First *B*-physics harvest at Belle II Recent results and prospects #### The Standard Model - Describes three out of the four fundamental forces in nature predicting accurately thousands of measurements over many orders of magnitude in energy. - ⇒ Most precisely experimentally probed theory ever but fails at providing a full-picture explanation for many cosmological observations and leaves several intrinsic questions open such as the particle hierarchy, etc. - ⇒ Might be an effective theory of a universal one. - ⇒ Holy grail of today's experimental particle physics is to find signatures of dynamics beyond the Standard Model. #### Two ways out #### **Energy frontier** Direct high-energy production of non-SM particles. #### **Intensity frontier** Indirect quantum probing of massive non-SM particles in known low-energy processes. - ⇒ Currently no evidence for non-SM physics at the high-energy frontier - ⇒ Intensity frontier offers indirect sensitivity to very high energy scales - ⇒ Weak interactions of quarks offer rich opportunities for intensity frontier ### Quark-flavor dynamics - Described in the SM by CKM quark-flavor mixing matrix - ⇒ Parametrized by 3 real and 1 imaginary phase - ⇒ Im. phase: source of all charge-parity violation effects - \Rightarrow $\mathcal{O}(100)$ accessible processes that are potential for probing non-SM dynamics - \Rightarrow Plenty of opportunities to probe the SM in *B* dynamics (Largest *CP* violation effects expected in *B* processes) - ⇒ CKM description is successful, but still room for non-SM effects within current precision - ⇒ Motivates further precision measurements at intensity frontier $$\begin{pmatrix} d^{'} \\ s^{'} \\ b^{'} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$ Weak eigenstates #### Progress comes with data - The BaBar and Belle experiments collected ~1.5 ab⁻¹ at the first generation B factories (PEP-II and KEKB) - Impressive number of discoveries and observations of rare decays (not only in B physics, but also charm, τ, exotics particles and dark sector) - Continuing along this path (and to compete with LHCb on a radically different experimental setup) needs major leap in luminosity - ⇒ Strong motivation to upgrade to Belle II and SuperKEKB #### Emerging flavour anomalies Some cracks in the big picture have been developing in the last few years: - $B \rightarrow D^{(*)} \tau \nu R(D)$ and $R(D^*)$, - Deviations from Lepton Flavor Universality, partial branching fractions, and angular distributions in $b \to s \ell^+ \ell^- (\ell = e, \mu)$ transitions, - $(g-2)_{\mu}$, - $\Delta A_{\rm FB} = A_{\rm FB}^{\mu} A_{\rm FB}^{e} \text{ in } b \rightarrow c\ell\nu$, - • • - \Rightarrow These intriguing hints need independent confirmation, also on channels not yet observed (e.g. $b \to s \nu \bar{\nu}, b \to s \tau^+ \tau^-, ...$) #### Outline - The SuperKEKB collider - The Belle II experiment - Progress of data taking - Experimental tools and performance - Recent Belle II results and prospects - Outlook The SuperKEKB collider $$L \propto \frac{I_{e^+} \cdot I_{e^-}}{\sigma_x \cdot \sigma_y}$$ #### Design improvements over KEKB: - × 20 by "nanobeam scheme" - \bullet × 1.5 by increasing beam currents #### Goals: ■ Inst. lumi: $6 \cdot 10^{35} \, \text{cm}^{-2} \text{s}^{-1}$ ■ Integrated lumi: 50 ab⁻¹ Challenge: $\times \frac{2}{3}$ boost I_{e^+} , I_{e^-} σ_y Design: 2.8 A, 2.0 A 60 nm Achieved: 0.7 A, 0.8 A 230 nm #### The Belle II detector Looks like the Belle detector, but is practically brand new (only structure, solenoid and calorimeter crystals are reutilized) #### **Upgrade highlights:** - Improved