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• Intro to quantum computers 

• Review of quantum computers in HEP 

• Quantum algorithm for helicity amplitudes  

• Quantum algorithm for parton showers 

• Future outlook for quantum computers 



Evolution of classical computer
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Classical computers have come a long way since 1950s - size of machines (current size 
of transistor O(nm)) and complexity of computers 

Quantum computing at a similar stage of development as classical computers in 1950s



Bit vs qubit
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7.1. Introducing quantum bits

reason we developed the essential mathematics and insight to reason accurately about what
happens in quantum computing.

Let’s begin by thinking about a classical bit and a quantum bit.

•

0

1

|0i ! 0

|1i ! 1
classical bit quantum bit

On the left, we have the classical situation where a bit can only take on the values 0 and 1.
More precisely, a bit can be in one of those states and only those. You can look at the bit at any
time and, assuming nothing has happened to change the state, it stays in that state.

For the quantum situation on the right, we change the notation slightly. The qubit always
becomes the state |0i or |1i when we read information from it by a process called measurement.
However, it is possible to move it to an infinite number of other states and change from one of
them to another while we are computing with the qubit before measurement.

Measurement says “ok, I’m going to peek at the qubit now” and the result is always a 0 or 1
once you do so. We can then read that out as a bit value of 0 or 1, respectively.

Yes, this is weird. This is quantum mechanics and it has amazed, and befuddled, and
surprised, and delighted people for close to one hundred years. Quantum computing is based
on and takes advantage of this behavior.

Continuing with the right side, we represent all the states the qubit could be in as points on
the unit sphere. |0i is at the north pole, and |1i is at the south. Remember: points on the sphere
equal quantum states. In the next section I define more precisely what we mean when we write
|0i and |1i.

[ 227 ]

2-qubit system  4 basis states  

N qubits  2N dimensional Hilbert space 

Power of quantum computing: this exponential increase in size of Hilbert space

→ |00⟩ |01⟩ |10⟩ |11⟩

→



Quantum computing: Two classes/paradigms
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measurement

Quantum Gate CircuitQuantum Annealing

Find ground state of Hamiltonian through 
continuous-time adiabatic process

Apply unitary transformations to qubits 
through discrete set of gates 

• Large number of ‘noisy’ qubits 

• Good for solving specific problems; for 
instance optimisation, machine learning. 

• D-Wave specialises in quantum annealers  

• Small number of qubits but universal 
quantum computer 

• Google, IBM, Microsoft, Rigetti focused 
on gate-based quantum computing 



Gate-based quantum computers
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Quantum gates: Hadamard
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Hadamard gate 

- One of the most frequently used and important gates in quantum computing 

- Has no classical equivalent.  

- It puts a qubit initialised in the  or  state into a superposition of states.|0⟩ |1⟩

• Hadamard Gate

– a Hadamard gate is a purely quantum logic gate and does not have a classical

logic gate equivalent. A Hadamard gate is a single qubit operation which puts

a qubit into a superposition.

H|0i =
1
p
2

�
|0i+ |1i

�
, H|1i =

1
p
2

�
|0i � |1i

�
.

The Hadamard gate can be controlled, and so is only applied depending on the

state of the control qubit. The circuit representation of a Hadamard Gate is:

H

B Dirac and Helicity Spinor correspondence

The following demonstration of the correspondence between Dirac spinors and Helicity

spinors can be seen in Chapter 2 of [43].

Fermion and anti-fermion spinors satisfy the Dirac equations such that,

(/p+m)u(p) = 0, (�/p+m)⌫(p) = 0. (B.1)

where both equations have independent solutions which can be labelled by subscripts s = ±.

One can move to a basis where the ± denotes spin up/down along the z-axis, by ensuring

that spinors u± and ⌫± are eigenstates of the z-component of the spin-matrix in the rest

frame. For massless fermions, ± denotes the helicity; the projection of the spin along

the momentum of the particle. These spinors are also associated with the conventional

Feynman rules for external fermions, e.g. ⌫±(p) for an outgoing anti-fermion and ū±(p) for

an outgoing fermion.

For the massless case, the Dirac equations reduce to

/p⌫±(p) =0 ū±(p)/p = 0, (B.2)

where ⌫±(p) and u±(p) are the wave functions associated with outgoing anti-fermions and

fermions respectively. For this case the wavefunctions are related as u± = ⌫⌥ and ⌫̄± = ū⌥.

The two independent solutions of the Dirac equations can be written as

⌫+(p) =

 
|p]a
0

!
, ⌫�(p) =

 
0

|piȧ

!
(B.3)

and

ū�(p) =
⇣
0 hp|ȧ

⌘
, ū+(p) =

⇣
[p|a 0

⌘
(B.4)

where the angle and square spinors are 2-component spinors that satisfy the massless Weyl

equation.
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Circuit representation Matrix representation 



Quantum gates: CNOT and Toffoli
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A Quantum Logic Gate Definitions

• NOT Gate

– a NOT Gate is a single qubit operation which flips the state of the qubit.

NOT|0i = |1i, NOT|1i = |0i.

The circuit representation of a NOT Gate is:

• CNOT Gate

– a controlled -NOT (CNOT) Gate is a two qubit operation which flips the state

of a target qubit dependent on the state of a control qubit.

CNOT|00i = |00i, CNOT|01i = |01i,

CNOT|10i = |11i, CNOT|11i = |10i.

Here, the first qubit is the control. The circuit representation of a CNOT Gate

is:

• To↵oli Gate (CCNOT)

– A To↵oli Gate is a three qubit operation, which is just a further extension of

the NOT gate with two control qubits.

CCNOT|000i = |000i, CCNOT|001i = |001i,

CCNOT|100i = |100i, CCNOT|010i = |010i,

CCNOT|110i = |111i, CCNOT|111i = |110i.

The circuit representation of a To↵oli Gate is:
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Circuit representation Matrix representation
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Toffoli (CCNOT)  

- 3-qubit operation, an extension of CNOT gate but on 
3 qubits 

- Flips the state of a target qubit based on state of the 
2 other control qubits

CNOT 

- One of the most important gates in QC 

- 2-qubit operation that flips the state of a 
target qubit based on state of a control qubit. 

- This is used to create entangled qubits. 

Circuit representation Matrix representation



Quantum supremacy?

9

• Google claimed quantum supremacy with 54-
qubit quantum computer - performed a random 
sampling calculation in 3 mins, 20 sec.  

• They claimed the this would take 10,000 years to 
do on classical machine. 

• IBM counterclaim : can be done on classical 
machine in 2.5 days

Sycamore chip

Layout of processor

Nature volume 574
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Quantum computing in High Energy Physics



Track reconstruction at HL-LHC
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• One of the key challenges at HL-LHC : track reconstruction in a very busy, high 
pileup environment (140 - 200 overlapping pp collisions) 

• Much more CPU and storage needed 
• Can quantum computers help?

ATLAS



Track reconstruction at HL-LHC
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• Express problem of pattern recognition as that of finding the global minimum of an objective function (QUBO)  

• Use D-Wave quantum annealer as minimiser (D-Wave 2X (1152 qubits)) 

• Use triplets (set of 3 hits); which triplets belong to the trajectory of a charged particle. 

arXiv:1902.08324 https://hep-qpr.lbl.gov

Computing and Software for Big Science             (2020) 4:1  
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De!nition of the Quadratic Unconstrained Binary 
Optimization

The QUBO is configured to identify the best pairs of triplets. 
It has two components: a linear term that weighs the quality 
of individual triplets and a quadratic term used to express 
relationships between pairs of triplets. In our case, the objec-
tive function to minimize becomes:

where T are all potential triplets, ai are the bias weights, 
and bij the coupling strengths computed from the rela-
tion between the triplets Ti and Tj . The bias weights and 
the coupling strengths define the Hamiltonian. Minimizing 
the QUBO is equivalent to finding the ground state of the 
Hamiltonian.

All bias weights are set to be identical ai = ! , which 
means all triplets have equal a priori probability to belong 
to a particle track. Our objective function therefore depends 
solely2 on the triplet–triplet coupling strength bij . If the tri-
plets form a valid quadruplet, the coupling strength is nega-
tive and equal to the quadruplet quality S(Ti, Tj) (Eq. 3). If 
the two triplets are in conflict, the coupling is a positive 
constant bij = ! that disfavors a solution with Ti = Tj = 1 . 
Finally, if the triplets have no relationship (meaning, no 
shared hits), the coupling is set to zero. This is illustrated in 
Fig. 1 and represented in Eq. 5.

As is clear from Eq. 5, the choice of constants in Eq. 1 deter-
mines the functional behavior of bij . The larger the conflict 

(4)O(a, b, T) =

N∑
i=1

aiTi +

N∑
i

N∑
j<i

bijTiTj Ti, Tj ∈ {0, 1}

(5)bij =

⎧
⎪
⎨
⎪⎩

−S(Ti, Tj), if (Ti, Tj) form a quadruplet ,

! if (Ti, Tj) are in conflict ,

0 otherwise.

strength ! the lower the number of conflicts, but too large 
values risk discontinuities in the energy landscape, increas-
ing time to convergence. Furthermore, the D-Wave machines 
limit the value of bij , and thus ! , to between −2 and 2 (with a 
restricted precision, so scaling is not a fix either).

