Pixel Technologies for the ILC

Generic future Colliders of any shape

Marcel Stanitzki
STFC-Rutherford Appleton Laboratory
In the beginning ...

- SLD's VXD3 (1996)
 - 307 Million channels
 - 20 µm pixels
- The Grandfather of all LC pixel detectors
- Still provides valuable “lessons learned” from SLC
- Starting point for ILC pixel R&D
How does a Silicon Pixel work?

- From a semiconductor perspective
 - Silicon pn-junction (aka Diode)
 - not really that different from a strip detector ...

- Particle passing through
 - always treated as MIP
 - generate electron-hole pairs
 - 80 e/μm

- Reverse bias pn junction
 - can fully deplete bulk
 - either collect holes or electrons

© Rainer Wallny
Materials

- **High resistivity Silicon**
 - $R = 1\, \text{k}\Omega\text{cm}$
 - used mostly for detectors
 - Quite expensive
 - **Charge Collection**
 - thickness up to 500 μm
 - Fully depleted
 - Collect charge via drift
 - Fast (~ 10 ns)
 - small charge spread

- **Low resistivity Silicon**
 - $R = 10\, \text{\Omega}\text{cm}$
 - Used in CMOS industry (epi)
 - Cheap
 - **Charge collection**
 - thin (10 μm)
 - basically undepleted
 - collect charge via diffusion
 - Slow (~ 100 ns)
 - larger charge spread
There are more things between p and n, Horatio, than are dreamt of in your philosophy!
Pixel RD for the ILC

- Very active field for the last ten years
- Plenty of groups involved in all 3 ILC regions
 - Europe
 - Asia
 - Americas
- A lot of progress has been made
- I'll focus on
 - Pixel technologies
 - Silicon-only pixels
- Apologies in advance for omissions ...
SiD - a typical ILC detector

Letter of Intent submitted 31st of March
ILC Detector Requirements

- Impact parameter resolution
 \[\sigma_{r\phi} \approx \sigma_{rz} \approx 5 \times 10^3 / (p \sin^{3/2} \theta) \]
- Momentum resolution
 \[\sigma \left(\frac{1}{p_T} \right) = 5 \times 10^{-5} \text{ (GeV}^{-1}) \]
- Jet energy resolution goal
 \[\frac{\sigma_E}{E} = 30\% \]
 \[\frac{\sigma_E}{\sqrt{E}} = 60\% \]
- Detector implications
 - Calorimeter granularity
 - Pixel size
 - Material budget, central
 - Material budget, forward
- Need factor 3 better than SLD
 \[\sigma_{r\phi} = 7.7 \times 10^3 / (p \sin^{3/2} \theta) \]
- Need factor 10 (3) better than LEP (CMS)
- Need factor 2 better than ZEUS
- Detector implications
 - Need factor \sim 200 better than LHC
 - Need factor \sim 20 smaller than LHC
 - Need factor \sim 10 less than LHC
 - Need factor \sim >100 less than LHC

Highly segmented, low mass detectors required \rightarrow pixels!
The ILC Vertex Detector

- 5 layers, either
 - long barrels
 - barrels + endcap disks
 - gas-cooled
- First layer ~ 1.2 cm away from primary vertex
- Occupancy 1 %
- Material budget: ~1 % X_0
And the pixels spread ...

- Pixels originally only intended for the vertex detectors
 - like SLD ...
- But pixels are becoming affordable
 - Pixel detectors spread outwards
- Silicon pixel trackers are now feasible
 - $\sim 70 \, \text{m}^2$ silicon, 30 Gigapixel
- Digital EM calorimetry using pixels as particle counters
 - $2000 \, \text{m}^2$ area, 1 Terapixel
Pixels everywhere ...

![Graph showing area in m² compared to million channels for different projects: SLD VXD3, ILC Vertex, Pixel Tracker, Digital ECAL, CMS, ATLAS.](image-url)
ILC timing

- ILC environment is very different compared to LHC
 - Bunch spacing of ~ 300 ns (baseline)
 - 2625 bunches in 1ms
 - 199 ms quiet time
- Occupancy dominated by beam background & noise
- Readout during quiet time possible
ILC Pixels: Timing and Readout

- **Time stamping**
 - single bunch resolution
 - buffer hits
 - readout during quiet time

- **Time slicing**
 - divide train in n slices
 - readout during train/quiet time

- **Time-integrating**
 - no bunch information
 - readout during quiet time

- **On-Pixel processing**
 - each pixel self-sufficient
 - digital data stream off pixel
 - minimal amount of interconnects

- **Off-Pixel processing**
 - data is moved to a readout chip
 - requires additional circuitry and interconnects
How to achieve Occupancy goal?

