First *B*-physics harvest at Belle II Recent results and prospects

The Standard Model

- Describes three out of the four fundamental forces in nature predicting accurately thousands of measurements over many orders of magnitude in energy.
- ⇒ Most precisely experimentally probed theory ever but fails at providing a full-picture explanation for many cosmological observations and leaves several intrinsic questions open such as the particle hierarchy, etc.
- ⇒ Might be an effective theory of a universal one.
- ⇒ Holy grail of today's experimental particle physics is to find signatures of dynamics beyond the Standard Model.

Two ways out

Energy frontier

Direct high-energy production of non-SM particles.

Intensity frontier

Indirect quantum probing of massive non-SM particles in known low-energy processes.

- ⇒ Currently no evidence for non-SM physics at the high-energy frontier
- ⇒ Intensity frontier offers indirect sensitivity to very high energy scales
- ⇒ Weak interactions of quarks offer rich opportunities for intensity frontier

Quark-flavor dynamics

- Described in the SM by CKM quark-flavor mixing matrix
- ⇒ Parametrized by 3 real and 1 imaginary phase
- ⇒ Im. phase: source of all charge-parity violation effects
- \Rightarrow $\mathcal{O}(100)$ accessible processes that are potential for probing non-SM dynamics
- \Rightarrow Plenty of opportunities to probe the SM in *B* dynamics (Largest *CP* violation effects expected in *B* processes)
- ⇒ CKM description is successful, but still room for non-SM effects within current precision
- ⇒ Motivates further precision measurements at intensity frontier

$$\begin{pmatrix} d^{'} \\ s^{'} \\ b^{'} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
Weak eigenstates

Progress comes with data

- The BaBar and Belle experiments collected
 ~1.5 ab⁻¹ at the first generation B factories
 (PEP-II and KEKB)
- Impressive number of discoveries and observations of rare decays (not only in B physics, but also charm, τ, exotics particles and dark sector)

- Continuing along this path (and to compete with LHCb on a radically different experimental setup) needs major leap in luminosity
- ⇒ Strong motivation to upgrade to Belle II and SuperKEKB

Emerging flavour anomalies

Some cracks in the big picture have been developing in the last few years:

- $B \rightarrow D^{(*)} \tau \nu R(D)$ and $R(D^*)$,
- Deviations from Lepton Flavor Universality, partial branching fractions, and angular distributions in $b \to s \ell^+ \ell^- (\ell = e, \mu)$ transitions,
- $(g-2)_{\mu}$,
- $\Delta A_{\rm FB} = A_{\rm FB}^{\mu} A_{\rm FB}^{e} \text{ in } b \rightarrow c\ell\nu$,
- • •
- \Rightarrow These intriguing hints need independent confirmation, also on channels not yet observed (e.g. $b \to s \nu \bar{\nu}, b \to s \tau^+ \tau^-, ...$)

Outline

- The SuperKEKB collider
- The Belle II experiment
- Progress of data taking
- Experimental tools and performance
- Recent Belle II results and prospects
- Outlook

The SuperKEKB collider

$$L \propto \frac{I_{e^+} \cdot I_{e^-}}{\sigma_x \cdot \sigma_y}$$

Design improvements over KEKB:

- × 20 by "nanobeam scheme"
- \bullet × 1.5 by increasing beam currents

Goals:

■ Inst. lumi: $6 \cdot 10^{35} \, \text{cm}^{-2} \text{s}^{-1}$

■ Integrated lumi: 50 ab⁻¹

Challenge: $\times \frac{2}{3}$ boost

 I_{e^+} , I_{e^-} σ_y Design: 2.8 A, 2.0 A 60 nm

Achieved: 0.7 A, 0.8 A 230 nm

The Belle II detector

Looks like the Belle detector, but is practically brand new (only structure, solenoid and calorimeter crystals are reutilized)

Upgrade highlights:

- Improved vertexing resolution
- Better p_t resolution (larger chamber)
- Slightly higher acceptance
- Improved PID detectors
- Better hermeticity due to lower boost
- More sophisticated trigger

Challenges: increased backgrounds, higher trigger rates.