Dataset Selection

By design, the algorithm does not favor any particular 
momentum range. However, to limit the size of the QUBO, 
we focus on high pT tracks ( pT ≥ 1 GeV), which are the 
most relevant for physics analysis at the HL-LHC.

A triplet Ti is created if and only if:

And a quadruplet (Ti, Tj) is created if and only if:

Triplets that are not part of any quadruplet or whose long-
est potential track has less than five hits are not considered.

Experimental Setup

Dataset

The TrackML dataset is representative of future high-energy 
physics experiments at the HL-LHC. It anticipates the HL-
LHC multiplicities planned for after 2026. Both the low 
pT cut (150 MeV) and high luminosity (200 μ ) make pat-
tern recognition within this dataset a challenging task. We 
simplify the dataset by focusing on the barrel (experiment 
mid-section, with detectors mostly parallel to the beamline) 
region of the detector, i.e., hits in the end caps (both experi-
ment end sections, with detectors mostly transverse to the 
beamline) are removed. If a particle makes multiple energy 
deposits in a single layer, all but one energy deposits are 
removed. Hits from particles with pT < 1 GeV and particles 
with less than five hits are kept and thus part of the pattern 
recognition, but are not taken into account when comput-
ing the performance metrics. Events are split by randomly 
selecting a fraction of particles and an equal fraction of noise 
to generate datasets with different detector occupancies yet 
similar characteristics. We note that this is not fully equiva-
lent to a lower multiplicity event because such a procedure 
selects a fraction of the tracks in a pile-up event rather than 
a fraction of the pile-up events.

Hi ≤1

|(q∕pT )i| ≤8 × 10−4 GeV−1,

!"i ≤0.1 rad

|!((q∕pT )i, (q∕pT )j)| ≤1 × 10−4 GeV−1,

S(Ti, Tj) >0.2

Fig. 1  The value assigned to the QUBO quadratic weights bij for 
different configurations of the pairs of triplets Ti and Tj . See text for 
details

2 No difference was observed when shifting the bias weight ! by a 
small amount.

Minimise function O : equivalent to finding the ground 
state of the Hamiltonian
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weights quality of individual 
triplets based on physics 

properties

ATLAS
encodes relationship between 

triplets

Minimising O = selecting the best triplets to form track candidates.



Track reconstruction at HL-LHC
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after satisfying the requirements from Sect. 2.4. Details 
of the QUBO building including the quality cuts applied 
to triplets and quadruplets are discussed in [16]. The 
QUBO is generated and sampled using qbsolv. The post-
processing phase includes converting the triplets into 
doublets, removing duplicates and removing any doublets 
with unresolved conflicts. The track candidates are recon-
structed from the doublets, and track candidates with less 
than five hits are discarded. Finally, performance metrics 
are computed and the set of final doublets corresponding 
to the track candidates is returned.

Results

We chose three events from the dataset containing 10K, 
12K and 14K particles plus noise, with the latter being 
the highest multiplicity event in the dataset. We sample 
from these events to construct sets ranging from O(1K) 
to O(7K) particles. Each set is constructed by taking a 
fixed fraction of the particles and the noise in that event.

Algorithmic Performance

We use purity and efficiency, as defined in Sect. 3.2, to 
assess the algorithmic performance. Figure 4 shows these 
metrics as a function of the particle multiplicity. Efficiency 
and the TrackML score are well above 90% across the range, 
with the purity starting close to 100%, but dropping to about 
50% for the highest occupancies considered. As the purity 
drops with increasing occupancy, the number of fake dou-
blets rises. The D-Wave machine results are well reproduced 
by the simulation. The reproducibility of the results was 
checked by repeating the qsolving step on D-Wave for the 
same QUBO.

Figure 5 shows the fraction of real and fake doublets as a 
function of the number of hits on tracks. As the fake tracks 

Fig. 4  The performance of classical simulator (top) and D-Wave (bot-
tom), as measured by TrackML score (red), purity (blue), and effi-
ciency (green), as a function of particle multiplicity

Fig. 5  The fraction of real (green) and fake (red) doublets as a func-
tion of the number of hits on track

Fig. 6  Selected  real (green) and fake (red) track candidates from a 
low multiplicity event

• Use dataset representative of HL-LHC 

• Study performance of algorithm as a function of 
particle multiplicity 

• Similar purity and efficiency as current algorithms 

• Execution time of algorithm not expected to 
scale with track multiplicity 

purity

efficiency

Overall timing still needs to be measured and studied, but physics 
performance of tracking algorithm similar to classical 

efficiency

purity

arXiv:1902.08324 https://hep-qpr.lbl.gov



Higgs optimisation using D-Wave
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Signal 

Background

Nature volume 550: 375–379(2017)
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Our criterion for comparing various classifier construction methods 
is the accuracy of the classifier. A classifier that is slow to train may be 
practically more useful than one that is less accurate but faster to train.

We model the Higgs diphoton decay channel H →  γγ; see Fig. 1 for 
Feynman diagrams of the Higgs production and decay processes. We 
represent this system via the momentum of the Higgs particle,  
the momenta of the two photons, the angle with the beam axis θ and 
the azimuthal angle φ. More specifically, we select eight of the kinematic 
variables that describe the events that are generated as the variables for 
our classifier (see Table 1). The first five are related to the highest (pT

1 ) 
and second-highest (pT

2 ) transverse momentum (the momentum per-
pendicular to the axis defined by the colliding protons) of the photon 
pair: / γγp mT

1 , / γγp mT
2 , ± / γγp p m( )T

1
T
2  and /γγ γγp mT , where mγγ is the 

invariant mass of the diphoton pair and γγpT  is the transverse momen-
tum of the diphoton system. The last three are: ∆ η, the separation in 
the pseudorapidity η =  − log[tan(θ/2)] of the two photons (η is a pseudo- 
invariant proxy to θ that is commonly used in high-energy physics); 

η φ∆ = ∆ +∆R 2 2 , the sum in quadrature of the separation in η and 
in φ of the two photons; and | ηγγ| , the pseudorapidity of the diphoton 
system. In Fig. 2 we show the distribution of these variables for the 
signal and background datasets. The differences between these distri-
butions are used by the classifier to distinguish the signal from the 
background. In addition to these eight variables, we incorporate various 
products between them (using rules explained in Supplementary 
Information) for a total of 36 (see Table 2).

We construct weak classifiers from our distributions of kinematic 
variables, as shown in Fig. 2 and described in Methods. We build the 
corresponding Ising problem as follows6. Let = τ τI x y{ , } denote a set 
of training events labelled by the index τ, where xτ is a vector of the 
values of each of the variables that we use, and yτ =  ± 1 is a binary label 
for whether xτ corresponds to signal (+ 1) or background (− 1).  

If ci(xτ) =  ± 1/N denotes the value of weak classifier i on the event, 
where N is the number of weak classifiers, equal to the number of spins 
or qubits, then with

∑ ∑= =
τ

τ τ
τ

τ τx x xC c c C c y( ) ( ), ( )ij i j i i

and a penalty λ >  0 to prevent overtraining, the Ising Hamiltonian is

∑ ∑= +H J s s h s
i j

ij i j
i

i i
,

Table 1 | The kinematic variables used to construct weak classifiers
Variable Description

/ γγp mT
1 Transverse momentum (pT) of the photon with the larger pT 

(photon ‘1’), divided by the invariant mass of the diphoton 
pair (mγγ)

/ γγp mT
2 Transverse momentum (pT) of the photon with the smaller pT 

(photon ‘2’), divided by the invariant mass of the diphoton 
pair (mγγ)

+ / γγp p m( )T
1

T
2 Sum of the transverse momenta of the two photons, divided 

by their invariant mass
− / γγp p m( )T

1
T
2 Di!erence of the transverse momenta of the two photons, 

divided by their invariant mass
/γγ γγp mT Transverse momentum of the diphoton system, divided by its 

invariant mass
∆ η Di!erence between the pseudorapidity η =  − log[tan(θ/2)] of 

the two photons, where θ is the angle with the beam axis
∆ R Sum in quadrature of the separation in pseudorapidity η and 

azimuthal angle φ of the two photons ( η φ∆ +∆2 2)
| ηγγ| Pseudorapidity of the diphoton system
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Figure 2 | Distributions of the eight kinematic variables used to 
construct weak classifiers. The solid green line is the signal distribution 
and the dotted blue line is the background. For each variable the vertical 
axis shows the raw count of the number of events. The total number of 
events simulated in each case is 307,732.