- Goal is 1 % occupancy
 - can't be just done by integrating over the entire train
 - Especially for the inner layers
- Pixel size
 - go to very small pixels
- Time stamping and buffering
 - read and store hits on pixel
- Time Slicing
 - read out the entire detector n times during the train
- Combination of the above
And CLIC?

- CLIC is an alternative proposal for a linear collider driven by CERN
 - Up to 3 TeV center-of-mass energy
 - 48 km long

- Innovative “Drive-Beam” Technology
 - Drive beam is used to generate accelerating field for main beam
 - Proof-of-principle ongoing
 - CTF3 at CERN is becoming online now

- Very small beams
 - Larger beam backgrounds
 - Vertex detector moves outwards (~ 4 cm)
CLIC Bunch structure

Train repetition rate 50 Hz

CLIC: 1 train = 312 bunches 0.5 ns apart 50 Hz
ILC: 1 train = 2680 bunches 337 ns apart 5 Hz

Consequences for a CLIC detector:

• Assess need for detection layers with time-stamping
 − Innermost tracker layer with sub-ns resolution
 − Additional time-stamping layers for photons and for neutrons
• Readout electronics will be different from ILC
• Consequences for power pulsing?
Why not using LHC-style pixels?

- LHC requirements
 - extremely rad hard
 - very fast (25 ns)
- LHC pixels
 - “large”
 - cooling required
- ILC requirements
 - slow and not rad-hard
- ILC pixels
 - very low material budget
 - high granularity
The material budget

ILC Goal for whole Tracking System
Other short comings

- Excessive use of bump-bonding
 - difficult
 - yield issues
 - limits minimum pixel size ...

- Cooling requirements
 - more material
 - more complexity

- Manufacturing & Cost
 - Everything is custom-made (meaning expensive)
 - Cost per m² too high for large systems
Pixel Technology Tree

- CCD
- ISIS
- DEPFET
- MAPS
- Sol-MAPS
- 3D Pixels
CCD's

- **Charge-Coupled Device**
- Extensively used in imaging
- Established technology
- SLD's VXD3 used CCD's
- Basic working principle
 - charge storage
 - readout as bucket-chain
 - robust against pick-up
- Require
 - high charge transfer efficiency
 - cooling to -20 C
 - high drive currents
CPCCD (LCFI)

- "Classic" CCD readout is slow
- **Column Parallel CCD**
- Idea: divide readout chain into columns
 - Higher speeds possible (50 MHz)
 - Time slicing approach (20 frames)
 - 20 µm pixels
- CPCCD requires a dedicated readout chip
- High currents driving the readout
- already second generation design

\[
\text{Readout time} = \frac{N \times M}{f_{\text{out}}}
\]

“Classic CCD”
\[
\text{Readout time} \approx N \times \frac{M}{f_{\text{out}}}
\]

Column Parallel CCD
\[
\text{Readout time} = \frac{N}{f_{\text{out}}}
\]
A CPCCD Module

CCD

Driver Chips

Readout ASIC
FPCCD (KEK et. al.)

- **Fine Pixel CCD**
 - Time-integrating
 - Instead of time slicing ...
 - requires 5 \(\mu \text{m} \) pixels
 - Fully depleted epitaxial layer
 - minimize the number of hits due to charge spread
- Requires cooling
- Readout similar to CPCCD
- currently 12 \(\mu \text{m} \) pixel size
 - Expect 5 \(\mu \text{m} \) pixels in 2011

First Prototype 12 \(\mu \text{m} \) pixels 512x128x4 pixels total

Layout of prototype ASIC
ISIS (LCFI)

- **In Situ Image Storage**
 - charge collection with photo diode
 - Transfer to CCD-like structure
 - Time-slicing (20x)
- Readout chips separate
 - semi-integrated pixels
 - plans for full integration
- First proof of principle devices
 - ISIS1
 - Successor ISIS2 has shown “signs of life”
DEPFET (DEPFET collaboration)

