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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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2Motivation

Standard Model works quite well but... some gaps! 

baryogenesis ! 

CP-Violation on Hadronic decays

 massive phase-space localized Asymmetry in 
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B± ! h±h�h+

SM predicts CPV in B sector but ….. lot to be understood

can lead to new physics 
 CPV on three-body?

2019 1st observation in charm
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D0(D̄0) ! ⇡+⇡� �K+K�
<latexit sha1_base64="tNByrGOKPc+Yi1SniNanu6LOPEc=">AAACEHicbVBLSwMxGMz6rPW16tFLsIiV0rJbBT1JQQ9CLxXsA7q7JZtm29DsgyQrlKU/wYt/xYsHRbx69Oa/Md3uQVsHEoaZ7yOZcSNGhTSMb21peWV1bT23kd/c2t7Z1ff2WyKMOSZNHLKQd1wkCKMBaUoqGelEnCDfZaTtjq6nfvuBcEHD4F6OI2L7aBBQj2IkldTTT24cAxYtF/FEscmpJUNoRdQppXcZlmHdKdWdck8vGBUjBVwkZkYKIEOjp39Z/RDHPgkkZkiIrmlE0k4QlxQzMslbsSARwiM0IF1FA+QTYSdpoAk8VkofeiFXJ5AwVX9vJMgXYuy7atJHcijmvan4n9eNpXdpJzSIYkkCPHvIixlUqaftwD7lBEs2VgRhTtVfIR4ijrBUHeZVCeZ85EXSqlbMs0r17rxQu8rqyIFDcASKwAQXoAZuQQM0AQaP4Bm8gjftSXvR3rWP2eiSlu0cgD/QPn8Ay9mZ4w==</latexit>

• 1967, the Russian physicist Andrey Sakharov proposed 
three conditions for generating the observed matter/
anti-matter asymmetry of the Universe:

1) baryon number violation

2) C and CP violation                                
3) departure from thermal equilibrium
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D and B  three-body  HADRONIC decays are dominated by low E resonances 

3Context

 spectroscopy: new resonances, their properties…

information of MM interactions

build up the idea that the main dynamic in 3-body 
is driven by 2-body resonances  

1st observation of 
𝜎 [           ] and 𝜅 [           ]

in D decays
f0(600) K⇤

0 (700)

new high data sample from LHCb more to come from LHCb and Belle II

simple models (only focus on two-body resonances) 
are not enough to explain data anymore

theoretical challenge !

image credit:Brian Meadows

18

Are methods used for D decay 
Dalitz plots also valid for B decays?

Same model Same model 

as D decayas D decay

D→K–π+π0 B→K–π+π0

Tim Gershon
Introduction to Dalitz Plot Analysis

D Dalitz plot 
on same scale

Image credit: Brian Meadows

D0 ! K�⇡+⇡0
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4Three-body kinematics : DALITZ plot

How to describe the kinematics of three-body HADRONIC decays?

++=
M

p1
<latexit sha1_base64="u4xyTd1lT+wnh2ndvku3f64LlLY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoCcpePFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD0nf65crbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKqVb2Lau3+slK/yeMowgmcwjl4cAV1uIMGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w//i42Y</latexit>

p2
<latexit sha1_base64="w6ROqbKTfswRtIXmDqgsKZbBZSc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoCcpePFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD0m/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3oX1dr9ZaV+k8dRhBM4hXPw4ArqcAcNaAKDITzDK7w5wnlx3p2PRWvByWeO4Q+czx8BHo2Z</latexit>

p3
<latexit sha1_base64="0lr+oXDCt6Wtc1B23jrpoH44L4o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQU9S8OKxoq2FNpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsOwE1XArFWyhQ8k6iOY0CyR+D8c3Mf3zi2ohYPeAk4X5Eh0qEglG00n3Sr/fLFbfqzkFWiZeTCuRo9stfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzolZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDKz4RKUuSKLRaFqSQYk9nfZCA0ZygnllCmhb2VsBHVlKFNp2RD8JZfXiXtWtWrV2t3F5XGdR5HEU7gFM7Bg0towC00oQUMhvAMr/DmSOfFeXc+Fq0FJ585hj9wPn8AAqKNmg==</latexit>