Table 2 | Map from number to variable or weak classifier
Number Variable Number Variable Number Variable Number Variable

1 pT
1 10 / −p p p( )T

2
T
1

T
2 19 p pT

1
T
2 28 / γγp pT

2
T

2 pT
2 11 η/∆pT

2 20 /∆p RT
1 29 +p p p( )T

2
T
1

T
2

3 ∆ R 12 ηγγpT
2 21 / γγp pT

1
T 30 + / γγp p p( )T

1
T
2

T

4 γγpT 13 / ∆ γγRp1 ( )T 22 +p p p( )T
1

T
1

T
2 31 η /γγ γγpT

5 +p pT
1

T
2 14 + /∆p p R( )T

1
T
2 23 / −p p p( )T

1
T
1

T
2 32 η/ ∆γγp1 ( )T

6 −p pT
1
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Build a set of weak classifiers from kinematic 
observables of a  decay, use these to 
construct a strong classifier

H → γγ

• Precise measurement of Higgs boson properties requires selecting large and high purity sample of 
signal events over a large background  

• Use quantum and classical annealing to solve a Higgs signal over background machine learning 
optimisation problem  

• Map the optimization problem to that of finding the ground state of a corresponding Ising spin model. 
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First application of D-Wave quantum annealing to a scenario in HEP

Map a signal vs background optimization problem to that of finding the ground state of a 
corresponding Ising spin model.

Comparable performance to current state of the art 
machine learning methods, with some advantage for 

small training datasets

Nature volume 550: 375–379(2017)
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a signal efficiency εS we use the strong classifier sampled from the 
annealer with the maximum background rejection rB. We construct 
such compound classifiers for simulated and quantum annealing using 
excited states within a fraction f of the ground-state energy Eg—that is, 
all {si} such that H({si}) <  (1 −  f)Eg (note that Eg <  0). Simulated anneal-
ing is used as a natural comparison to quantum annealing on these fully 
connected problems.

In our experiments, quantum annealing struggles to find the true 
minimum of the objective function. This is probably a consequence 
of the fact that the current generation of D-Wave quantum annealers 
suffers from non-negligible noise on the programmed Hamiltonian. 
The problem of noise is compounded by the relatively sparse graph, 
which requires a chain of qubits to embed the fully connected  logical 
Hamiltonian. In our case, 12 qubits are ferromagnetically coupled 

to act as a single logical qubit. We therefore study and interrogate 
 current-generation quantum annealers and interpret their performance 
as a lower bound for the performance of future systems with lower 
noise and denser hardware graphs.

In Fig. 3 we plot the ROC curves illustrating the ability to discrimi-
nate between signal and background for each algorithm, with f =  0.05 
and training datasets with 100 or 20,000 events. We observe a clear 
separation between the annealing-based classifiers and the binary- 
decision-tree-based XGB and DNN classifiers, with the advantage of 
the annealers appearing for small training datasets, but  disappearing 
for the larger datasets. In Fig. 4 we plot the area under the ROC 
curve for each algorithm, for training datasets of various sizes and 
f =  0.05 (the largest value we used). An ideal classifier would have 
an area of 1. We find that quantum and simulated annealing have 
comparable performance, implying high robustness to approximate 
solutions of the training problem. This feature appears to general-
ize across the domain of QAML applications (Li, R. et al., submitted  
manuscript). Here the asymptotic performance of the QAML model is 
achieved with just 1,000 training events, and thereafter the algorithm 
does not benefit from additional data. This is not true for the DNN or 
XGB. A notable finding of our work is that QAML has an advantage 
over both the DNN and XGB when training datasets are small. This is 
shown in Fig. 5 in terms of the integral of the true negative differences 
over signal efficiency for various ROCs. In the same regime of small 
training datasets, quantum annealing develops a small advantage over 
simulated annealing as the fraction of excited states f used increases, 
saturating at f =  0.05. However, the uncertainties are too large to draw 
definitive conclusions in this regard. In the regime of large training 
datasets, simulated annealing has a small advantage over quantum 
annealing, to a significance of approximately 2σ.

In our study we have explored QAML, a simple method inspired by 
the prospect of using quantum annealing as an optimization technique 
for constructing classifiers, and applied the technique to the  detection 
of Higgs decays. The training data are represented in a compact 
 representation of O(N2) couplers and local biases in the Hamiltonian 
for N weak classifiers. The resulting strong classifiers perform compa-
rably to the state-of-the-art standard methods that are currently used in 
high-energy physics, and have an advantage when the training datasets 
are small. The role of quantum annealing is that of a subroutine for 
sampling the Ising problem that may in the future have advantages 
over classical samplers, either when used directly or as a way of seeding 
classical solvers with high-quality initial states.

QAML is resistant to overfitting because it involves an explicit 
linearization of correlations. It is also less sensitive to errors in the 
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Figure 4 | Area under the ROC curve (AUROC) for the annealer-trained 
networks with f = 0.05, the DNN and XGB. Results shown are for the 
36-variable networks at λ =  0.05. As in Fig. 3, the solid lines correspond 
to quantum (green) or simulated (blue) annealing, and dotted lines to the 
DNN (red) or XGB (cyan). The vertical lines denote 1σ error bars, defined 
by the variation over the training sets (grey) plus statistical error (green); 
see Supplementary Information section 6 for details of the uncertainty 
analysis. Whereas the DNN and XGB have an advantage for large training 
datasets, we find that the annealer-trained networks perform better for 
small training datasets. The overall performance of QAML and its features, 
including the advantage at small training-dataset sizes and saturation of 
the AUROC at approximately 0.64, are stable across a range of values of 
λ. An extended version of this plot, for various values of λ, is shown in 
Supplementary Fig. 2.
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Figure 5 | Difference between the AUROCs for different algorithms.  
a, Quantum annealing versus the DNN (QA −  DNN). b, Quantum 
annealing versus XGB (QA −  XGB). c, Quantum versus simulated 
annealing (QA −  SA). In all cases, the difference is shown as a function of 
training-dataset size and fraction f above the minimum energy returned 

(the same values of f are used for quantum and simulated annealing in c). 
Formally, we plot ∫ ε ε ε−r r[ ( ) ( )]di

0
1

B
QA

S B S S, where rB is the maximum 
background rejection, i ∈  {DNN, XGB, SA} and εS is the signal efficiency. 
The vertical lines denote 1σ error bars. The large error bars are due to 
noise on the programmed Hamiltonian.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Collision event at LHC
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*Diagram taken from Pierpaolo Mastrolia lecture



Collision event at LHC
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• Hard interaction + parton shower : can be described perturbatively + independent of 
non-perturbative processes.  

• Most time consuming stages of event generation



Scattering amplitudes
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• Scattering amplitudes -  essential for calculating 
predictions for collider experiments.  

• At LHC, collisions dominated by QCD 
processes, which carry large theoretical 
uncertainty due to limited knowledge of higher 
order terms in perturbative QCD 

• Improving accuracy of theoretical predictions of 
cross-sections means computing loop 
amplitudes and tree level amplitudes of higher 
multiplicities. 

• Conventional method of computing an unpolarised cross section involves squaring the 
amplitude at the beginning and then summing analytically over all possible helicity states 
using trace techniques  

• For complex processes, this approach is not very feasible. For N feynman diagrams for an 
amplitude, there are N2 terms in the square of the amplitude



Spinor helicity formalism
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- Tool for calculating scattering amplitudes much more efficiently than conventional 
approach. Greatly simplifies the calculation of scattering amplitudes for complex 
processes.  

Compute amplitudes of fixed helicity setup which has the advantage:  

- For massless particles, chirality and helicity coincide. Chirality is preserved by 
gauge interactions, hence helicity is also conserved. Helicity basis an optimal 
one for massless fermions.  

- Different helicity configurations do not interfere. Full amplitude obtained by 
summing the squares of all possible helicity amplitudes.  

- Using recursion relations such as BCFW, it is possible to calculate multi-gluon 
scattering amplitudes which would be prohibitive using traditional methods



Equivalence between spinors and qubits
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2 Helicity Amplitude Algorithm

Scattering processes are calculated using conventional techniques by squaring the scat-

tering amplitude and then performing a sum of all possible helicity processes using trace

techniques. For a process with N possible Feynman diagrams, this results in N2 terms

in the squared amplitude. Therefore, for processes with large number of Feynman dia-

grams, such calculations become extremely complicated. In contrast, helicity amplitude

calculations provide a more e�cient way of calculating such processes, as one calculates the

amplitude for a specific helicity setup. The di↵erent helicity combinations do not interfere

and therefore the full amplitude can be obtained by summing the squares of all possible

helicity amplitudes.

Helicity amplitude calculations are based on the manipulation of helicity spinors. As

the Lorentz group Lie algebra can be written as the direct sum of two SU(2) sub-algebras,

i.e. so(3, 1) = su(2)� su(2), there are two specific complex representations each specified

by two degrees of freedom which solve the massless Weyl equation: a right-handed Weyl

spinor, associated with the representation (12 , 0), and a left-handed Weyl spinor, associated

with the representation (0, 12). Consequently and for concreteness, the helicity spinor |piȧ

for a massless states can be chosen to be expressed as

|piȧ =
p

2E

 
cos ✓

2

sin ✓
2e

i�

!
, (2.1)

associated with momentum pµ and energy E, such that pµpµ = �m2 using the ⌘µ⌫=diag(-1,

+1, +1, +1) metric convention. This spinor is parametrised by the angles ✓ and �, where

the other spinors hp|ȧ, |p]a and [p|a are related by paḃ = �|p]ahp|ḃ and pȧb = �|piȧ[p|b. The

correspondence between the two-dimensional helicity spinors and four-component Dirac

spinors associated with Feynman rules is demonstrated in Appendix B.