Belle II physics program

Pros and cons of Belle II

- The kinematics of the collision is known precisely,
- In $\Upsilon(4S) \to B\overline{B}$ events, no additional particles are produced (can use *B*-tagging),
- $B\overline{B}$ pairs produced in a quantum entangled state (flavor states orthogonal at decay time of first B),
- Low-multiplicity and τ -pair processes are easily accessible (can trigger on final states with a single visible particle),
- High efficiency and purity of neutrals $(\pi^0, \eta^{(\prime)}, K_{S.L}^0, \ldots)$,
- "Manageable" backgrounds (but machine backgrounds will be a challenge for both detector, trigger, and analysis at high-lumi conditions),
- Low cross-section (compared to hadron machines),
- Relatively low boost of B and D mesons, (time-dependent analyses of B_s^0 mesons is out of question),
- Cannot go much higher in energy than the mass of the $\Upsilon(4S)$.

Belle II early performance

Expected factor 2 improvement in track impact parameter resolution confirmed by data.

PID capabilities not yet fully exploited.

Currently working on improving understanding of new PID detectors.

	Data	MC
$\mu_{\Delta t}\left[ps ight]$	-0.03 ± 0.06	-0.09 ± 0.02
$\sigma_{\Delta t}\left[ps ight]$	0.56 ± 0.18	0.44 ± 0.09

Improvement in time resolution wrt. Belle ($\sigma_{\Delta t} \approx 92 \text{ps}$) despite boost reduction.

Good performance in reconstruction of neutrals.

Currently working on improving the calibration of electromagnetic calorimeter.

Data taking, status and plans

Phase III (2019 -): start of physics run with full detector and ramp of lumi

- Extraordinary effort from locally based people to keep the ball rolling during COVID19 times
- Data taking efficiency ~90%
- \Rightarrow Recorded lumi \sim 213 fb⁻¹
- KEKB world record inst. lumi broken in June 2020 running at ~2 × lower current

Records	Belle/KEKB	Belle II/SuperKEKB
Peak lumi [10 ³⁴ cm ⁻² s ⁻¹]	2.1	3.1
Recorded lumi/day [fb ⁻¹]	1.48	1.96

■ In 2023 will start a ~9 months shutdown to replace the yet incomplete pixel vertex detector

Experimental tools

B-factory observables

B-candidates reconstructed by combining tracks, neutral clusters, π^0 , K_S^0 , and intermediate candidates $(D, \eta^{(\prime)}, ...)$ through kinematic and decay-vertex fits of the considered decay chain.

Two key variables discriminate against background for fully reconstructed final states:

Suppression of continuum background

For many final states (especially charmless B decays), hadronic events with light $q\bar{q}$ pairs (continuum) are the dominant background source, which is suppressed by exploiting observables sensitive to topological differences between $q\bar{q}$ and $B\bar{B}$ events.

⇒ Usually through machine learning techniques

arxiv:2109.10807

B-flavor tagger

- *B*-flavor tagging is crucial for many $B^0 \bar{B}^0$ mixing and *CP*-violation analyses
- One of the two *B*-mesons (signal side) is fully reconstructed (in a self-tagging or *CP* eigenstate)
- The flavor $(B^0 \text{ or } \overline{B}{}^0)$ of the accompanying B-meson is determined by multivariate algorithms combining info from tracks $(e^{\pm}, \mu^{\pm}, K^{\pm}, \pi^{\pm})$, and presence of K_S^0 and Λ^0 .

$\varepsilon \cdot (1-2w)^2$	
$(30.1 \pm 0.4)\%$	
$(30.0 \pm 1.3)\%$	
32.5%	

arXiv:2110.00790

Full event interpretation (FEI)

- Advanced tool to analyse final states with missing energy
- One of the two *B*-mesons in the event is reconstructed into a hadronic or semileptonic final state (about 10000 possible decay chains considered)
- Significant impact on the overall efficiency and dramatic increase in background control, especially in modes with neutrinos in the final state

Recent Belle II physics results On the way to the loops

Semileptonic B decays

- Long-standing tension between inclusive and exclusive determinations of $|V_{ub}|$ and $|V_{cb}|$
- Analysis of inclusive and exclusive semi-leptonic *B* decays performed using tagged and untagged approaches:

$$|V_{ub}|: B \rightarrow X_u \ell \nu, B \rightarrow \{\pi, \rho, \eta\} \ell \nu \ (\ell = e, \mu)$$

$$|V_{cb}|: B \rightarrow X_c \ell \nu, B \rightarrow D^{(*)} \ell \nu \ (\ell = e, \mu)$$