s13
<latexit sha1_base64="iVsPUOqRPR+m1Xj96KsWH+p/srQ=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld1W0JMUvHisYD+gXUo2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWM/7RmvrG5tb24Wd4u7e/sFh6ei4ZVSqKWtSJZTuhMQwwSVrWm4F6ySakTgUrB2Ob2d++4lpw5V8sJOEBTEZSh5xSqyTWqaf+bVpv1T2Kt4ceJX4OSlDjka/9NUbKJrGTFoqiDFd30tskBFtORVsWuylhiWEjsmQdR2VJGYmyObXTvG5UwY4UtqVtHiu/p7ISGzMJA5dZ0zsyCx7M/E/r5va6DrIuExSyyRdLIpSga3Cs9fxgGtGrZg4Qqjm7lZMR0QTal1ARReCv/zyKmlVK36tUr2/LNdv8jgKcApncAE+XEEd7qABTaDwCM/wCm9IoRf0jj4WrWsonzmBP0CfPzywjuQ=</latexit>

s12
<latexit sha1_base64="/jH5OTjQ0X1hrmEG6inf2Xg5wG8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQU8S8OIxgnlAsoTZyWwyZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVhDaJ4kp3ImwoZ5I2LbOcdhJNsYg4bUfj25nffqLaMCUf7CShocBDyWJGsHVSy/SzoDbtlyt+1Z8DrZIgJxXI0eiXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4OsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadWqwUW1dn9Zqd/kcRThBE7hHAK4gjrcQQOaQOARnuEV3jzlvXjv3seiteDlM8fwB97nDzsrjuM=</latexit>

s23
<latexit sha1_base64="dL3+XYJGMGM6zx4SBHGvYVoPI7M=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd1E0JMEvHiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vf3tr6xubWdmGnuLu3f3BYOjpuGZVqQptEcaU7ETaUM0mblllOO4mmWESctqPx7cxvP1FtmJIPdpLQUOChZDEj2DqpZfpZtTbtl8p+xZ8DrZIgJ2XI0eiXvnoDRVJBpSUcG9MN/MSGGdaWEU6nxV5qaILJGA9p11GJBTVhNr92is6dMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4OsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUBFF0Kw/PIqaVUrQa1Svb8s12/yOApwCmdwAQFcQR3uoAFNIPAIz/AKb57yXrx372PRuublMyfwB97nDz42juU=</latexit>

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)

Mandelstam variables for 3-body

s12 + s13 + s12 = M2 +m2
1 +m2

2 +m2
3

decay rate can be written as: d� =
1

(2⇡)3
1

32M2
¯|M|2s12s23

<latexit sha1_base64="vqKpBtF6xnAiGMn2iLSDV+kHh/c="></latexit>

In the rest frame of M (P=0): final particle are in the same plane
final particle distribution in the phase-space will depend on:  - average of spin 

                                                                                     - Euler angles

Amplitude, dynamic!
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The phase-space is NOT one-dimension! 

5Three-body kinematics : DALITZ plot

27

O Dalitz plot

A conservação da energia e momento  
introduz quatro equações de vínculo

No referencial de repouso da partícula "mãe" (P=0), as três 
"filhas" formam um plano. Na ausência de spin, a orientação 

espacial desse plano é irrelevante:

9 components - 4 vínculos - 3 ângulos = 2 graus de liberdade

a
b
c

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23) DP proposed by Richard Dalitz
 (1925-2006) in 1953

- the perimeter depends on the masses
   min:       
   max: in      ,   

sij > (mi +mj)
2

sij (M �mk)
2

- inside this contour there are all 
combinations of momenta distribution

- The probability of each point inside is 
given by the dynamic amplitude A

tool for analyse data

29

P ! abc

DALITZ PLOT

sab

sbc



scalar vector tensor 

besides the amplitude bump (intensity/probability) the resonance will have 
a spin signature in DP:                 (same as spherical harmonics)…

4 48. Resonances
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Figure 48.2: Argand plot showing a diagonal element of a partial-wave amplitude, abb, as a function
of energy. The amplitude leaves the unitary circle (solid line) as soon as inelasticity sets in, ÷ < 1
(dashed line).