To facilitate and implement such calculations on a GQC we use qubits, the quantum

analogue of the bit for classical computation. The state of the qubit is defined on a two-

dimensional complex vector space with states |0i and |1i forming the orthonormal basis

for this space. A qubit can thus be formed by a linear superposition of these orthonormal

basis states. By considering a general qubit parametrized by two angles

| i = cos
✓

2
|0i+ ei' sin

✓

2
|1i =

 
cos ✓

2

sin ✓
2e

i�

!
, (2.2)

we can represent the qubit on a three-dimensional unit sphere called the Bloch Sphere.

Performing unitary operations on qubit states corresponds to rotating states in the Bloch

Sphere.

Remarkably, comparing Eqs. (2.1) and (2.2), helicity spinors can be represented through

a qubit, modulo an overall normalisation factor
p
2E, and the calculation of helicity am-

plitudes follows the identical structure shown in Fig. 1, i.e. quantum operators act on an

initial state to eventually perform the projection onto a final state. This indicates that

GQC provide an ideal framework for the calculation of helicity amplitudes.

– 4 –

Helicity amplitude calculations based on 
manipulation of helicity spinors 

Helicity spinors for massless states can be 
expressed as :  

2 Helicity Amplitude Algorithm

Scattering processes are calculated using conventional techniques by squaring the scat-

tering amplitude and then performing a sum of all possible helicity processes using trace

techniques. For a process with N possible Feynman diagrams, this results in N2 terms

in the squared amplitude. Therefore, for processes with large number of Feynman dia-

grams, such calculations become extremely complicated. In contrast, helicity amplitude

calculations provide a more e�cient way of calculating such processes, as one calculates the

amplitude for a specific helicity setup. The di↵erent helicity combinations do not interfere

and therefore the full amplitude can be obtained by summing the squares of all possible

helicity amplitudes.

Helicity amplitude calculations are based on the manipulation of helicity spinors. As

the Lorentz group Lie algebra can be written as the direct sum of two SU(2) sub-algebras,

i.e. so(3, 1) = su(2)� su(2), there are two specific complex representations each specified

by two degrees of freedom which solve the massless Weyl equation: a right-handed Weyl

spinor, associated with the representation (12 , 0), and a left-handed Weyl spinor, associated

with the representation (0, 12). Consequently and for concreteness, the helicity spinor |piȧ

for a massless states can be chosen to be expressed as

|piȧ =
p

2E

 
cos ✓

2

sin ✓
2e

i�

!
, (2.1)

associated with momentum pµ and energy E, such that pµpµ = �m2 using the ⌘µ⌫=diag(-1,

+1, +1, +1) metric convention. This spinor is parametrised by the angles ✓ and �, where

the other spinors hp|ȧ, |p]a and [p|a are related by paḃ = �|p]ahp|ḃ and pȧb = �|piȧ[p|b. The

correspondence between the two-dimensional helicity spinors and four-component Dirac

spinors associated with Feynman rules is demonstrated in Appendix B.

To facilitate and implement such calculations on a GQC we use qubits, the quantum

analogue of the bit for classical computation. The state of the qubit is defined on a two-

dimensional complex vector space with states |0i and |1i forming the orthonormal basis

for this space. A qubit can thus be formed by a linear superposition of these orthonormal

basis states. By considering a general qubit parametrized by two angles
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we can represent the qubit on a three-dimensional unit sphere called the Bloch Sphere.

Performing unitary operations on qubit states corresponds to rotating states in the Bloch

Sphere.

Remarkably, comparing Eqs. (2.1) and (2.2), helicity spinors can be represented through

a qubit, modulo an overall normalisation factor
p
2E, and the calculation of helicity am-

plitudes follows the identical structure shown in Fig. 1, i.e. quantum operators act on an

initial state to eventually perform the projection onto a final state. This indicates that

GQC provide an ideal framework for the calculation of helicity amplitudes.
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Consequently, we will exploit that the spinors used to calculate helicity amplitudes

naturally live in the same representation space as qubits. This motivates the manipulation

of the direct correspondence of the ✓ and � variables of the qubit states and helicity

spinors to represent the spinors on a quantum circuit. We further encode operators acting

on spinors as quantum circuits of unitary operations. These can be applied to qubits

(rotating vectors on the Bloch Sphere) to calculate helicity amplitudes. The helicity spinors

|piȧ,(hp|ȧ)T, |p]a and ([p|a)T are visualised for ✓ = ⇡/4, � = ⇡/2, E = 1/2, as vectors on

the Bloch Sphere in Fig. 2, in direct analogy to their respective qubit representation.

In this study we aim to create the basic building blocks to encode spinor helicity

calculations on a quantum circuit. These basic building blocks are then used to construct

quantum algorithms for two simple examples of helicity calculations: 1) the contraction

of an external polarisation vector corresponding to a gluon with a fermion-anti-fermion

vertex and 2) the construction of s and t channel amplitudes for a qq̄ ! qq̄ process with

identical initial and final quark flavours. ‘Helicity registers’ are crucially introduced into

these circuits to control the helicity of each particle involved. It is seen that putting

the helicity of each particle in a superposition state of |+i = |1i and |�i = |0i by the

use of Hadamard gates fully utilises the quantum nature of the quantum computation to

output amplitudes by considering both helicities of each particle involved simultaneously.

This advantage is further explored by the simultaneous computation of s and t channel

amplitudes in Sec. 2.3.

(a) |piȧ (b) |p]a (c) (hp|ȧ)T (d) ([p|a)T

Figure 2: A visualisation of the helicity spinors |piȧ,hp|ȧ, (|p]a)T and ([p|a)T for ✓ = ⇡/4,

� = ⇡/2, E = 1/2 on the Bloch Sphere, following the choice of representation of Eq. (2.1).

2.1 Constructing Helicity Spinors and Scalar Products on the Bloch Sphere

The helicity spinors have been implemented on the quantum circuit by constructing Bloch

Sphere representations, like the ones shown in Fig. 2. The helicity spinor decompositions

are outlined in detail in Appendix C. They utilise the Qiskit U3(✓,�,�) gate, which applies

a rotation to a single qubit. The rotation is defined by,

U3(✓,�,�) =

 
cos
�
✓
2

�
�ei� sin

�
✓
2

�

ei� sin
�
✓
2

�
ei(�+�) cos

�
✓
2

�
!
. (2.3)

A simple U3 gate acting on a |0i state has been used to create the |qiȧ spinor, where ✓

and � variables of the U3 gate corresponded to the ✓ and � variables of the helicity spinor.
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• Encode operators acting on spinors as a series 
of unitary transformations in the quantum 
circuit 

• These unitary operations are applied to qubits 
to calculate helicity amplitude

Visualisation of helicity spinors 

Calculation of helicity amplitudes follows same structure as a quantum computing algorithm; 
quantum operators act on an initial state to transform it into a state that can be measured
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With this, the amplitude for the gqq vertex becomes

M+ = �
p

2
hpfqi[pfp]

hqpi
, M� = �

p
2
hpfpi[pfq]

[qp]
. (2.7)

As a consequence of this simplification, the number of qubits needed to calculate the am-

plitude on the quantum computer can be reduced from 10 to 4. The circuit for calculating

this amplitude is shown in Fig. 3. The three qi qubits calculate the three scalar products

from Eq. (2.7) using the gate decompositions outlined in Appendix C. These rotation gates

are controlled from the helicity register, h. If h is in the |1i state, then the helicity is

positive and the M+ amplitude is calculated; if h is in the |0i state, then the helicity is

negative and the M� amplitude is calculated. The three calculation qubits, qi, are then

measured by the quantum machine.

q1 hpfqi hpfpi

q2 [pfp] [pfq]

q3 hqpi [qp]

h H

Figure 3: gqq vertex circuit. The amplitude for the process is calculated on the qi qubits,

which are controlled from the helicity register. The qi qubits are then measured by the

quantum computer.

negative and the M� amplitude is calculated. The three calculation qubits, qi, are then

measured by the quantum machine.

Figure 4 shows the results of the algorithm for a random selection of small scattering

angles, with runs on the IBM Q 32-qubit Quantum Simulator [42] and the IBM Q 5-

qubit Santiago Quantum Computer [44]; both of which have been compared to theoretical

predictions of the probability distributions extrapolated directly from analytic calculations

of the helicity amplitude, calculated using the S@M software [45]. The simulator has been

run without a noise profile for 10,000 shots, and has been shown to agree within 1� of

the theoretically predicted values. From these distributions, one can determine the helicity

setup of the process and consequently reconstruct the helicity amplitudes of the process.

The Santiago machine has been run on the maximum shot setting of 8192 for 100

runs, leading to a total of 819,200 shots of the algorithm. From Fig. 4, it is clear that the

quantum computer’s performance does not match that of a perfect machine. Although the

helicity of the process which has been calculated can be identified from the distinct prob-

ability distributions, one cannot determine the explicit amplitude from the real machine.