vertexing resolution - Better p_t resolution (larger chamber) - Slightly higher acceptance - Improved PID detectors - Better hermeticity due to lower boost - More sophisticated trigger **Challenges:** increased backgrounds, higher trigger rates. Belle II physics program #### Pros and cons of Belle II - The kinematics of the collision is known precisely, - In $\Upsilon(4S) \to B\overline{B}$ events, no additional particles are produced (can use *B*-tagging), - $B\overline{B}$ pairs produced in a quantum entangled state (flavor states orthogonal at decay time of first B), - Low-multiplicity and τ -pair processes are easily accessible (can trigger on final states with a single visible particle), - High efficiency and purity of neutrals $(\pi^0, \eta^{(\prime)}, K_{S.L}^0, \ldots)$, - "Manageable" backgrounds (but machine backgrounds will be a challenge for both detector, trigger, and analysis at high-lumi conditions), - Low cross-section (compared to hadron machines), - Relatively low boost of B and D mesons, (time-dependent analyses of B_s^0 mesons is out of question), - Cannot go much higher in energy than the mass of the $\Upsilon(4S)$. #### Belle II early performance Expected factor 2 improvement in track impact parameter resolution confirmed by data. PID capabilities not yet fully exploited. Currently working on improving understanding of new PID detectors. | | Data | MC | |-----------------------------------|------------------|------------------| | $\mu_{\Delta t}\left[ps ight]$ | -0.03 ± 0.06 | -0.09 ± 0.02 | | $\sigma_{\Delta t}\left[ps ight]$ | 0.56 ± 0.18 | 0.44 ± 0.09 | Improvement in time resolution wrt. Belle ($\sigma_{\Delta t} \approx 92 \text{ps}$) despite boost reduction. Good performance in reconstruction of neutrals. Currently working on improving the calibration of electromagnetic calorimeter. ## Data taking, status and plans Phase III (2019 -): start of physics run with full detector and ramp of lumi - Extraordinary effort from locally based people to keep the ball rolling during COVID19 times - Data taking efficiency ~90% - \Rightarrow Recorded lumi \sim 213 fb⁻¹ - KEKB world record inst. lumi broken in June 2020 running at ~2 × lower current | Records | Belle/KEKB | Belle II/SuperKEKB | |----------------------------------------------------------------|------------|--------------------| | Peak lumi [10 ³⁴ cm ⁻² s ⁻¹] | 2.1 | 3.1 | | Recorded lumi/day [fb ⁻¹] | 1.48 | 1.96 | ■ In 2023 will start a ~9 months shutdown to replace the yet incomplete pixel vertex detector ## Experimental tools #### B-factory observables B-candidates reconstructed by combining tracks, neutral clusters, π^0 , K_S^0 , and intermediate candidates $(D, \eta^{(\prime)}, ...)$ through kinematic and decay-vertex fits of the considered decay chain. Two key variables discriminate against background for fully reconstructed final states: #### Suppression of continuum background For many final states (especially charmless B decays), hadronic events with light $q\bar{q}$ pairs (continuum) are the dominant background source, which is suppressed by exploiting observables sensitive to topological differences between $q\bar{q}$ and $B\bar{B}$ events. ⇒ Usually through machine learning techniques arxiv:2109.10807 ## B-flavor tagger - *B*-flavor tagging is crucial for many $B^0 \bar{B}^0$ mixing and *CP*-violation analyses - One of the two *B*-mesons (signal side) is fully reconstructed (in a self-tagging or *CP* eigenstate) - The flavor $(B^0 \text{ or } \overline{B}{}^0)$ of the accompanying B-meson is determined by multivariate algorithms combining info from tracks $(e^{\pm}, \mu^{\pm}, K^{\pm}, \pi^{\pm})$, and presence of K_S^0 and Λ^0 . | $\varepsilon \cdot (1-2w)^2$ | | |------------------------------|--| | $(30.1 \pm 0.4)\%$ | | | $(30.0 \pm 1.3)\%$ | | | 32.5% | | | | | arXiv:2110.00790 ## Full event interpretation (FEI) - Advanced tool to analyse final states with missing energy - One of the two *B*-mesons in the event is reconstructed into a hadronic or semileptonic final state (about 10000 possible decay chains considered) - Significant impact on the overall efficiency and dramatic increase in background control, especially in modes with neutrinos in the final state ## Recent Belle II physics results On the way to the loops #### Semileptonic B decays - Long-standing tension between inclusive and exclusive determinations of $|V_{ub}|$ and $|V_{cb}|$ - Analysis of inclusive and exclusive semi-leptonic *B* decays performed using tagged and untagged approaches: $$|V_{ub}|: B \rightarrow X_u \ell \nu, B \rightarrow \{\pi, \rho, \eta\} \ell \nu \ (\ell = e, \mu)$$ $$|V_{cb}|: B \rightarrow X_c \ell \nu, B \rightarrow D^{(*)} \ell \nu \ (\ell = e, \mu)$$ Tagged approach: reconstruct tag-side B meson using FEI and extract signal from composition fit of M_{miss}^2 or M_X ⇒ Low efficiencies, but high purity Untagged approach: reconstruct signal B meson and use $\cos \theta_{BY}$ to extract signal, or select lepton (exploiting topological info) and use p_l^* to extract signal. ⇒ Higher efficiencies, but low purity Useful observables: $M_{\rm miss}^2$: missing mass squared M_X : mass of X_u or X_c system θ_{BY} : angle between momentum of B meson and of $D^{(*)}$ l system in $\Upsilon(4S)$ frame p_l^* : momentum of primary lepton in $\Upsilon(4S)$ frame ## Results from tagged analyses Using hadronically tagged $B\bar{B}$ events Exclusive $\bar{B}^0 \to \pi^0 \ell^- \bar{\nu}_{\ell}$ $$\mathcal{B} = (8.29 \pm 1.99 \pm 0.046)\%$$ $$\mathcal{B} = (4.51 \pm 0.41 \pm 0.27 \pm 0.45_{\pi_s})\%$$ - \Rightarrow Measured $\mathcal{B}(B \to \pi^{+,0} \ell^- \bar{\nu}_{\ell})$ with $> 6\sigma$ and $\rho \ell^- \bar{\nu}_{\ell}$ - ⇒ Results in agreement with world averages - \Rightarrow Hadronic mass moments will help constraining $|V_{ch}|$ #### Inclusive $B \to X_c \ell \nu$ #### arxiv:2009.04493 ### Results from untagged analyses #### Inclusive $B \to X_u \ell \nu$ 3σ significance for $b \rightarrow u\ell v$ #### Exclusive $B^+ \to \overline{D}^0 \ell^+ \nu_{\ell}$ $$\mathcal{B} = (2.29 \pm 0.05 \pm 0.08)$$ $$R(e/\mu) = 1.04 \pm 0.05 \pm 0.03$$ #### Inclusive $B \to X_c \ell \nu$ $$\mathcal{B} = (9.75 \pm 0.03 \pm 0.47)$$ Dom. sys.: $B \to X_c \ell \nu$ composition - ⇒ Dominant syst. uncertainties associated with tracking/PID will reduce in future - ⇒ Results for branching fractions compatible and competitive with world averages ## Prospects for R(D) and $R(D^*)$ Belle II can conduct multiple independent tagged and untagged measurements: Hadronically/SL tagged Untagged Hadronic and leptonic τ decays ⇒ Belle II expected to make important contributions (provided enough data is collected) ϕ_3/γ is weak phase between $b \to u$ and $b \to c$ transition - \Rightarrow Proceeding only through tree-level $B^- \rightarrow D^0 K^-$ decays - \Rightarrow SM benchmark, no theory uncertainties $[\mathcal{O}(10^{-7})]$ - ⇒ Common final state allows interference between two paths - ⇒ Interference gives access to the phase - \Rightarrow Level of interference depends on B and D physics - ⇒ Experimentally challenging due to small branching fractions **BPGGSZ** method: use self-conjugate $D(K_S^0h^-h^+)$ final states - \Rightarrow Sensitive to ϕ_3 by comparing Dalitz distr. for B^+ and B^- - \Rightarrow Magnitude and position of *CP* asymmetries driven by values of r_B , ϕ_3 , δ_B and physics of *D* decay - ⇒ Use binned model-independent approach (avoid model uncties.) $$rac{\mathcal{A}^{ ext{suppr.