Tagged approach: reconstruct tag-side B meson using FEI and extract signal from composition fit of M_{miss}^2 or M_X

⇒ Low efficiencies, but high purity

Untagged approach: reconstruct signal B meson and use $\cos \theta_{BY}$ to extract signal, or select lepton (exploiting topological info) and use p_l^* to extract signal.

⇒ Higher efficiencies, but low purity

Useful observables:

 $M_{\rm miss}^2$: missing mass squared

 M_X : mass of X_u or X_c system

 θ_{BY} : angle between momentum of B meson and of $D^{(*)}$ l system in $\Upsilon(4S)$ frame

 p_l^* : momentum of primary lepton in $\Upsilon(4S)$ frame

Results from tagged analyses

Using hadronically tagged $B\bar{B}$ events

Exclusive $\bar{B}^0 \to \pi^0 \ell^- \bar{\nu}_{\ell}$

$$\mathcal{B} = (8.29 \pm 1.99 \pm 0.046)\%$$

$$\mathcal{B} = (4.51 \pm 0.41 \pm 0.27 \pm 0.45_{\pi_s})\%$$

- \Rightarrow Measured $\mathcal{B}(B \to \pi^{+,0} \ell^- \bar{\nu}_{\ell})$ with $> 6\sigma$ and $\rho \ell^- \bar{\nu}_{\ell}$
- ⇒ Results in agreement with world averages
- \Rightarrow Hadronic mass moments will help constraining $|V_{ch}|$

Inclusive $B \to X_c \ell \nu$

arxiv:2009.04493

Results from untagged analyses

Inclusive $B \to X_u \ell \nu$

 3σ significance for $b \rightarrow u\ell v$

Exclusive $B^+ \to \overline{D}^0 \ell^+ \nu_{\ell}$

$$\mathcal{B} = (2.29 \pm 0.05 \pm 0.08)$$

$$R(e/\mu) = 1.04 \pm 0.05 \pm 0.03$$

Inclusive $B \to X_c \ell \nu$

$$\mathcal{B} = (9.75 \pm 0.03 \pm 0.47)$$

Dom. sys.: $B \to X_c \ell \nu$ composition

- ⇒ Dominant syst. uncertainties associated with tracking/PID will reduce in future
- ⇒ Results for branching fractions compatible and competitive with world averages

Prospects for R(D) and $R(D^*)$

 Belle II can conduct multiple independent tagged and untagged measurements:

Hadronically/SL tagged

Untagged

Hadronic and leptonic τ decays

⇒ Belle II expected to make important contributions (provided enough data is collected)

 ϕ_3/γ is weak phase between $b \to u$ and $b \to c$ transition

- \Rightarrow Proceeding only through tree-level $B^- \rightarrow D^0 K^-$ decays
- \Rightarrow SM benchmark, no theory uncertainties $[\mathcal{O}(10^{-7})]$
- ⇒ Common final state allows interference between two paths
- ⇒ Interference gives access to the phase
- \Rightarrow Level of interference depends on B and D physics
- ⇒ Experimentally challenging due to small branching fractions

BPGGSZ method: use self-conjugate $D(K_S^0h^-h^+)$ final states

- \Rightarrow Sensitive to ϕ_3 by comparing Dalitz distr. for B^+ and B^-
- \Rightarrow Magnitude and position of *CP* asymmetries driven by values of r_B , ϕ_3 , δ_B and physics of *D* decay
- ⇒ Use binned model-independent approach (avoid model uncties.)

$$rac{\mathcal{A}^{ ext{suppr.}}(B^- o \overline{D^0}K^-)}{\mathcal{A}^{ ext{favor.}}(B^- o D^0K^-)} = r_B e^{i(\delta_B + \phi_3)}$$

Hot topic!