However, it should be noted that a comparison to a perfect machine may not be a fair

comparison for modern quantum computers. Therefore a comparison between a simulator

run with the Santiago device’s noise profile and the quantum computer results is shown

in Appendix D. Section 2.4 explores the future of quantum computers for precise helicity

amplitude calculations.

The results from the quantum computer, shown in Fig. 4, have been achieved by

isolating the individual helicity processes on the quantum circuit, and removing the su-

perposition between the positive and negative processes. The full amplitude is achieved

through the implementation of a Hadamard Gate on the helicity qubit, which puts the

system into a superposition state of the positive and negative processes. The qubit setup

chosen here has been used in order to best reduce the CNOT qubit errors and limits the

number of SWAP operations needed in the algorithm. The Santiago machine is a 5-qubit

quantum computer, with all qubits connected inline to their adjacent qubit. The helicity
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Figure 3: gqq vertex circuit. The amplitude for the process is calculated on the qi qubits,

which are controlled from the helicity register. The qi qubits are then measured by the

quantum computer.

Figure 4 shows the results of the algorithm for a random selection of small scattering

angles, with runs on the IBM Q 32-qubit Quantum Simulator [41] and the IBM Q 5-

qubit Santiago Quantum Computer [43]; both of which have been compared to theoretical

predictions of the probability distributions extrapolated directly from analytic calculations

of the helicity amplitude, calculated using the S@M software [44]. The simulator has been

run without a noise profile for 10,000 shots. The results agree well with theoretically

predicted values, to within 1�. From these distributions, one can determine the helicity

setup of the process and consequently reconstruct the helicity amplitudes.

The Santiago machine has been run on the maximum shot setting of 8192 for 100 runs,

leading to a total of 819,200 shots of the algorithm. Figure 4 shows that the quantum

computer’s performance does not match that of a perfect machine, as expected. Therefore,

the simulator is rerun with the noise profile of the Santiago device and a comparison

between this and the quantum computer is shown and discussed in Appendix D.

The results from the quantum computer, shown in Fig. 4, have been achieved by

isolating the individual helicity processes on the quantum circuit, and removing the su-
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2.1 Constructing helicity spinors and scalar products on the Bloch sphere

The helicity spinors have been implemented on the quantum circuit by constructing Bloch

sphere representations, like the ones shown in Fig. 2. The helicity spinor decompositions

are outlined in detail in Appendix C. They utilise the Qiskit U3(✓,�,�) gate, which applies

a rotation to a single qubit. The rotation is defined by,

U3(✓,�,�) =

 
cos
�

✓
2

�
�e

i� sin
�

✓
2

�

e
i� sin

�
✓
2

�
e
i(�+�) cos

�
✓
2

�
!

. (2.3)

A simple U3 gate acting on a |0i state has been used to create the |qi
ȧ spinor, where ✓

and � variables of the U3 gate corresponded to the ✓ and � variables of the helicity spinor.

The |q]a spinor has been created by sequentially applying a U
†
3 rotation and a NOT gate,

where here the ✓ and � variables of the U3 gate corresponded to the ✓ and � variables of

the |q]a spinor.

To construct the scalar products hpqi or [pq] on a quantum computer, 2 ⇥ 2 unitary

gates Uhp and U[p were created such that, when they act on the |qi
ȧ and |q]a spinors

respectively, the scalar product values correspond to the first component of the final qubit

state, i.e. the complex coe�cient associated with the |0i state. It should be noted that

the factors of
p

2E in the definition of the helicity spinors have not been accounted for

such that the spinor-qubit states are normalized to one on the quantum register. As a

consequence, these factors must be added after the results have been obtained from the

quantum computer.

2.2 1!2 amplitude calculation

A simple application of the helicity amplitude approach is the calculation of a 1!2 process.

Here we will consider the process of q ! gq by calculating the gqq vertex,

Mgqq = hpf |�̄µ|pf ]✏µ
±, (2.4)

where pf and pf are the momenta associated with the fermon and anti-fermion respectively.

The gluon polarisation vectors are defined as [42],

✏
µ
+ = �

hq|�̄
µ
|p]

p
2hqpi

, ✏
µ
� = �

hp|�̄
µ
|q]

p
2[qp]

. (2.5)

From this, it is possible to create a circuit where each four-vector present in the amplitude,

i.e. the fermion anti-fermion vertex and polarisation vector, is calculated individually on

a series of 4 qubits. This is done by using the corresponding Pauli gates for each four-

vector component on each qubit. However, this will lead to a large circuit depth due to

the number of gates required to do such a calculation. Therefore it is useful to simplify the

expression for the amplitude using the Fierz identity,

hp|�̄
µ
|q]hk|�̄µ|l] = 2hpki[ql]. (2.6)
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• Gluon polarisation vectors given by : 

• Can create circuit where each 4-vector calculated individually on 4 qubits - but this 
will require many qubits and large circuit depth.  

• Instead, simplify amplitude using Fierz identity (hence reduce qubits from 10  4)→

A simple application of the helicity amplitude approach is the calculation of a 1→2 process
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With this, the amplitude for the gqq vertex becomes

M+ = �
p

2
hpfqi[pfp]

hqpi
, M� = �

p
2
hpfpi[pfq]

[qp]
. (2.7)

As a consequence of this simplification, the number of qubits needed to calculate the am-

plitude on the quantum computer can be reduced from 10 to 4. The circuit for calculating

this amplitude is shown in Fig. 3. The three qi qubits calculate the three scalar products

from Eq. (2.7) using the gate decompositions outlined in Appendix C. These rotation gates

are controlled from the helicity register, h. If h is in the |1i state, then the helicity is

positive and the M+ amplitude is calculated; if h is in the |0i state, then the helicity is

negative and the M� amplitude is calculated. The three calculation qubits, qi, are then

measured by the quantum machine.

q1 hpfqi hpfpi

q2 [pfp] [pfq]

q3 hqpi [qp]

h H

Figure 3: gqq vertex circuit. The amplitude for the process is calculated on the qi qubits,

which are controlled from the helicity register. The qi qubits are then measured by the

quantum computer.

negative and the M� amplitude is calculated. The three calculation qubits, qi, are then

measured by the quantum machine.

Figure 4 shows the results of the algorithm for a random selection of small scattering

angles, with runs on the IBM Q 32-qubit Quantum Simulator [42] and the IBM Q 5-

qubit Santiago Quantum Computer [44]; both of which have been compared to theoretical

predictions of the probability distributions extrapolated directly from analytic calculations

of the helicity amplitude, calculated using the S@M software [45]. The simulator has been

run without a noise profile for 10,000 shots, and has been shown to agree within 1� of

the theoretically predicted values. From these distributions, one can determine the helicity

setup of the process and consequently reconstruct the helicity amplitudes of the process.

The Santiago machine has been run on the maximum shot setting of 8192 for 100

runs, leading to a total of 819,200 shots of the algorithm. From Fig. 4, it is clear that the

quantum computer’s performance does not match that of a perfect machine. Although the

helicity of the process which has been calculated can be identified from the distinct prob-

ability distributions, one cannot determine the explicit amplitude from the real machine.

However, it should be noted that a comparison to a perfect machine may not be a fair

comparison for modern quantum computers. Therefore a comparison between a simulator

run with the Santiago device’s noise profile and the quantum computer results is shown

in Appendix D. Section 2.4 explores the future of quantum computers for precise helicity

amplitude calculations.

The results from the quantum computer, shown in Fig. 4, have been achieved by

isolating the individual helicity processes on the quantum circuit, and removing the su-

perposition between the positive and negative processes. The full amplitude is achieved

through the implementation of a Hadamard Gate on the helicity qubit, which puts the

system into a superposition state of the positive and negative processes. The qubit setup

chosen here has been used in order to best reduce the CNOT qubit errors and limits the

number of SWAP operations needed in the algorithm. The Santiago machine is a 5-qubit

quantum computer, with all qubits connected inline to their adjacent qubit. The helicity
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which are controlled from the helicity register. The qi qubits are then measured by the

quantum computer.

Figure 4 shows the results of the algorithm for a random selection of small scattering

angles, with runs on the IBM Q 32-qubit Quantum Simulator [41] and the IBM Q 5-

qubit Santiago Quantum Computer [43]; both of which have been compared to theoretical

predictions of the probability distributions extrapolated directly from analytic calculations

of the helicity amplitude, calculated using the S@M software [44]. The simulator has been

run without a noise profile for 10,000 shots. The results agree well with theoretically

predicted values, to within 1�. From these distributions, one can determine the helicity

setup of the process and consequently reconstruct the helicity amplitudes.

The Santiago machine has been run on the maximum shot setting of 8192 for 100 runs,

leading to a total of 819,200 shots of the algorithm. Figure 4 shows that the quantum

computer’s performance does not match that of a perfect machine, as expected. Therefore,

the simulator is rerun with the noise profile of the Santiago device and a comparison

between this and the quantum computer is shown and discussed in Appendix D.

The results from the quantum computer, shown in Fig. 4, have been achieved by

isolating the individual helicity processes on the quantum circuit, and removing the su-
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leading to a total of 819,200 shots of the algorithm. Figure 4 shows that the quantum
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qi qubits on the 2nd, 3rd and 5th qubits of the Santiago machine. The optimum qubit

setup would have the h qubit fully connected to the qi qubits, thus fully minimising the

SWAP operation errors. However, the available machines with such a qubit mapping on

the public IBM Q experience have a lower quantum volume than the Santiago machine,

which reports a quantum volume of 32. Consequently, the trade of ideal qubit mapping

for a better quantum volume has been made.

