INDIA-BASED NEUTRINO OBSERVATORY (INO) Plans & Status

Naba K Mondal Tata Institute of Fundamental Research Mumbai, India

Atmospheric neutrino detection in 1965

Atmospheric neutrino detector at Kolar Gold Field –1965 INO-UKNF meeting

DETECTION OF MUONS PRODUCED BY COSMIC RAY NEUTRINO DEEP UNDERGROUND

C. V. ACHAR, M. G. K. MENON, V. S. NARASIMHAM, P. V. RAMANA MURTHY and B. V. SREEKANTAN, Tata Institute of Fundamental Research, Colaba, Bombay

> K. HINOTANI and S. MIYAKE, Osaka City University, Osaka, Japan

D. R. CREED, J. L. OSBORNE, J. B. M. PATTISON and A. W. WOLFENDALE University of Durham, Durham, U.K.

Received 12 July 1965

Physics Letters 18, (1965) 196, dated 15th Aug 1965

EVIDENCE FOR HIGH-ENERGY COSMIC-RAY NEUTRINO INTERACTIONS*

F. Reines, M. F. Crouch, T. L. Jenkins, W. R. Kropp, H. S. Gurr, and G. R. Smith

Case Institute of Technology, Cleveland, Ohio

and

J. P. F. Sellschop and B. Meyer

University of the Witwatersrand, Johannesburg, Republic of South Africa (Received 26 July 1965)

2

4th April, 28425, (1965), 429, dated 30th Aug. 1965

KGF

INO-UKNF meeting

INO Initiative

- In early 2002, a document was presented to the Dept. of Atomic Energy (DAE), Govt of India with a request for fund to carry out feasibility study for setting up an underground neutrino laboratory in India.
- In August 2002, an MoU was signed by the directors of seven participating DAE institutes towards working together on the feasibility study for such a laboratory.
- A neutrino collaboration group was established with members mostly from Indian Institutes and Universities.
- A sum of 50 million INR (1 M USD) was allotted by DAE to carry out the feasibility study.
- Considering the physics possibilities and given the past experience at Kolar, it was agreed to carry out the feasibility study for a large mass magnetised iron calorimeter which will compliment the already existing water cherenkov based Super-K experiment in Japan.

INO activities during feasibility study period

• Detector R & D:

- Choice of active detector
- Design of the magnet
- Prototyping
- Electronics front end and DAQ system
- Gas recirculation system
 Cost estimate for various components

• Site Survey:

- History of the site.
- Cost factors.
- Risk factors and safety issues.
- Ownership & site sharing.
- Depth
- Outreach potential
- Local support & awareness

INO activities during feasibility study period

Numerical simulation:

- Development of GEANT3 & GEANT4 based codes for proposed detector geometry
- Neutrino generator
- Analysis to evaluate physics potential.
- Human Resource development:
 - INO training school
 - Joint universities training program
 - Direct recruitment
 - INO positions/ INO fellowships at various institutions
 - Ph. D. degree for instrument building

India-based Neutrino Observatory Proposal

Goal: A large mass detector with charge identification capabilityTwo phase approach:

R & D and Construction Phase I Physics studies, Detector R & D, Site survey, Human resource development Phase II Construction of the detector

Operation of the Detector

Phase I Physics with Atmospheric Neutrinos Phase II Physics with Neutrino beam from a factory

Neutrino Physics using INO

INO-UKNF meeting

Physics using atmospheric neutrinos during Phase I

- Reconfirm atmospheric neutrino oscillation
- Improved measurement of oscillation parameters
- Search for potential matter effect in neutrino oscillation
- Determining the sign of Δm_{23}^2 using matter effect
- Measuring deviation from maximal mixing for θ₂₃
 Probing CP and CPT violation
- Constraining long range leptonic forces
- Ultra high energy neutrinos and muons

Disappearance of V_{μ} Vs. L/E

200

100

0

Events

The disappearance probability can be measured with a single detector and two equal sources:

 $-= P(\nu_{\mu} \rightarrow \nu_{\mu}; L/E)$

3

Precision measurement of Δm_{31}^2 and θ_{23}

Experiment	∆m² ₃₁	$Sin^2 \theta_{23}$
Current	30%	34%
MINOS + CNGS	13%	38%
T2K (5 yrs)	6%	22%
NO vA (5 yrs)	13%	42%
SK20 (1.84 MTy)	17%	24%
INO (250 KTy)	10%	30%

Beyond Superbeam - Neutrino Factory

NF: Golden channel optimisation

sin²2θ₁₃: 5σ sensitivity

• Magic baseline (7500 km) good degeneracy solver

Stored muon energy > 20 GeV

•

Patrick Huber: NUFACT06

NF: Golden channel optimisation

Mass hierarchy: 3 **o** sensitivity

Baseline: ~7500 km Stored muon energy 20 – 50 GeV

Patrick Huber- NUFACT06

INO-UKNF meeting

•

•

INO Detector Specifications

INO-UKNF meeting

INO Phase 1

Neutrino Source

- Need to cover a large L/E range
 - Large L range
 - Large E_vRange
- Use Atmospheric neutrinos as source
- **Detector Choice**
 - Should have large target mass (50-100 kT)
 - Good tracking and Energy resolution (tracking calorimeter)
 - Good directionality (<= 1 nsec time resolution)
 - Charge identification
 - Ease of construction
 - Modularity
 - Complimentarity with other existing and proposed detectors
 - Use magnetised iron as target mass and RPC as active detector medium

INO Detector Concept

INO-UKNF meeting

The Magnet

magnet. Cycle V Х

INO-UKNF meeting

4th April, 2008

ONI

i.

ICAL Detector Specifications

No of modules	3
Module dimension	16 m X 16 m X 12 m
Detector dimension	48 m X 16 m X 12 m
No of layers	140
Iron plate thickness	6 cm
Gap for RPC trays	2.5 cm
Magnetic field	1.5 Tesla
RPC unit dimension	2 m X 2 m
Readout strip width	2 cm
No. of RPCs/Road/Layer	8
No. of Roads/Layer/Module	8
No. of RPC units/Layer	192
Total no of RPC units	27000
No of Electronic channels 4th	A3:61X106

Construction of RPC

Two 2 mm thick float Glass Separated by 2 mm spacer

2 mm thick spacer

INO-UKNF meeting

Resistive coating on the outer surfaces of glass 4th April, 2008

ΓΙΙ ΣΙ ΚΡΟ ΙΔΗ ΔΙ ΙΙΓΚ

RPC Test Stand

Larry results

Gas Mixture	Tele window (mm)	Cross talk (%)				
62:8:30	10	6.8				
62:8:30	15	6.7				
62:8:30	20	6.2				
57:8:35	20	6.5				
52:8:40	20	5.9				
46:8:46	20	6.3				

INO-UKNF meeting

Cosmic Muon Test using small RPCs

Stack of 10 RPCs

INO-UKNF meeting

Some meresting events tracked

RPC S34	1111	1111	111.	Sti	*i)	ps///	1111	1111	Hit 008	TDC 0000
\$38	1111	1111	1111	1111		1111	1111	1111	008	0000
\$39	1111	1111	1111	1111			1111	1111	012	0400
\$37	1111	1111	1111	1111		1111	1111	1111	008	0460
\$36	1111	1111	1111	1111	1111	1111	1111	1111	000	2065
\$35	1111	1111	1111	1111	1111	1111			003	0543
\$33	1111	1111	1111	1111	1111	1111		1111	002	0465
\$31	1111	1111	1111	1111	1111	1111		1111	002	0476
J04	1111	1111	1111	1111	1111			1111	006	0536
\$27	7	6	1115	4	3	2	1	9	004	0523