Yields in each bin related to physics parameters and D^0 decay info:

$$\mathsf{N}_i^{\pm} = \mathsf{h}_{\mathsf{B}^{\pm}} \left[\mathsf{F}_i + \mathsf{r}_{\mathsf{B}}^2 \overline{\mathsf{F}}_i + 2 \sqrt{\mathsf{F}_i \overline{\mathsf{F}}_i} (\mathsf{c}_i x_{\pm} + \mathsf{s}_i y_{\pm}) \right].$$

 $h_{B\pm}$: Normalization constant

$$(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 + \delta_B))$$

Maximum sensitivity binning

Amplitude averaged strong phase difference between D^0 and \overline{D}^0 obtained from CLEO and BESIII

Fraction of pure D^0 decay taking into account the reco and selection efficiency

Improvements wrt. previous Belle:

- Use of $D(K_S^0K^-K^+)$ channel (+10% of data)
- Improved suppression of continuum background (more inputs and use of transformed discriminator output as fit observable)
- Fractions F_i obtained directly from simultaneous fit to $B \to Dh$ data (LHCb strategy)
- Simultaneous determination of PID effcy. and mis-ID rates through joint $B \to DK$ and $B \to D\pi$ fit

⇒ Fit performed simultaneously to Belle and Belle II data

 \Rightarrow Fit performed simultaneously to $B \rightarrow DK$ and $B \rightarrow D\pi$ data

Asymmetries per bin:

- Dots with error bars: Fits with independent bin yields
- Solid line: Best combined fit values of (x_{\pm}, y_{\pm})
- Dotted line: Fit without allowed CPV $(x_+, y_+) = (x_-, y_-)$

Hot topic!

- \Rightarrow Reduced stat. uncty. 15° \rightarrow 11°
- \Rightarrow Reduced syst. uncty. $4^{\circ} \rightarrow 0.5^{\circ}$
- ⇒ External input uncty. $4^{\circ} \rightarrow 1^{\circ}$ (thanks to BESIII) $\xi_{\infty}^{0.25}$

xDK

- ⇒ In the future, Belle II will make important contributions in modes with neutrals in final state
- \Rightarrow Expected ~4° combined precision with 10 ab⁻¹

Measurement of D^0 and D^+ lifetimes

Hot topic!

- Ideal benchmark to asses (vertex) detector performance, decay reconstruction and ability to control systematic uncertainties for time-dependent measurements.
- Select high-purity $D^{*+} \rightarrow D^0 (\rightarrow K^-\pi^+) \pi^+$ and $D^{*+} \rightarrow D^+ (\rightarrow K^-\pi^+\pi^+) \pi^0$ candidates
- Compute the decay time t and its uncertainty σ_t from the D production and decay vertices and its momentum \vec{p}
- Extract lifetime with a fit to the (t, σ_t) distribution (PDFs extracted from data without simulation input)

Decay vertex displaced by $\sim 200/500 \ \mu m$ for D^0/D^+

Measurement of D^0 and D^+ lifetimes

Hot topic!

For D^0 : Small background contamination ignored in the fit (considered within syst. uncertainties)

For D^+ : Bkg. PDF extracted from sideband data (simultaneous fit for sideband and signal region)

Measurement of D^0 and D^+ lifetimes

Hot topic!

Belle II WA $\tau(D^0) = (410.5 \pm 1.1 \pm 0.8) \text{ fs} \qquad (410.1 \pm 1.5) \text{ fs}$ $\tau(D^+) = (1030.4 \pm 4.7 \pm 3.1) \text{ fs} \qquad (1040 \pm 7) \text{ fs}$

- ⇒ Results consistent with and more precise than world average
- \Rightarrow Still statistically limited, dominant syst. uncertainties come from detector alignment and modelling of background (for D^+)
- ⇒ First and most precise measurement in last 20 years
- ⇒ Spectacular demonstration of Belle II vertexing capabilities compared to its predecessors

arxiv:2108.03216 Accepted by PRL

Time-dependent *CP* violation in *B* decays

- Flagship measurement of *B* factories
- Requires vertex reco of signal and tag-side B, and tag-side B flavor q

- Still very important at Belle II: φ_1/β (current precision ~0.7°) and φ_2/α (~5°) are fundamental inputs of the CKM fit.
- \Rightarrow Expect to improve by a factor \sim 5

Getting ready for TD CPV in $B \rightarrow J/\psi K^0$

(significance $\sim 2.7\sigma$)

Reconstruction of $B \to J/\psi K_{\rm L}^0$

- ⇒ Reconstruction and MVA selection relies on neutral clusters in KLM (and ECL)
- \Rightarrow Reconstructed ~250 events for $J/\psi \rightarrow \mu\mu$ and ee
- ⇒ Important and complementary mode

arxiv:2106.13547

Non-SM effects in penguin dominated modes?