Figure 4: Results for the q ! gq helicity amplitude calculation. Comparison between the-

oretically calculated probability distribution, quantum simulator and real quantum com-

puter.

The main source of error in the quantum computer is readout noise. Error mitigation

methods have been used to optimise the output from the quantum computer and reduce

readout noise e↵ects. This has been done using the Qiskit Ignis software [41], which provides

tools for noise characterisation and error correction based on noise models of the quantum

machines. The method involves testing simple qubit states on a series of calibration circuits,

which are run using the quantum simulator with the noise profile of the Santiago machine.

The response matrix created from this is shown in Fig. 5. This response matrix is then

applied to the machine results to obtain the error corrected results, as shown in Fig. 4.

The response matrix is calculated immediately before running the algorithm.
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Extending from the 1  2 process, we consider the 
2  2 scattering case of  

→
→ qq̄ → qq̄

of the quantum machines. The method involves testing simple qubit states on a series of

calibration circuits, which are run using the quantum simulator with the noise profile of

the Santiago machine. The response matrix created from this is shown in Fig. 5. This

response matrix is calculated immediately before running the algorithm and then applied

to the machine results to obtain the error corrected results, as shown in Fig. 4.

Figure 5: IBM Q Santiago 5-qubit Quantum Computer Response Matrix for measurement

error correction on the 4 qubit helicity amplitude calculation algorithm.

2.3 2!2 amplitude calculation

Extending from the 1 ! 2 case in Sec. 2.2, the implementation of a full helicity amplitude

calculation for the s and t-channels of a 2 ! 2 scattering process is presented here‡. As an

example, we consider a qq ! qq process. The initial state quark and antiquark are labelled

as particles 1 and 2 respectively and the final state quark and antiquark as 3 and 4. In

total, there are only 4 non-zero helicity configurations possible for each s and t-channel

process. The relevant amplitudes are,

Ms(+�+�) = �h2|�̄
µ
|1]

1

s12
[3|�µ|4i, Ms(+��+) = �h2|�̄

µ
|1]

1

s12
h3|�̄µ|4] (2.8)

and

Mt(++��) = �h3|�̄
µ
|1]

1

s13
[2|�µ|4i, Mt(+��+) = �h3|�̄

µ
|1]

1

s13
h2|�̄µ|4] (2.9)

where the +/- signs denote the helicity of the outgoing-particles 1, 2, 3 and 4 and

sij = �(pi + pj)
2 = hiji[ji]. (2.10)

The other non-zero amplitudes are obtained by complex conjugation.

The calculation is performed in the Centre-of-Mass (CM) frame and the momenta of

individual particles is defined such that the only dependent input variable is the angle,

‡Note, for the calculation of the 1 ! 3 case only minor modifications are needed.
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Amplitudes for the s and t-channel:

✓, through which the quark (and antiquark) is scattered. In the CM frame, the overall

magnitude of energy, E, associated with the momenta of each particle also drops out of

the final helicity amplitude and is therefore not considered in this example.

In the ‘all-outgoing’ convention of spinor-helicity formalism [42], the momenta of in-

coming particles are flipped so that the incoming quark (1) (antiquark (2)) is mapped to

an outgoing antiquark (quark) with opposite helicity. In the quantum algorithm, each

quark-antiquark vertex is calculated on a 4-qubit quantum register, qi. The outgoing an-

tifermion spinor, qi/q], is implemented on the vertex quantum register, q
j
i , followed by the

two dimensional representation of the gamma matrices, �
µ
/�̄

µ, and then finally the vertex

is closed with the opposite helicity outgoing fermion spinor, [q/hq. A single qubit, s, is used

to calculate the denominator of the gluon propagator. The calculation is controlled both

from the helicity registers, hi, which determine what helicity configuration the particles

are in, and the amplitude qubit, p, which controls whether the s or t-channel process is

calculated. A schematic of the quantum circuit is shown in Fig. 6. Through this imple-

mentation, each component of the helicity amplitude can be calculated and extracted from

the machine.
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In the ‘all-outgoing’ convention of spinor-helicity formalism [? ], the momenta of

incoming particles is flipped so that the incoming quark (1) (antiquark (2)) is mapped

to an outgoing antiquark (quark) with opposite helicity. In the quantum algorithm, each

quark-antiquark vertex is calculated on a 4-qubit quantum register, qi. The outgoing

antifermion spinor, qi/q], is implemented on the vertex quantum register, q
j
i , followed

by the two dimensional representation of the gamma matrices, �
µ
/�̄

µ, and then finally

the vertex is closed with the opposite helicity outgoing fermion spinor, [q/hq. A single

qubit, s, is used to calculate the denominator of the gluon propagator. The calculation is

controlled both from the helicity registers, hi, which determine what helicity configuration

the particles are in, and the amplitude qubit, p, which controls whether the s or t-channel

process is calculated. A schematic of the quantum circuit is shown in Fig. ??. Through this

implementation, each component of the helicity amplitude can be calculated and extracted

from the machine.
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...
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Figure 6: Circuit for the qq ! qq process helicity amplitude calculation. The q
j
i registers

are used to calculate the qq vertices, and these are controlled from the helicity registers,

hi, which dictate the helicity configuration of the process.

This method is powerful as it allows for each component of the calculation to be

extracted, however it leads to a complicated circuit, especially if one implements a method
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Figure 6: Circuit for the qq ! qq process helicity amplitude calculation. The q
j
i registers

are used to calculate the qq vertices, and these are controlled from the helicity registers,

hi, which dictate the helicity configuration of the process.

This method is powerful as it allows for each component of the calculation to be

extracted, however it leads to a complicated circuit, especially if one implements a method

of dealing with incorrect helicity setups. As in Sec. 2.2, the circuit can be simplified by

directly calculating the scalar products required for the final amplitudes. The amplitudes

given in Eqs. (2.8) and (2.9) can be simplified using Eq. (2.6) (and that [p|�
µ
|qi = hq|�̄

µ
|p])

to give the final forms,

Ms(+�+�)
= 2

h24i[31]

h12i[21]
, Ms(+��+)

= 2
h23i[41]

h12i[21]
(2.11)
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Again using the Fiery identity, can simplify these to (reduce # of qubits needed from 17 to 12) :

and

Mt(++��)
= 2

h34i[21]

h13i[31]
, Mt(+��+)

= 2
h32i[41]

h13i[31]
. (2.12)

Using these expressions, the number of qubits needed for the circuit is reduced from 17

to 12 qubits. Another advantage is that the machine now only has to read out 3 qubits,

where previously 8 qubits were read out per run. On these three qubits, each of the scalar

products is calculated. The quark-antiquark vertex scalar products from the numerator

are calculated on the first two qubits, and the denominator of the gluon propagator is

calculated on the third qubit. Only one scalar product needs to be calculated for the

denominator since [42],

hiji = [ji]⇤, (2.13)

therefore the second scalar product can be determined from the same qubit.

This simplified circuit is run on the IBM Q 32-qubit Quantum Simulator [41] for

10,000 runs and compared to theoretically calculated probability distributions, extrapo-

lated directly from analytic calculations of the helicity amplitude, calculated using the

S@M software [44]. Using the equivalence between helicity spinors and orthogonal pure

state qubits, these theoretical predictions have been obtained from the probabilities of

each of the qubits to be in the |0i or |1i state, which correspond to the magnitude squared

of the upper and lower components of the helicity spinor respectively. The results from

the quantum simulator show that the output of the quantum circuit lies within 1� of the

theoretically predicted probability distribution and are shown in Fig. 7 for both the s and

t-channel in a specific helicity configuration.

Figure 7: Comparison between theoretically predicted qubit final state probabilities and

32-qubit quantum simulator output for the s and t-channel qq ! qq process in the (+,-,+,-)

helicity configuration. The quark (antiquark) scattering angle has been chosen as ✓3 = ⇡
4 .

2.4 Generalisation to 2 ! n amplitude calculations

It can be shown, using the BCFW recursion formula [45, 46] and the relations in Eq. (2.5),

that scattering amplitudes for massless partons can be reduced to a combination of scalar
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helicity configuration. The quark (antiquark) scattering angle has been chosen as ✓3 = ⇡
4 .