- **DEpleted P-channel FETs**
- **Basic principle**
 - Bulk fully depleted
 - Collection by drift
 - Internal gate collects charge
- **Clear gate necessary**
- **Charge collection with FET's switched off, low power**
- **Unique process developed by MPI Halbleiterlabor München**
- **Leading Candidate for Super-Belle Vertex Detector**
DEPFET Prototypes

- DEPFET readout
 - External gate row select
 - Signal charge modifies current
 - CDS style readout using Clear gate
- Two driver ASICs needed
- Latest version PXD05
 - 24 μm pixel size
 - tests ongoing
MAPS basic principle

- **Monolithic Active Pixel Sensors**
- CMOS technology
 - Down to 180 nm/130 nm
- Charge is collected by diffusion
 - Slow > 100 ns
- Integrated readout
- Thin Epi-layers (< 15 µm)
- Parasitic charge collection
 - can't use PMOS ...
- Basic MAPS cell for Particle Physics
 - The 3T array
MIMOSA (IRES et. al.)

- MIMOSA family
 - 3T architecture
 - Restricted to NMOS

- MIMOSA 22
 - 0.35 µm AMS OPTO process
 - 18.4 µm pixel size
 - 128 columns
 - 128 x 576 pixels in total
 - Read-out time 100 µs

- Readout as Rolling-Shutter
 - One column read out at a time
LDRD (LBNL et. al.)

- Current: LDRD03
 - 3T with in-pixel “CDS”
 - Readout at the end of a column
 - Made in 0.35 µm AMS OPTO process
 - 20 µm Pixels
 - 96 columns with 96 pixels each
- Rolling-Shutter readout
Overcoming the limits

- Two approaches
 - Deep n-well
 - n-well diode as a deep implant covering most of pixel
 - Can have PMOS (small number)
 - Deep p-well
 - Encapsulate electronics n-wells with deep p-implant
 -shielding, so no parasitic charge collection
 - Realized e.g. in INMAPS process and in ISIS
Deep n-Well MAPS (INFN)

• Made in ST 130 nm process
 − Triple-well approach
• 25 x 25 µm pixels with binary readout
 − Goal 15 x 15 µm
• Integrated electronics
 − Pre-amp, discriminator
 − Sparsification, time-stamping
• Plans to explore smaller feature sizes

- 25 µm x 25 µm DNW sensor
- Pre-amplifier
- Discriminator
- Time stamp register
- Sparsification logic
TPAC (CALICE-UK)

- 50 x 50 µm with binary readout
 - Deep p-well/INMAPS 180 nm
 - Pixel developed for digital EM calorimetry
 - Different optimization
- integrated electronics
 - Pre-amp, comparator
 - Pixel masks and trim
- Logic strips
 - Hold buffers and time-stamping
 - Add ~ 11 % dead area
Chronopixels (Yale/Oregon)

- Similar to previous pixels
 - In-pixel electronics
 - Hit buffering
 - Time-stamping
 - Binary readout
- Prototype made in 180 nm TSMC
 - Pixel size 50 x 50 μm
- Goal
 - 45 nm process
 - 10 x 10 μm pixels
 - Deep p-well and high-res epi
SoI Basics

- **Silicon on Insulator (SoI)**
- Thin active circuit layer on insulating substrate
- ~200 nm of silicon on a “buried” oxide (BOX) carried on a “handle” wafer.
- Handle wafer can be high resistivity silicon
- Integration of electronics and fully depleted detectors in a single wafer
- Diode implant through the buried oxide
MAMBO (Fermilab)

- **Monolithic Active pixel Matrix with Binary cOunters**
- Made in 150 nm Oki Process
 - 200 nm BOX layer
- Pixel size is 26 x26 µm
 - Implements a 12 bit counter
- Common problem for all SoI
 - Backgate effect handling wafer
 - Can be fixed by using thicker BOX layer
 - Alternatively design work-arounds
3D Pixels

- The ultimate dream of any pixel designer
 - Fully active sensor area
 - Independent control of substrate materials for each of the tiers
 - Fabrication optimized by layer function
 - In-pixel data processing
 - Increased circuit density due to multiple tiers of electronics
- A new way of doing things
VIP-I (Fermilab)

- **Vertically Integrated Pixel**
- Pixel array 64x64, 20x20 µm pixels
 - Analog and binary readout
 - 5-bit Time stamping
 - Sparsification
- Designed for 1000 x 1000 array
- Chip divided into 3 tiers
- Made in MIT-LL process
- VIP2a is on its way
3D Process Developments