• Measurements of TD CPV in $b \to q\bar{q}s$ transitions (q = u, d, s) sensitive to $\sin 2\varphi_1$, but:

⇒ Being mostly penguin dominated, potentially very sensitive to non-SM contributions

 \Rightarrow For some modes, theory can make precise predictions on ΔS_f

 ΔS_f : difference in S_{CP} with respect to "golden mode" $J/\psi K^0$

Mode	QCDF [662]	QCDF (scan) [662]	SU(3)	Data
$\pi^0 K_S^0$	$0.07^{+0.05}_{-0.04}$	[0.02, 0.15]	[-0.11, 0.12] [664]	$-0.11^{+0.17}_{-0.17}$
$ ho^0 K_S^{\widetilde 0}$	$-0.08^{+0.08}_{-0.12}$	[-0.29, 0.02]		$-0.14^{+0.18}_{-0.21}$
$\eta' K_S^0$	$0.01^{+0.01}_{-0.01}$	[0.00, 0.03]	$(0 \pm 0.36) \times 2\cos(\phi_1)\sin\gamma$ [665]	-0.05 ± 0.06
ηK_S^0	$0.10^{+0.11}_{-0.07}$	[-1.67, 0.27]		_
ϕK_S^0	$0.02^{+0.01}_{-0.01}$	[0.01, 0.05]	$(0 \pm 0.25) \times 2\cos(\phi_1)\sin\gamma$ [665]	$0.06^{+0.11}_{-0.13}$
ωK_S^0	$0.13^{+0.08}_{-0.08}$	[0.01, 0.21]		$0.03^{+0.21}_{-0.21}$

Belle II physics book

Reconstruction of $B \rightarrow \eta' K$

- Highly sensitive to non-SM contributions among penguin-dominated modes (most precise ΔS_f prediction)
- Key challenge: suppression of continuum background
- ⇒ Use output of MVA discriminator as fit observable

$$\mathcal{B}\left(B^{\pm} \to \eta' K^{\pm}\right) = \left(63.4^{+3.4}_{-3.3} \,(\text{stat}) \pm 3.2 \,(\text{syst})\right) \times 10^{-6}$$
$$\mathcal{B}\left(B^{\theta} \to \eta' K^{\theta}\right) = \left(59.9^{+5.8}_{-5.5} \,(\text{stat}) \pm 2.9 \,(\text{syst})\right) \times 10^{-6}$$

- ⇒ Consistent with world average
- \Rightarrow ~2 × higher yield/lumi than Belle

Hadronic charmless B decays

- Weak B decays not mediated by $b \rightarrow c$ transitions
- Only way to directly access the CKM angle ϕ_2/α
- Multiple tests of isospin and SU(3) relations
- Exigent indicators of physics performance: challenge
 PID, neutrals reco and bkg. suppression

⇒In agreement with world averages and performance comparable with Belle's

Towards BSM using 1sospin

A precise sum rule among four $B \to K\pi$ CP asymmetries ¹

Michael Gronau

August 2005

A sum rule relation is proposed for direct CP asymmetries in $B \to K\pi$ decays. Leading terms are identical in the isospin symmetry limit, while subleading terms are equal in the flavor SU(3) and heavy quark limits. The sum rule predicts $A_{\rm CP}(B^0 \to K^0 \pi^0) = -0.17 \pm 0.06$ using current asymmetry measurements for the other three $B \to K\pi$ decays. A violation of the sum rule would be evidence for New Physics in $b \to s\bar{q}q$ transitions.