2.4 Generalisation to 2 ! n Amplitude Calculations

It can be shown, using the BCFW recursion formula [46, 47] and the relations in Eq. (2.5),

that scattering amplitudes for massless partons can be reduced to a combination of scalar

products between helicity spinors§. Consequently, the algorithm presented in Secs. 2.2

§A well-known example is the Parke-Taylor formula for a 2 ! n gluon scattering process, where the

gluons i and j have helicity (-) and all other gluons have helicity (+). Then the formula provides the

following expression for the amplitude An,

An[1
+ · · · i� · · · j� · · ·n+] = (�gs)

n�2 hiji4

h12i h23i · · · hn1i . (2.14)
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Run algorithm on: 
- IBM Q 32-qubit simulator (10,000 shots)  
- Compare with theoretical calculation 

• Algorithm calculates the positive and negative helicity of each particle involved AND 
the s and t-channels simultaneously!
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• After the hard interaction, the next step in simulating a scattering event                                       
at LHC is the parton shower 

• Parton shower evolves the scattering process from the hard                                               
interaction scale down to the hadronisation scale  

• Propose a quantum computing algorithm that simulates collinear                                           
emission in a 2-step parton shower  

• This algorithm builds on previous work by Bauer et. al. (arXiv:1904.03196)  

• To comply with capability of quantum computers we had access to, consider a simplified model 
of the parton shower consisting of only one flavour of quark



Parton shower

35

thus, (pi + pj)2 = P
2 = 0 [50].

The emission probabilities in the algorithm are calculated using the collinear splitting

functions outlined in [51–54]. A consequence of the collinear limit being a semi-classical

interpretation with 1-to-2 splittings leads to the presence of a diagonal colour charge in the

splitting functions, Cii. The splitting for a quark to a gluon and a quark, with momentum

fractions z and 1 � z respectively, is described at Leading Order (LO) by

Pq!qg(z) = CF
1 + (1 � z)2

z
, (3.2)

with CF = 4/3. The gluon splitting can be divided into two parts, with the first describing

the splitting of a gluon to a quark-antiquark pair and the second describing the splitting

of a gluon to two gluons,

Pg!qq(z) = nfTR(z2 + (1 � z)2), Pg!gg(z) = CA

h
2
1 � z

z
+ z(1 � z)

i
, (3.3)

where CA = 3 and TR = 1/2. Here, nf is the number of massless quark flavours, and TR is

the colour factor. It should be noted that both splitting functions have a soft singularity

at z = 0; the hard-collinear limit only takes into account finite z.

Further to calculating the splitting functions, the Sudakov factors have been used to

determine whether an emission occurred in the step. The Sudakov factors for a QCD

process are given by [7]

�i,k(z1, z2) = exp
h

� ↵
2
s

Z z2

z1

Pk(z
0)dz

0
i
, (3.4)

and are used to calculate the non-emission probability. The running of the strong coupling,

↵s, is not simulated in this algorithm and for ease has been set to 1. For any given step

N , there are N possible particles present, and so the probability that none of the particles

split is given by

�tot(z1, z2) = �
ng
g (z1, z2)�

nq
q (z1, z2)�

nq

q (z1, z2). (3.5)

Finally, the probability of a certain splitting is therefore obtained from

Probk!ij =
�
1 � �k

�
⇥ Pk!ij(z). (3.6)

To implement the algorithm e�ciently, preference has been given to gluons splitting to

a quark-antiquark pair. This splitting preference implementation is explained in depth

in Appendix E, but, for definiteness, the probability of a gluon splitting to two gluons is

calculated as

Probg!gg =
�
1 � �g

�
⇥

�
1 � Pg!qq(z)

�
⇥ Pg!gg(z). (3.7)

For the energy scale considered here, this should have a small a↵ect on the results as

Pg!qq(z) ⌧ Pg!gg(z).
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Non-emission probability calculated using Sudakov factors
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3.2 Implementation on quantum circuit

A quantum circuit has been constructed to simulate a parton shower with collinear split-

tings. The circuit comprises of particle registers, emission registers and history registers

and uses a total of 31 qubits. The algorithm is discretised into individual steps. An emis-

sion can occur in each step, and the probabilities are calculated from the splitting functions

and Sudakov factors. To meet the 32 qubit limit of the IBM Q Quantum Simulator [41],

the algorithm has been limited to two steps, but it is generally extendable. Figure 8 shows

the circuit diagram for a single step.
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[? ], the algorithm has been limited to two steps, but it is generally extendable. Figure ??

shows the circuit diagram for a single step.
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pj

...
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Figure 8: Circuit diagram for one step of the algorithm. The circuit comprises particle

registers, emission registers and history registers.

The algorithm follows a similar method to that described by Bauer et al. in [? ],

first counting the particles present in the simulation, determining whether an emission has

occurred and if so assessing which splitting did occur, then finally updating the particle

content of the simulation. In contrast to the method shown by [? ], the algorithm presented

here has the ability to simulate a QCD process, with splittings for both gluons and quarks

implemented using the splitting functions outlined in Eqs. (??) and (??). The addition of

such splitting functions leads to significant changes to the algorithm presented in Bauer

et al., specifically in the History and Update Gates of the algorithm, shown in Fig. ??. The

implementation of these gates is outlined in detail in Appendix ??. Unlike the algorithm

presented by Bauer et al., we have chosen not to introduce flavour mixing at the start of the
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Figure 8: Circuit diagram for one step of the algorithm. The circuit comprises particle

registers, emission registers and history registers.

The algorithm follows a similar method to that described in [26], first counting the

particles present in the simulation, determining whether an emission has occurred and

if so, assessing which splitting did occur, then finally updating the particle content of

the simulation. In contrast to the method shown by [26], the algorithm presented here

has the ability to simulate a QCD process with splittings for both gluons and quarks

implemented using the splitting functions outlined in Eqs. (3.2) and (3.3). The addition

of such splitting functions leads to significant changes to the algorithm compared to that

presented in [26], specifically in the History and Update gates of the algorithm, shown

in Fig. 8. The implementation of these gates is outlined in detail in Appendix E. Unlike

the algorithm presented in [26], we have chosen not to introduce flavour mixing at the

start of the algorithm. Instead, the superposition and interference between the possible

output states are introduced in the tailored History and Update gates. With the ability to

simulate gluon and quark splittings, the algorithm is thus well suited to hadronic parton

shower simulation and provides the foundations for a general parton shower algorithm for

use on a GQC.

The parton shower algorithm is designed to operate on the public access IBM Q 32-

qubit Quantum Simulator [41], which allows for a total of two steps to be simulated on

the machine. As the machine is a simulator, it does not su↵er from noise or a limit on the
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E Detailed quantum circuit for collinear parton shower algorithm

The algorithm presented here follows a similar method to that outlined in [26]. In contrast,

the algorithm does not introduce flavour mixing, but does simulate a vector boson with

the possibility of boson splittings. As a result, the algorithm presented here includes

tailored History and Update gates to deal with the increased splitting channels. Shown

in Fig. 8, the circuit comprises of four tailored gate operations: Count, Emission, History,

and Update gate. The particle identity is encoded using a 3-qubit base, and the following

qubit combinations have been chosen for each type of particle:

gluon quark antiquark

p

8
>><

>>:

p0

p1

p2

1

0

0

0

0

1

0

1

1

(E.1)

Using a 3-qubit base, it is possible to simulate 7 di↵erent types of particle and 1 null state.

Therefore, the algorithm could be easily extended to accommodate more quark flavours if

more qubits were available.

E.1 Count gate

The count gate comprises of three individual counting mechanisms for each type of particle,

and is applied to each particle register individually. The algorithm utilises a series of NOT,

controlled-NOT (CNOT ) and To↵oli (CCNOT ) gates to update the count registers, ni,

depending on the type of particle represented in the particle register. Fig. 12 shows the

counting mechanism for a gluon, controlling only from the gluon state outlined in E.1.
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Using a 3-qubit base, it is possible to simulate 7 di↵erent types of particle and 1 null state.

Therefore, the algorithm could be easily extended to accommodate more quark flavours if

more qubits were available.

E.1 Count Gate

The count gate is made up from three individual counting mechanisms for each type of

particle, and is applied to each particle register individually. The algorithm utilises a

series of NOT, controlled-NOT (CNOT ) and To↵oli (CCNOT ) gates to update the count

registers, ni, depending on the type of particle represented in the particle register. Fig. ??

shows the counting mechanism for a gluon, controlling only from the gluon state outlined

in ??.

pk

p0

p1

p2
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Figure 12: Count Gate circuit decomposition for counting a gluon in the particle register.

To complete the count gate, this is repeated for all other possible particle types by applying

di↵erent combinations of NOT gates.
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To complete the count gate, this is repeated for all other possible particle types by applying

di↵erent combinations of NOT gates.
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Count gate  
Uses series of NOT, CNOT and 
Toffoli (CCNOT) gates to count 
number of each type of particle

The total number of count registers, ni, used in the algorithm is 4. As the particle

count registers are updated at the beginning of a step, the maximum number of gluons

that can be present is 2, and the maximum number of quarks/antiquarks is 1. Therefore,

for this algorithm, only 2 gluon count registers and 1 quark/antiquark count register are

required. Ideally, one would have the same number of count registers for each particle type,

which would be equal to the step number. However, due to the limited number of available

qubits, this has not been possible here.

E.2 Emission gate

The emission gate implements the Sudakov factors from Eq. (3.5) by defining a U3 rotation

that can be applied to the emission register, e. The structure of this rotation takes the

same form as that presented in [26],

Ue =

 p
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p
1 � �tot(z1, z2)p
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p

�tot(z1, z2)

!
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This rotation changes the state of the emission gate, e, to |1i if there is an emission, and

keeps it in state |0i if there is no emission. Non-emission probabilities (Sudakov factors)

are used due to the Qiskit [40] definition of a qubit state,
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count registers are updated at the beginning of a step, the maximum number of gluons that

can be present is 2 and the maximum number of quarks/antiquarks is 1. Therefore, for this

algorithm only 2 gluon count registers and 1 quark/antiquark count register are required.