scalar particles only one may write

Mba(s, t) =
Œÿ

j=0
(2j + 1)Mj

ba(s)Pj(cos(◊)) , (48.6)

where j denotes the total angular momentum. For scalar particles it coincides with the orbital
angular momentum of the particle pairs in the initial and the final state. To simplify notations we
will drop the label j for the single-argument function Mba(s). The unitarity constraint for Mba(s)
reads,

Im Mba =
ÿ

c

Mú
cb flc Mca (48.7)

with flc being a factor that is related to the two-body phase space in Eq. (12) of the review on
“Kinematics”,

flc(s) = (2fi)4

2

⁄
dÕ2 = 1

16fi

2|q̨c|Ô
s

. (48.8)

The partial-wave amplitudes fba(s) are connected to Mba(s) via

fba(s) = Ô
flb Mba(s) Ô

fla . (48.9)

6th December, 2019 11:50am

credit: knowino.org
16/1/2020 Patricia Magalhães3-body hadronic decay

6Two-body resonances signature in DP

2-body resonances have spin and isospin well defined: RJ,I
<latexit sha1_base64="K9hITRRCzJH+w0NwgW8nENoftCs=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuhJCl7UUxX7Ae1asmm2DU2yS5IVytIf4cWDIl79Pd78N6btHrT1wcDjvRlm5gUxZ9q47reTW1peWV3Lrxc2Nre2d4q7ew0dJYrQOol4pFoB1pQzSeuGGU5bsaJYBJw2g+HVxG8+UaVZJB/MKKa+wH3JQkawsVLz/jG9PbkZd4slt+xOgRaJl5ESZKh1i1+dXkQSQaUhHGvd9tzY+ClWhhFOx4VOommMyRD3adtSiQXVfjo9d4yOrNJDYaRsSYOm6u+JFAutRyKwnQKbgZ73JuJ/Xjsx4YWfMhknhkoyWxQmHJkITX5HPaYoMXxkCSaK2VsRGWCFibEJFWwI3vzLi6RRKXun5crdWal6mcWRhwM4hGPw4ByqcA01qAOBITzDK7w5sfPivDsfs9ack83swx84nz+5bo8n</latexit>

++

RJ,I
<latexit sha1_base64="K9hITRRCzJH+w0NwgW8nENoftCs=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuhJCl7UUxX7Ae1asmm2DU2yS5IVytIf4cWDIl79Pd78N6btHrT1wcDjvRlm5gUxZ9q47reTW1peWV3Lrxc2Nre2d4q7ew0dJYrQOol4pFoB1pQzSeuGGU5bsaJYBJw2g+HVxG8+UaVZJB/MKKa+wH3JQkawsVLz/jG9PbkZd4slt+xOgRaJl5ESZKh1i1+dXkQSQaUhHGvd9tzY+ClWhhFOx4VOommMyRD3adtSiQXVfjo9d4yOrNJDYaRsSYOm6u+JFAutRyKwnQKbgZ73JuJ/Xjsx4YWfMhknhkoyWxQmHJkITX5HPaYoMXxkCSaK2VsRGWCFibEJFWwI3vzLi6RRKXun5crdWal6mcWRhwM4hGPw4ByqcA01qAOBITzDK7w5sfPivDsfs9ack83swx84nz+5bo8n</latexit>

   ∑
RJ,I

<latexit sha1_base64="K9hITRRCzJH+w0NwgW8nENoftCs=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuhJCl7UUxX7Ae1asmm2DU2yS5IVytIf4cWDIl79Pd78N6btHrT1wcDjvRlm5gUxZ9q47reTW1peWV3Lrxc2Nre2d4q7ew0dJYrQOol4pFoB1pQzSeuGGU5bsaJYBJw2g+HVxG8+UaVZJB/MKKa+wH3JQkawsVLz/jG9PbkZd4slt+xOgRaJl5ESZKh1i1+dXkQSQaUhHGvd9tzY+ClWhhFOx4VOommMyRD3adtSiQXVfjo9d4yOrNJDYaRsSYOm6u+JFAutRyKwnQKbgZ73JuJ/Xjsx4YWfMhknhkoyWxQmHJkITX5HPaYoMXxkCSaK2VsRGWCFibEJFWwI3vzLi6RRKXun5crdWal6mcWRhwM4hGPw4ByqcA01qAOBITzDK7w5sfPivDsfs9ack83swx84nz+5bo8n</latexit>