- The MIT LL process
 - Demonstrated a fully functional device
- However:
 - Poor yield- both processing problems and overly aggressive design
 - VIP2 will use degraded design rules (0.15 -> 0.2 or 0.3 μm) with improved transistor models
 - Analog SoI design is challenging
 - Long turn-around time
 - Not a commercial process

- Tezzaron 130 nm
 - Existing rules for vias and bonding
 - Relatively fast turn around
 - One stop shop for wafer fabrication, via formation, thinning, bonding
 - Low cost
 - Process is available to customers from all countries
Future Trends

- Always in motion the future is ...
 - especially for pixels

- Higher integration
 - Smaller feature sizes and 3D integration will make this possible

- Larger sensor areas
 - Real CMOS Stitching allow wafer-scale sensors

- Low power designs
 - Large pixel system will need to reduce power usage per channel
Process trends

Year of Availability

Feature Size (nm)

ATLAS ABCD

MIMOSA

CMS APV25

TPAC

Deep n-well

Intel Core2

Intel Pentium 4

Intel iCore7

Legacy processes

Mixed-Mode

CMOS

Deep sub-micron

Science & Technology Facilities Council
Rutherford Appleton Laboratory

Marcel Stanitzki
Why not deep submicron?

• Some problems
 - Mostly pure digital processes (CPU, DRAM, etc)
 - Leakage Currents become a problem
 - Small dynamic range due to operating voltage of 1 V
 • ADC design becomes way more difficult
 - New design kits, tools etc
 - Smaller process does not automatically mean smaller pixels

• Access to deep submicron processes
 - Very difficult, foundries are not keen on a runs with a few wafers only
 - Costs are not compatible with STFC funding
 • 180 nm mask set (~ 50,000 US-$)
 • 65 nm mask set (1,000,000 US-$)
Where does it end ...

- **CMOS**
- **Standard Lithography break-down**
- **End of CMOS**

Feature size (nm) vs. Year of availability

- **Nanostructures**

Science & Technology Facilities Council
Rutherford Appleton Laboratory
Large CMOS sensors

• CMOS structures have size limits
 - the reticle size
 - process-dependent
 - usually 25x25 mm

• This is a technology limit for large sensors

• Mainstream Industry not very interested
 - e.g. Intel Core2 (65 nm) 12x12 mm
 - Only interesting for imaging applications

• Way out: Stitching sensors
Stitching

Original Sensor Design

Stitchable Sensor Design

Stitched Sensor Design
Some comments

• Stitching can't be a second thought
 − design for it from beginning
• Stitchable designs are more complex
• Mask set more expensive ..
• But then
 − normal wafer costs
 − mass producible
 − wafer size (300 mm) is the limit
• Caveat
 − larger structures mean lower yield ...
 − Compensate by robust/simple designs
Which Technology to choose?

• Even more difficult to make a forecast
• For a vertex detector
 - Small area (~ 1 m²) so choose technology that can do the job
 - Cost is a minor issue
• For Silicon Pixel Trackers/ECAL etc
 - Industrial processes
 - Mass producible and cheap (large areas)
 - Minimize interconnects
• Interesting times ahead ...
SPiDeR

- CALICE-UK and LCFI got canceled by STFC
 - despite being major players in the pixel world
 - big innovations
- UK Pixel Community made a new proposal
- SPiDeR (Silicon Pixel Detector R&D)
 - Birmingham, Bristol, Imperial College, Oxford and RAL
- 3 year Program
 - Generic Pixel R&D (TPAC, Novel Structures)
 - Generic Techniques using Pixels (DECAL)
 - ISIS support was canceled by STFC
Summary

• If you like to know more ...
 - The ILC R&D reviews are an excellent summary of the activities

• Thanks to
 - J. Brau, C. Damerell, M. Demarteau, T. Greenshaw, L. Linssen, R. Lipton, K.D. Stefanov, Y. Sugimoto, R. Turchetta, M. Tyndel, N. Wermes for material, comments and discussion
Who is doing what

- LCFI (UK collaboration)
 - CPCCD/ISIS
- FPCCD group
 - FPCCD
- DEPFET Collaboration
 - DEPFET
- LBNL/INFN/Purdue
 - MAPS/SoI MAPS
- Fermilab
 - SoI MAPS/3D Pixels
- CALICE-UK
 - MAPS (TPAC)
- CMOS-VD
 - MAPS (MIMOSA)
- Hawaii
 - CAP