}}(B^- o \overline{D^0}K^-)}{\mathcal{A}^{ ext{favor.}}(B^- o D^0K^-)} = r_B e^{i(\delta_B + \phi_3)}$$ Hot topic! Yields in each bin related to physics parameters and D^0 decay info: $$\mathsf{N}_i^{\pm} = \mathsf{h}_{\mathsf{B}^{\pm}} \left[\mathsf{F}_i + \mathsf{r}_{\mathsf{B}}^2 \overline{\mathsf{F}}_i + 2 \sqrt{\mathsf{F}_i \overline{\mathsf{F}}_i} (\mathsf{c}_i x_{\pm} + \mathsf{s}_i y_{\pm}) \right].$$ $h_{B\pm}$: Normalization constant $$(x_{\pm}, y_{\pm}) = r_B(\cos(\phi_3 + \delta_B), \sin(\phi_3 + \delta_B))$$ Maximum sensitivity binning Amplitude averaged strong phase difference between D^0 and \overline{D}^0 obtained from CLEO and BESIII Fraction of pure D^0 decay taking into account the reco and selection efficiency #### Improvements wrt. previous Belle: - Use of $D(K_S^0K^-K^+)$ channel (+10% of data) - Improved suppression of continuum background (more inputs and use of transformed discriminator output as fit observable) - Fractions F_i obtained directly from simultaneous fit to $B \to Dh$ data (LHCb strategy) - Simultaneous determination of PID effcy. and mis-ID rates through joint $B \to DK$ and $B \to D\pi$ fit ⇒ Fit performed simultaneously to Belle and Belle II data \Rightarrow Fit performed simultaneously to $B \rightarrow DK$ and $B \rightarrow D\pi$ data #### Asymmetries per bin: - Dots with error bars: Fits with independent bin yields - Solid line: Best combined fit values of (x_{\pm}, y_{\pm}) - Dotted line: Fit without allowed CPV $(x_+, y_+) = (x_-, y_-)$ Hot topic! - \Rightarrow Reduced stat. uncty. 15° \rightarrow 11° - \Rightarrow Reduced syst. uncty. $4^{\circ} \rightarrow 0.5^{\circ}$ - ⇒ External input uncty. $4^{\circ} \rightarrow 1^{\circ}$ (thanks to BESIII) $\xi_{\infty}^{0.25}$ **x**DK - ⇒ In the future, Belle II will make important contributions in modes with neutrals in final state - \Rightarrow Expected ~4° combined precision with 10 ab⁻¹ #### Measurement of D^0 and D^+ lifetimes Hot topic! - Ideal benchmark to asses (vertex) detector performance, decay reconstruction and ability to control systematic uncertainties for time-dependent measurements. - Select high-purity $D^{*+} \rightarrow D^0 (\rightarrow K^-\pi^+) \pi^+$ and $D^{*+} \rightarrow D^+ (\rightarrow K^-\pi^+\pi^+) \pi^0$ candidates - Compute the decay time t and its uncertainty σ_t from the D production and decay vertices and its momentum \vec{p} - Extract lifetime with a fit to the (t, σ_t) distribution (PDFs extracted from data without simulation input) Decay vertex displaced by $\sim 200/500 \ \mu m$ for D^0/D^+ #### Measurement of D^0 and D^+ lifetimes Hot topic! For D^0 : Small background contamination ignored in the fit (considered within syst. uncertainties) For D^+ : Bkg. PDF extracted from sideband data (simultaneous fit for sideband and signal region) #### Measurement of D^0 and D^+ lifetimes Hot topic! ## Belle II WA $\tau(D^0) = (410.5 \pm 1.1 \pm 0.8) \text{ fs} \qquad (410.1 \pm 1.5) \text{ fs}$ $\tau(D^+) = (1030.4 \pm 4.7 \pm 3.1) \text{ fs} \qquad (1040 \pm 7) \text{ fs}$ - ⇒ Results consistent with and more precise than world average - \Rightarrow Still statistically limited, dominant syst. uncertainties come from detector alignment and modelling of background (for D^+) - ⇒ First and most precise measurement in last 20 years - ⇒ Spectacular demonstration of Belle II vertexing capabilities compared to its