=

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)

this pattern in Dalitz Plot

  

Dalitz Plot  

ρ(770)
f0(980)

K*(890)

 | M |2  ⇒ resonances

Flat phase space where it is write the dynamics.  

typically amplitudes are bumps (like the Breit-Wigner) 

contribute to a specific partial wave  

4 48. Resonances
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Figure 48.2: Argand plot showing a diagonal element of a partial-wave amplitude, abb, as a function
of energy. The amplitude leaves the unitary circle (solid line) as soon as inelasticity sets in, ÷ < 1
(dashed line).

scalar particles only one may write

Mba(s, t) =
Œÿ

j=0
(2j + 1)Mj

ba(s)Pj(cos(◊)) , (48.6)

where j denotes the total angular momentum. For scalar particles it coincides with the orbital
angular momentum of the particle pairs in the initial and the final state. To simplify notations we
will drop the label j for the single-argument function Mba(s). The unitarity constraint for Mba(s)
reads,

Im Mba =
ÿ

c

Mú
cb flc Mca (48.7)

with flc being a factor that is related to the two-body phase space in Eq. (12) of the review on
“Kinematics”,

flc(s) = (2fi)4

2

⁄
dÕ2 = 1

16fi

2|q̨c|Ô
s

. (48.8)

The partial-wave amplitudes fba(s) are connected to Mba(s) via

fba(s) = Ô
flb Mba(s) Ô

fla . (48.9)

6th December, 2019 11:50am

credit:hyperphysics.phy
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common cartoon to described 3-body decay

7

Ks
<latexit sha1_base64="fnucIWfnCn9YSdQUiMBJOqBvQF0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF8FLBfsBbSib7aZdursJuxOhlP4FLx4U8eof8ua/MWlz0NYHA4/3ZpiZF8RSWHTdb6ewtr6xuVXcLu3s7u0flA+PWjZKDONNFsnIdAJquRSaN1Gg5J3YcKoCydvB+Dbz20/cWBHpR5zE3Fd0qEUoGMVMuu/bUr9ccavuHGSVeDmpQI5Gv/zVG0QsUVwjk9TarufG6E+pQcEkn5V6ieUxZWM65N2Uaqq49afzW2fkLFUGJIxMWhrJXP09MaXK2okK0k5FcWSXvUz8z+smGF77U6HjBLlmi0VhIglGJHucDIThDOUkJZQZkd5K2IgayjCNJwvBW355lbRqVe+iWnu4rNRv8jiKcAKncA4eXEEd7qABTWAwgmd4hTdHOS/Ou/OxaC04+cwx/IHz+QNhpY3N</latexit>

⇡+
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➤ Dalitz plot:  
Technique to analyse three-body decays 

➤ 2 variables are enough to describe the 
phase-space 

➤ Axes are defined as: 

s12 = m2
12 = (p1 + p2)

2

s23 = m2
23 = (p2 + p3)

2

s31 = m2
31 = (p3 + p1)

2

➤ Event distribution is proportional to 
square of the decay amplitude

(g , b)K⇤(892)

K⇤
2 (1430)(c , m)

(r)

(y) 

f0(980)

⇢(770)

mK⇡
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image credit:Tom Latham

one expect to see all 3 channels res:
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FIG. 2: DP distributions for (a) D0 → K0
Sπ

+π− and (b) D0 → K0
SK

+K− data after all selection criteria, in the signal region.
The gray scale indicates the number of events per bin. The solid lines show the kinematic limits of the D0 decay. The s0 DP
variable is defined as s0 = m2(h+h−). For D0 decays the variables s− and s+ are interchanged.
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FIG. 3: DP projections for (a,b,c) D0 → K0
Sπ

+π− and (d,e,f) D0 → K0
SK

+K− data after all selection criteria, in the signal
region (points). The histograms represent the mixing fit projections. For D0 decays the variables s− and s+ are interchanged.

