aim to have design report written by ~2012 (5 yr programme)
 – UK is playing a major role in this effort.
Extra Material
FETS Team

John Back (Warwick) - LEBT
Aaron Cheng (Imperial) – RF Measurements
Mike Clarke-Gayther (ISIS/ASTeC) – MEBT (Chopper)
Adeline Daly (ISIS) – Infrastructure (R8 @ RAL)
Dan Faircloth (ISIS) – Ion Source
Christoph Gabor (ASTeC) – Laser Diagnostics
Simon Jolly (Imperial) – Pepperpot System (LEBT)
Ajit Kurup (Imperial) - RFQ
David Lee (Imperial) – Laser Diagnostics
Alan Letchford (ISIS) – Project Leader/RFQ
Ciprian Plostinar (ASTeC) – MEBT/Drift Tube Linac (DTL)
Jürgen Pozimski (ASTeC/Imperial) – Ion S., LEBT, RFQ, Diag.
Peter Savage (Imperial) – Mechanical Engineer
H⁻ Ion Source Schematic

Platform Ground

Supply

Platform DC Power

17kV

18kV

53.7mm

Laboratory Ground

Pulsed Extract Power Supply

Extraction Electrode, Coldbox and Analysing Magnet all Pulsed

Post Extraction Acceleration Gap

35keV H⁻ Beam

01/03/07

Seminar
H⁻ Ion Source

- **Penning Pole Pieces**
- **Aperture Plate**
- **Discharge Region**
- **Cathode**
- **Anode**
- **Ceramic**
- **Copper Spacer**
- **Mica**
- **Mounting Flange**
- **Extract Electrode**
- **Source Body**

Scale: 10mm
LEBT Solenoid Study

Solenoid design optimised with MAFIA. “2-5-2” coil arrangement produced most uniform axial field

Typical dimensions (± 0.5cm):
- \(r_0 = r_1 = 5\text{cm} \), \(r_2 = 6\text{cm} \), \(r_3 = 12\text{cm} \),
- \(d_1 = d_2 = 3\text{cm} \), \(cw = 2\text{cm} \), \(g = 1\text{cm} \),
- \(w = 10\text{cm} \) (for calculation volume)

Iron yoke has \(\mu_r = 500 \)

01/03/07
Beam Chopping Simulations
Magnetic field map in target region along z ($r=0$)