predecessors arxiv:2108.03216 Accepted by PRL #### Time-dependent *CP* violation in *B* decays - Flagship measurement of *B* factories - Requires vertex reco of signal and tag-side B, and tag-side B flavor q - Still very important at Belle II: φ_1/β (current precision ~0.7°) and φ_2/α (~5°) are fundamental inputs of the CKM fit. - \Rightarrow Expect to improve by a factor \sim 5 # Getting ready for TD CPV in $B \rightarrow J/\psi K^0$ (significance $\sim 2.7\sigma$) Reconstruction of $B \to J/\psi K_{\rm L}^0$ - ⇒ Reconstruction and MVA selection relies on neutral clusters in KLM (and ECL) - \Rightarrow Reconstructed ~250 events for $J/\psi \rightarrow \mu\mu$ and ee - ⇒ Important and complementary mode arxiv:2106.13547 ## Non-SM effects in penguin dominated modes? • Measurements of TD CPV in $b \to q\bar{q}s$ transitions (q = u, d, s) sensitive to $\sin 2\varphi_1$, but: ⇒ Being mostly penguin dominated, potentially very sensitive to non-SM contributions \Rightarrow For some modes, theory can make precise predictions on ΔS_f ΔS_f : difference in S_{CP} with respect to "golden mode" $J/\psi K^0$ | Mode | QCDF [662] | QCDF (scan) [662] | SU(3) | Data | |----------------------------|-------------------------|-------------------|-----------------------------------------------------|-------------------------| | $\pi^0 K_S^0$ | $0.07^{+0.05}_{-0.04}$ | [0.02, 0.15] | [-0.11, 0.12] [664] | $-0.11^{+0.17}_{-0.17}$ | | $ ho^0 K_S^{\widetilde 0}$ | $-0.08^{+0.08}_{-0.12}$ | [-0.29, 0.02] | | $-0.14^{+0.18}_{-0.21}$ | | $\eta' K_S^0$ | $0.01^{+0.01}_{-0.01}$ | [0.00, 0.03] | $(0 \pm 0.36) \times 2\cos(\phi_1)\sin\gamma$ [665] | -0.05 ± 0.06 | | ηK_S^0 | $0.10^{+0.11}_{-0.07}$ | [-1.67, 0.27] | | _ | | ϕK_S^0 | $0.02^{+0.01}_{-0.01}$ | [0.01, 0.05] | $(0 \pm 0.25) \times 2\cos(\phi_1)\sin\gamma$ [665] | $0.06^{+0.11}_{-0.13}$ | | ωK_S^0 | $0.13^{+0.08}_{-0.08}$ | [0.01, 0.21] | | $0.03^{+0.21}_{-0.21}$ | Belle II physics book ## Reconstruction of $B \rightarrow \eta' K$ - Highly sensitive to non-SM contributions among penguin-dominated modes (most precise ΔS_f prediction) - Key challenge: suppression of continuum background - ⇒ Use output of MVA discriminator as fit observable $$\mathcal{B}\left(B^{\pm} \to \eta' K^{\pm}\right) = \left(63.4^{+3.4}_{-3.3} \,(\text{stat}) \pm 3.2 \,(\text{syst})\right) \times 10^{-6}$$ $$\mathcal{B}\left(B^{\theta} \to \eta' K^{\theta}\right) = \left(59.9^{+5.8}_{-5.5} \,(\text{stat}) \pm 2.9 \,(\text{syst})\right) \times 10^{-6}$$ - ⇒ Consistent with world average - \Rightarrow ~2 × higher yield/lumi than Belle #### Hadronic charmless B decays - Weak B decays not mediated by $b \rightarrow c$ transitions - Only way to directly access the CKM angle ϕ_2/α - Multiple tests of isospin and SU(3) relations - Exigent indicators of physics performance: challenge PID, neutrals reco and bkg. suppression ⇒In agreement with world averages and performance comparable with Belle's ### Towards BSM using 1sospin A precise sum rule among four $B \to K\pi$ CP asymmetries ¹ Michael Gronau August 2005 A sum rule relation is proposed for direct CP asymmetries in $B \to K\pi$ decays. Leading terms are identical in the isospin symmetry limit, while subleading terms are equal in the flavor SU(3) and heavy quark limits. The sum rule predicts $A_{\rm CP}(B^0 \to K^0 \pi^0) = -0.17 \pm 0.06$ using current asymmetry measurements for the other three $B \to K\pi$ decays. A violation of the sum rule would be evidence for New Physics in $b \to s\bar{q}q$ transitions. $$I_{K\pi} = A_{\mathrm{CP}}^{K^+\pi^-} + A_{\mathrm{CP}}^{K^0\pi^+} \frac{\mathrm{Br}(K^0\pi^+)}{\mathrm{Br}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{\mathrm{CP}}^{K^+\pi^0} \frac{\mathrm{Br}(K^+\pi^0)}{\mathrm{Br}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{\mathrm{CP}}^{K^0\pi^0} \frac{\mathrm{Br}(K^0\pi^0)}{\mathrm{Br}(K^+\pi^-)},$$ ⇒ Measured all inputs arxiv:2105.04111 arxiv:2106.03766 arxiv:2104.14871 Candidates per 30 MeV $\mathcal{A}_{CP}(K^0\pi^0) = -0.40 \pm 0.45 \pm 0.04$ \Rightarrow Precision will be limited by \mathcal{B} and \mathcal{A}_{CP} of $K^0\pi^0$ $$B \to \rho^+ \rho^0$$ - Isospin analysis of $B \to \rho \rho$ decays provides most precise constraint on ϕ_2/α - Precision currently limited by $B \to \rho^+ \rho^0$ - Needs measurement of long. pol. fraction f_L (CP-eigenvalue depends on the helicity state) $$\mathcal{B}(B^+ \to \rho^+ \rho^0) = [20.6 \pm 3.2(\text{stat}) \pm 4.0(\text{syst})] \times 10^{-6}$$ $$f_L(B^+ \to \rho^+ \rho^0) = 0.936^{+0.049}_{-0.041}(\text{stat}) \pm 0.021(\text{syst})$$ - ⇒ Compatible with world average - ⇒ Improved performance by factor ~2 wrt. early Belle thanks to improved bkg. suppression and 6D ML fit - ⇒ About to update Belle measurement using same method on Belle data (using B2BII) #### Electroweak penguins - Radiative and electroweak penguin decays are flavor-changing neutral currents (FCNC) which proceed via loop diagrams in the standard model and thus suppressed - ⇒ Sensitive to non-SM contributions in the loop Highlights of recent Belle II results: - Exclusive measurement of $\mathcal{B}(B \to K^* \gamma)$ - Observation of $B \to X_S \gamma$ with untagged method - Search for $B^+ \to K^+ \nu \bar{\nu}$ with inclusive tagging Novel method producing first Belle II *B*-physics paper Possible non-SM contributions #### Electroweak penguins #### Exclusive $B \to K^* \gamma$ • B decays fully reconstructed with high-energy photons Inclusive untagged $B \rightarrow X_S \gamma$ Select single photon after background suppression and use energy spectrum to extract signal \Rightarrow Excess at expected energy clearly visible. #### Hot topic! #### Search for $B^+ \to K^+ \nu \bar{\nu}$ - Small theoretical uncertainty due to absence of charged leptons - Select track with highest transverse momentum as signal Kaon and tag event using remaining objects - Train MVA (BDT) to suppress backgrounds using vertex and topological info, missing energy, and ΔE of other B meson (remaining objects). - \Rightarrow Two BDT-classifiers are trained BDT₁ and BDT₂ - \Rightarrow Select events with BDT₁ > 0.9 and then train BDT₂ - Signal extracted from $(p_T(K^+), BDT_2)$ hist. via binned ML fit 0.4 $B^+ \rightarrow K^+ \nu \bar{\nu} MC$ 0.2 0.0 PRL:127.181802 BDT_1 0.6 8.0 1.0 #### Search for $B^+ \to K^+ \nu \bar{\nu}$ \Rightarrow No significant signal observed and upper limit set to $B < 4.1 \cdot 10^{-5} (90\% \text{ CL})$ ⇒ Already competitive with tagged Belle and BaBar analyses #### Summary an outlook - Good performance confirmed by benchmarking with well-known physics - Overall good agreement between data and simulation proves good understanding of detector performance and tools - Despite limited statistics overall Belle II physics performance comparable with or higher than Belle and BaBar. - \Rightarrow Spectacular show off of vertexing capabilities with new D lifetime measurements - ⇒ Inclusive measurements start becoming competitive thanks to novel MVA techniques - Calibration-related systematics not currently an issue but will require more work for future precision measurements - Restarted taking data this week (updates in progress!) - \Rightarrow Belle II on track to probe non-SM physics in B dynamics