TABLE III: Summary of the contributions to the experimental systematic uncertainty on the mixing parameters.

Source x/10−3 y/10−3

Analysis biases and fitting procedure (Monte Carlo statistics) 0.75 0.66
Selection criteria 0.47 0.57
Signal and background yields 0.11 0.07
Efficiency variations across the DP 0.37 0.18
Modeling of the DP distributions for misreconstructed D0 decays 0.33 0.14
Modeling of the proper-time distributions for signal and misreconstructed D0 decays 0.13 0.13
Modeling of the proper-time error distributions for signal and misreconstructed D0 decays 0.06 0.09
Misidentification of the D0 flavor for signal and random π+

s events 0.49 0.40
Mixing in the random π+

s background component 0.10 0.08
PDF normalization 0.11 0.05
Misalignment of the detector 0.28 0.83
Total experimental systematic uncertainty 1.18 1.30

BABAR Phys.Rev. Lett. 105 (2010) 081803

But in reality…….
not all of them are clearly present

Two-body resonances signature in DP

RJ,I
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=

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)

D0 ! Ks⇡
�⇡+
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8Three-body kinematics : DALITZ plot

D0 ! Ks⇡
�⇡+

18

Are methods used for D decay 
Dalitz plots also valid for B decays?

Same model Same model 

as D decayas D decay

D→K–π+π0 B→K–π+π0

Tim Gershon
Introduction to Dalitz Plot Analysis

D Dalitz plot 
on same scale

Image credit: Brian Meadows credit:Brian Meadows

D0 ! K�⇡+⇡0

Similar final state but different interference pattern

different dynamics to be understood 
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FIG. 2: DP distributions for (a) D0 → K0
Sπ

+π− and (b) D0 → K0
SK

+K− data after all selection criteria, in the signal region.
The gray scale indicates the number of events per bin. The solid lines show the kinematic limits of the D0 decay. The s0 DP
variable is defined as s0 = m2(h+h−). For D0 decays the variables s− and s+ are interchanged.
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FIG. 3: DP projections for (a,b,c) D0 → K0
Sπ

+π− and (d,e,f) D0 → K0
SK

+K− data after all selection criteria, in the signal
region (points). The histograms represent the mixing fit projections. For D0 decays the variables s− and s+ are interchanged.

TABLE III: Summary of the contributions to the experimental systematic uncertainty on the mixing parameters.

Source x/10−3 y/10−3

Analysis biases and fitting procedure (Monte Carlo statistics) 0.75 0.66
Selection criteria 0.47 0.57
Signal and background yields 0.11 0.07
Efficiency variations across the DP 0.37 0.18
Modeling of the DP distributions for misreconstructed D0 decays 0.33 0.14
Modeling of the proper-time distributions for signal and misreconstructed D0 decays 0.13 0.13
Modeling of the proper-time error distributions for signal and misreconstructed D0 decays 0.06 0.09
Misidentification of the D0 flavor for signal and random π+

s events 0.49 0.40
Mixing in the random π+

s background component 0.10 0.08
PDF normalization 0.11 0.05
Misalignment of the detector 0.28 0.83
Total experimental systematic uncertainty 1.18 1.30