Ideally, one would have the same number of count registers for each of the particle types,

and this would be equal to the step number. However, due to the limitation on the number

of available qubits, this has not been possible here.

E.2 Emission Gate

The emission gate implements the Sudakov factors from Eq. (??) by defining a U3 rotation

that can be applied to the emission register, e. The structure of this rotation takes the

same form as that presented by Bauer et al. in Reference [? ],
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This rotation changes the state of the emission gate, e, to |1i if there is an emission, and

keeps it in state |0i if there is no emission. Non-emission probabilities (Sudakov factors)

are used due to the Qiskit [? ] definition of a qubit state,
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Figure 13: Emission Gate for a single gluon in the first particle register. Here the Ue is

a U3 rotation is used to implement the Sudakov Factors.

Similarly to the Count Gate, the Emission Gate is constructed from a series of NOT

gates which determine the target state, and a series of CCNOT gates which implement the

operation if the target state is present. Here, the emission is determined by controlling from
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Emission gate  
Implements the Sudakov factors 

using a rotation, which changes the 
state of the emission gate to  if  

emission,  if not. 
|1⟩

|0⟩

Update gate  
If there is an emission, changes 

content of particle counts 
accordingly

History gate  

operation if the target state is present. Here, the emission is determined by controlling from

the particle count gates. If the desired particles are present, then the emission rotation

from Eq. (E.2) is applied to the emission register. As only one emission can occur in a

single step, then only one emission qubit is needed per step.

E.3 History gate

The history gate is the most complicated implementation in the algorithm. This is largely

due to the fact that a gluon can split to either a gluon pair, or a quark-antiquark pair. As a

consequence this requires two calculations of splitting probabilities for a gluon, as outlined

in Eq. (3.7). These probabilities are implemented by controlling from present particles and

applying a rotation to the relevant history register; again taking a form similar to the one

presented in [26],
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0
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where Ptot is defined as,

Ptot(z) = ng(Pg!qq + Pg!gg) + nqPq!qg + nqPq!qg. (E.5)

Here the non-splitting probabilities are used in the diagonal elements due to the definition

of the qubit states outlined in Eq. (E.3).
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consequence this requires two calculations of splitting probabilities for a gluon, as outlined
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presented by Bauer et al. [? ],

Uh =

0

@

q
1 �

Pk!ij(z)
Ptot(z) �

q
Pk!ij(z)
Ptot(z)q

Pk!ij(z)
Ptot(z)

q
1 �

Pk!ij(z)
Ptot(z)

1

A , (E.4)

where Ptot is defined as,

Ptot(z) = ng(Pg!qq + Pg!gg) + nqPq!qg + nqPq!qg. (E.5)

Here the non-splitting probabilities are used in the diagonal elements due to the definition

of the qubit states outlined in Eq. (??).
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Figure 14: History Gate for a single gluon in the first step. Here the Uh gate is a U3

rotation used to implement the splitting probabilities.

The history gate used in this algorithm di↵ers from [? ], such that it controls from

the particle registers and not the count registers. This is to reduce the number of count
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Figure 14: History gate for a single gluon in the first step. Here the Uh gate is a U3

rotation used to implement the splitting probabilities.

The history gate used in this algorithm di↵ers from [26], such that it controls from

the particle registers and not the count registers. This is to reduce the number of count
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• Circuit comprises of particle registers, emission registers, and history registers and uses a total of 31 qubits 

Determines which emission has occurred
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(a) Initial particle a gluon.

(b) Initial particle a quark.

(c) Initial particle an antiquark.

Figure 9: Results from the quantum circuit compared to theoretical predictions for two

steps of the parton shower with momentum interval of zlower = 0.3 to zupper = 0.5 and the

initial state particle of (a) gluon, (b) quark and (c) antiquark.

We also present a quantum algorithm for simulating collinear emission in a two-step,

discrete parton shower with a maximum of three final state particles, utilising the quantum

computer’s ability to remain in a quantum state throughout the simulation. In contrast
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• Classical Monte Carlo methods need to manually keep track of individual shower 
histories, which must be stored on a physical memory device.   

• Quantum computing algorithm constructs a wavefunction for the whole process and 
calculates all possible shower histories simultaneously!  
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qubit mapping in order to optimise the operation of the computer. For future use of the

algorithm, this can be done using the calibration data provided by IBM Q.
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• Algorithm builds on previous work by Bauer et. al. [1] by 
including a vector boson and boson splittings  
significant changes in its implementation 

• Can simulate both gluon and quark splittings, thus 
provides the foundations for developing a general parton 
shower algorithm  

• With advancements in quantum technologies, algorithm 
can be extended to include all flavours of quarks without 
adding disproportionate computational complexity

→

[1] : arXiv:1904.03196  



Consequently, we will exploit that the spinors used to calculate helicity amplitudes

naturally live in the same representation space as qubits. This motivates the manipulation

of the direct correspondence of the ✓ and � variables of the qubit states and helicity

spinors to represent the spinors on a quantum circuit. We further encode operators acting

on spinors as quantum circuits of unitary operations. These can be applied to qubits

(rotating vectors on the Bloch Sphere) to calculate helicity amplitudes. The helicity spinors

|piȧ,(hp|ȧ)T, |p]a and ([p|a)T are visualised for ✓ = ⇡/4, � = ⇡/2, E = 1/2, as vectors on

the Bloch Sphere in Fig. 2, in direct analogy to their respective qubit representation.

In this study we aim to create the basic building blocks to encode spinor helicity

calculations on a quantum circuit. These basic building blocks are then used to construct

quantum algorithms for two simple examples of helicity calculations: 1) the contraction

of an external polarisation vector corresponding to a gluon with a fermion-anti-fermion

vertex and 2) the construction of s and t channel amplitudes for a qq̄ ! qq̄ process with

identical initial and final quark flavours. ‘Helicity registers’ are crucially introduced into

these circuits to control the helicity of each particle involved. It is seen that putting

the helicity of each particle in a superposition state of |+i = |1i and |�i = |0i by the

use of Hadamard gates fully utilises the quantum nature of the quantum computation to

output amplitudes by considering both helicities of each particle involved simultaneously.

This advantage is further explored by the simultaneous computation of s and t channel

amplitudes in Sec. 2.3.

(a) |piȧ (b) |p]a (c) (hp|ȧ)T (d) ([p|a)T

Figure 2: A visualisation of the helicity spinors |piȧ,hp|ȧ, (|p]a)T and ([p|a)T for ✓ = ⇡/4,

� = ⇡/2, E = 1/2 on the Bloch Sphere, following the choice of representation of Eq. (2.1).

2.1 Constructing Helicity Spinors and Scalar Products on the Bloch Sphere

The helicity spinors have been implemented on the quantum circuit by constructing Bloch

Sphere representations, like the ones shown in Fig. 2. The helicity spinor decompositions

are outlined in detail in Appendix C. They utilise the Qiskit U3(✓,�,�) gate, which applies

a rotation to a single qubit. The rotation is defined by,

U3(✓,�,�) =

 
cos
�
✓
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2
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ei� sin
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!
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A simple U3 gate acting on a |0i state has been used to create the |qiȧ spinor, where ✓

and � variables of the U3 gate corresponded to the ✓ and � variables of the helicity spinor.
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Helicity amplitude algorithm exploits                   
equivalence of spinors and qubits,                   
encodes operators as unitary operations                    
in a quantum circuit. Using Hadamard                   
gates to introduce a superposition between             
helicity qubits, it enables simultaneous calculation 
of the + and  helicity states of each particle AND 
the s- and t-channel amplitudes for a 2 2 process

−
→

Summary of arXiv:2010.00046
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• Modeling complexity of collisions at LHC relies on theoretical 
calculations of multi-particle final states.  

• Working with quantum objects and quantum phenomena; can quantum 
computers help? 

• Propose general and extendable quantum algorithms to calculate the 
hard interaction using helicity amplitudes and a 2-step parton shower

First step towards a quantum computing algorithm to model the full collision event at LHC and 
demonstrate an excellent example of using quantum computers to model intrinsic quantum 
behaviour of the system

Parton shower algorithm calculates 
collinear emission for 2-step shower.       
While classical implementations              
must explicitly keep track of                      
individual shower histories,                        
our quantum algorithm constructs                      
a wavefunction for the whole parton      
shower process with a superposition of all 
shower histories
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Slide credit: Steven Touzard’s talk given at CQT 
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Future outlook
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> 1000 qubits by 
2023

Intermediate, near term goal: 1,121-qubit system by the end of 2023
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Credit: StoryTK for IBM
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• Quantum computing is an emergent and rapidly developing field with potential 
applications in variety of different areas 

• Solutions to some of the most challenging problems in HEP may well be at the 
intersection of these two fields 

• Current machines are excellent test beds for demonstrating proof-of-principle 
studies to make way for quantum revolution