\$27	7	6	1115	4	3	2	1	0	008	0540
J04	1111	1111	1111	1111		1111	1111	1111	008	0509
\$31	1111	1111	1111	1111		1111	1111	1111	008	0525
\$33	1111	1111	1111	1111		1111	1111	1111	008	0498
\$35	1111	1111	1111	1111		1111	1111	1111	008	0499
\$36	1111:	1111:	1111	1111		1111:	1111	1111	008	1502
\$37	1111	1111	1111	1111		IIII:	1111	1111	008	0436
\$39	1111:	1111:	1111:	1111		1111:	1111:	1111	008	0421
\$38	1111	1111	1111	1111		1111	1111	1111	008	0000
\$34	1111	1111.	1111	1111.		1111	1111	1111.	008	0000

Strips

Hit TDC

RPC

RPC S32	1111	1111	<i></i>	St:	•iı	s ////		1111	Data 018
S29	1111	1111	1111	1111	1111	1111		1111	002
\$37	1111	1111	1111	1111					015
\$36	1111	1111	1111					1111	030
\$35	1111	1111	1111		1111		1111	1111	020
\$33	1111	1111		1111			1111	1111	044
\$31	1111		1111	1111			1111	1111	076
GØ1	1111	1111	1111	1111			1111	1111	012
JØ4	1111	1111	1111			1111	1111	1111	024
\$27	1117	1	11115	4	3	2	1	11116	008

INO-UKNF meeting

Aging. Enciency drop of a RPC

INO-UKNF meeting

Long-term stability tests of RPCs

- Two RPCs (J2 & J3) built using 2mm Japanese glass for electrodes
- Readout by a common G-10 based signal pickup panel sandwiched between the RPCs
- Operated in avalanche mode (R134a: 95.5% and the rest isobutene) at 9.3KV
- Round the clock monitoring of RPC and ambient parameters – Temperature, Relative humidity and Barometric pressure
- Under continuous operation for more than two years.
- Chamber currents, noise rate, combined efficiencies etc are stable <u>INO-UKNF meeting</u> 4th Apr

Painting with conductive paint on Glass

Paint developed by KANSAI-NEROLAC composition : (i) Binder (acrylic resin), (ii) Pigments (conductive black), (iii) solvents (Aromatic hydrocarbons and alcohols).

RPC building blocks

Making of RPC gap

RPC IADIICALIUII

INO-UKNF meeting

INO-UKNF meeting

TUI APIII, 2000

muons

Signal from RPC

4th April, 2008

0 950

Timing distribution

Effect of SF₆ off efficiency & closs taik

INO-UKNF meeting

4th April, 2008

35

INO Prototype

- 12, 1m² RPC layers
- 13 layers of 5 cm thick magnetised iron plates
- About 1000 readout channels
- **RPC** and scintillation paddle triggers
- Hit and timing information

INO Simulations

INO-UKNF meeting

Detector Simulation

- Used NUANCE Neutrino Event Generator – Generate atmospheric neutrino events inside INO detector
- Used Atmospheric Neutrino Flux of Honda et. al.
- GEANT detector simulation package – Simulate the detector response for the neutrino even
- Analysed oscillation data at two levels
 Using NUANCE output and kinematic resolution function
 - Using full detector simulation

Obtained preliminary results so far. Detailed simulation is underway.
 INO-UKNF meeting 4th April, 2008

38

Some simulation results

Hadron Response

Pions of different fixed energies but random directions (1 K events)

INO-UKNF meeting

INO Site

INO-UKNF meeting

Location of the Underground Laboratory

- Studies were performed on two potential sites.
 - Pykara Ultimate Stage Hydro Electric Project (PUSHEP) at Masinagudi, Tamilnadu
 - Rammam Hydro Electric Project Site at Darjeeling District in West Bengal
- INO Site Selection Committee after thorough evaluation have now recommended PUSHEP at Tamilnadu as the preferred site for the underground lab.