$$I_{K\pi} = A_{\mathrm{CP}}^{K^+\pi^-} + A_{\mathrm{CP}}^{K^0\pi^+} \frac{\mathrm{Br}(K^0\pi^+)}{\mathrm{Br}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{\mathrm{CP}}^{K^+\pi^0} \frac{\mathrm{Br}(K^+\pi^0)}{\mathrm{Br}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{\mathrm{CP}}^{K^0\pi^0} \frac{\mathrm{Br}(K^0\pi^0)}{\mathrm{Br}(K^+\pi^-)},$$

⇒ Measured all inputs

arxiv:2105.04111

arxiv:2106.03766

arxiv:2104.14871

Candidates per 30 MeV

 $\mathcal{A}_{CP}(K^0\pi^0) = -0.40 \pm 0.45 \pm 0.04$

 \Rightarrow Precision will be limited by \mathcal{B} and \mathcal{A}_{CP} of $K^0\pi^0$

$$B \to \rho^+ \rho^0$$

- Isospin analysis of $B \to \rho \rho$ decays provides most precise constraint on ϕ_2/α
- Precision currently limited by $B \to \rho^+ \rho^0$
- Needs measurement of long. pol. fraction f_L (CP-eigenvalue depends on the helicity state)

$$\mathcal{B}(B^+ \to \rho^+ \rho^0) = [20.6 \pm 3.2(\text{stat}) \pm 4.0(\text{syst})] \times 10^{-6}$$
$$f_L(B^+ \to \rho^+ \rho^0) = 0.936^{+0.049}_{-0.041}(\text{stat}) \pm 0.021(\text{syst})$$

- ⇒ Compatible with world average
- ⇒ Improved performance by factor ~2 wrt. early Belle thanks to improved bkg. suppression and 6D ML fit
- ⇒ About to update Belle measurement using same method on Belle data (using B2BII)

Electroweak penguins

- Radiative and electroweak penguin decays are flavor-changing neutral currents (FCNC) which proceed via loop diagrams in the standard model and thus suppressed
- ⇒ Sensitive to non-SM contributions in the loop

Highlights of recent Belle II results:

- Exclusive measurement of $\mathcal{B}(B \to K^* \gamma)$
- Observation of $B \to X_S \gamma$ with untagged method
- Search for $B^+ \to K^+ \nu \bar{\nu}$ with inclusive tagging

Novel method producing first Belle II *B*-physics paper

Possible non-SM contributions

Electroweak penguins

Exclusive $B \to K^* \gamma$

• B decays fully reconstructed with high-energy photons

Inclusive untagged $B \rightarrow X_S \gamma$

 Select single photon after background suppression and use energy spectrum to extract signal

 \Rightarrow Excess at expected energy clearly visible.

Hot topic!

Search for $B^+ \to K^+ \nu \bar{\nu}$

- Small theoretical uncertainty due to absence of charged leptons
- Select track with highest transverse momentum as signal Kaon and tag event using remaining objects
- Train MVA (BDT) to suppress backgrounds using vertex and topological info, missing energy, and ΔE of other B meson (remaining objects).
- \Rightarrow Two BDT-classifiers are trained BDT₁ and BDT₂
- \Rightarrow Select events with BDT₁ > 0.9 and then train BDT₂
- Signal extracted from $(p_T(K^+), BDT_2)$ hist. via binned ML fit

0.4

 $B^+ \rightarrow K^+ \nu \bar{\nu} MC$

0.2

0.0

PRL:127.181802

 BDT_1

0.6

8.0

1.0

Search for $B^+ \to K^+ \nu \bar{\nu}$

 \Rightarrow No significant signal observed and upper limit set to $B < 4.1 \cdot 10^{-5} (90\% \text{ CL})$

⇒ Already competitive with tagged Belle and BaBar analyses

Summary an outlook

- Good performance confirmed by benchmarking with well-known physics
- Overall good agreement between data and simulation proves good understanding of detector performance and tools
- Despite limited statistics overall Belle II physics performance comparable with or higher than Belle and BaBar.
- \Rightarrow Spectacular show off of vertexing capabilities with new D lifetime measurements
- ⇒ Inclusive measurements start becoming competitive thanks to novel MVA techniques
- Calibration-related systematics not currently an issue but will require more work for future precision measurements
- Restarted taking data this week (updates in progress!)
- \Rightarrow Belle II on track to probe non-SM physics in B dynamics