INO-UKNF meeting

Expected Background

INO-UKNF meeting

Underground Caverns: Schematics

INO-UKNF meeting

Time Scale

• Phase I: 12-18 months:

- Draw up detailed design report for tunnel and cavern
- Detailed design report on detector structure, RPCs, pickup electrodes, electronics & power supply system

Phase II: 22-40 months:

- Tunnel & cavern construction
- **RPC R & D** and construction
- Tendering and procurement of iron, magnet coil
- Electronics and gas mixing unit procurement and fabrication

• Phase III: 12-18 months

- Laboratory outfitting
- Transporting of materials
- Assembly
- Data taking of first module start early while assembly of other modules continue

Expected to start the first module by 2012

INO-UKNF meeting

Center for Detector Development

- Particle detectors developed by High Energy & Nuclear Physicists have found application in medical imaging, material science, industrial control, geological survey.
- Apart from exciting physics, detector development itself will be a major activity of this centre.
- Need a focused approach with a well coordinated group of people working on detector development.
- INO Centre can play the role of coordinating such activities through joint R & D efforts on detector development with other laboratories around the world.
- Need close interaction with industry, 2008

INO Graduate Training Programme

- A large number of well trained Physicists and Engineers will be needed to lead the experimental activities in high energy and astroparticle physics to be carried out using INO facility.
- We plan to start a graduate training programme from August 2008.
- Selected students will be initially trained for one year at TIFR, Mumbai in both experimental techniques and theory.
 Successful candidates after the training will be attached to Ph.D. guides at various collaborating institutions for a Ph. D. degree.

INO Time Line

- INO Interim Project Report was presented to DAE and DST on 1 May, 2005.
- A presentation on INO proposal was made to SAC-PM in August 2005.
- The proposal was recommended by the Indian HEP-NP community at a meeting at Mumbai in March 2006 sponsored jointly by DAE and DST to define the road map for High **Energy** and Nuclear Physics research in India.
- It was discussed in the Mega Science Committee set up by Planning Commission in September, 2006 and recommended for funding in the XI th 5 year plan starting from April 07.

International review

- INO proposal was sent for review to a panel of international referees consisting of.
- Prof. Yoji Totsuka KEK, Japan
- Prof. A. Betini INFN, Po
- Prof. John Learned Univ. of Hawa
- Prof. Raju Raghavan
- Dr. S. S. Kapoor
- Prof. Subir Sarkar

INFN, Padova d Univ. of Hawaii an Verginia Tech. BARC, Mumbai Oxford University

Project Status

- INO-Engineering task force has prepared a Detailed Project Report (DPR) on the INO cavern and surface lab. We have approached environment and forest departments for necessary clearances.
- An Engineering consulting firm is preparing the DPR for the detector structure. It is at the final stage.
- A prototype magnet is now ready.
 - Identification of sources for various components needed for mass production of glass RPCs is in progress.
 - **DAQ** system for the prototype detector is now under test.
- Long term stability test of RPCs both in avalanche mode and in streamer mode will continue.
- A new centre will take charge of the INO related activities soon.

Approval Status

- DAE has given its approval for the project. This is an "in principle" approval.
- The requested funding for the current plan period ending in March 2012 has been allocated by Indian Planning Commission.
- Detailed Project Report giving our year wise funding request is required for the sanction of the construction money.
 DPR is in the approval chain.
- Expected to take few more months.

Summary

- A large magnetised detector of 50-100 Kton is needed to achieve some of the very exciting physics goals using atmospheric neutrinos.
- Physics case for such a detector is strong.
- It will complement the existing and planned water cherenkov detectors.
- Can be used as a far detector during neutrino factory era.
 We will soon complete the R & D phase and begin construction of the INO facility and the ICAL detector.
- Looking forward for international participation.

For more information on INO please visit the website www.imsc.res.in/~ino

Thank You

INO-UKNF meeting