to disentangle the interference we need amplitude analysis



16/1/2020 Patricia Magalhães3-body hadronic decay

9

D+
s ! ⇡+⇡�⇡+

⇡�⇡+ ! ⇡�⇡+
<latexit sha1_base64="h1soNZu6bGDYSDKND4KMHtOrxxs=">AAACAXicdVDLSgMxFL3js9bXqCtxEyyCIJZpEXysCm5cVnBsoTOWTJppQzOZIckIZShu/BU3LlTc+hfu/BszbcX3gSQn59xLck+QcKa047xZU9Mzs3PzhYXi4tLyyqq9tn6p4lQS6pKYx7IZYEU5E9TVTHPaTCTFUcBpI+if5n7jmkrFYnGhBwn1I9wVLGQEayO17U0vYVf7+baHPB2jz2vbLjnlqpMD/SaV8uh0SjBBvW2/ep2YpBEVmnCsVKviJNrPsNSMcDoseqmiCSZ93KUtQwWOqPKz0QhDtGOUDgpjaZbQaKR+7chwpNQgCkxlhHVP/fRy8S+vlerwyM+YSFJNBRk/FKYcmVnzPFCHSUo0HxiCiWTmr4j0sMREm9SKJoSPSdH/xK2Wj8vO+UGpdjJJowBbsA27UIFDqMEZ1MEFAjdwBw/waN1a99aT9TwunbImPRvwDdbLO8/VlfE=</latexit><latexit sha1_base64="h1soNZu6bGDYSDKND4KMHtOrxxs=">AAACAXicdVDLSgMxFL3js9bXqCtxEyyCIJZpEXysCm5cVnBsoTOWTJppQzOZIckIZShu/BU3LlTc+hfu/BszbcX3gSQn59xLck+QcKa047xZU9Mzs3PzhYXi4tLyyqq9tn6p4lQS6pKYx7IZYEU5E9TVTHPaTCTFUcBpI+if5n7jmkrFYnGhBwn1I9wVLGQEayO17U0vYVf7+baHPB2jz2vbLjnlqpMD/SaV8uh0SjBBvW2/ep2YpBEVmnCsVKviJNrPsNSMcDoseqmiCSZ93KUtQwWOqPKz0QhDtGOUDgpjaZbQaKR+7chwpNQgCkxlhHVP/fRy8S+vlerwyM+YSFJNBRk/FKYcmVnzPFCHSUo0HxiCiWTmr4j0sMREm9SKJoSPSdH/xK2Wj8vO+UGpdjJJowBbsA27UIFDqMEZ1MEFAjdwBw/waN1a99aT9TwunbImPRvwDdbLO8/VlfE=</latexit><latexit sha1_base64="h1soNZu6bGDYSDKND4KMHtOrxxs=">AAACAXicdVDLSgMxFL3js9bXqCtxEyyCIJZpEXysCm5cVnBsoTOWTJppQzOZIckIZShu/BU3LlTc+hfu/BszbcX3gSQn59xLck+QcKa047xZU9Mzs3PzhYXi4tLyyqq9tn6p4lQS6pKYx7IZYEU5E9TVTHPaTCTFUcBpI+if5n7jmkrFYnGhBwn1I9wVLGQEayO17U0vYVf7+baHPB2jz2vbLjnlqpMD/SaV8uh0SjBBvW2/ep2YpBEVmnCsVKviJNrPsNSMcDoseqmiCSZ93KUtQwWOqPKz0QhDtGOUDgpjaZbQaKR+7chwpNQgCkxlhHVP/fRy8S+vlerwyM+YSFJNBRk/FKYcmVnzPFCHSUo0HxiCiWTmr4j0sMREm9SKJoSPSdH/xK2Wj8vO+UGpdjJJowBbsA27UIFDqMEZ1MEFAjdwBw/waN1a99aT9TwunbImPRvwDdbLO8/VlfE=</latexit> (I=J=0)

2-body x 3-body  phases

++

If this is the “nature” picture

Phys.Rev. D 79 (2009) 032003

scattering

decay

different phases!

decay phase should be the same as scattering 

Is not as simple as it look like!

       3-body data: only spin! and       dynamics6=
2-body amplitude: spin and isospin well defined!

Quantum numbers:

once it only contain 2-body information,
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     hadronize

dynamics   

Three-body heavy meson decay
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To extract  information from data 
we need an amplitude MODEL

F
S
IWA =         *

Final State Interactions - strong -

+=M
F
S
 I

++ ++ ...

+=M
F
S
 I

++ ++ ...

2-body is crucial!!!!

primary vertex - weak -

QCD, CKM coupling and phase

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)dynamics

(2+1)

3-body
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(2+1) 
     approximation: ignore the 3rd particle (bachelor)

isobar model: widely used by experimentalists 

+=M
F
S
 I

++ ++ ... +=M
F
S
 I

++ ++ ...

D
+
! W

+ which, subsequently gives rise to the processes shown in Fig. 3. The correspond-

ing amplitude is proportional to the product of matrix elements h(KKK)+|Aµ
|0ih0|Aµ|M

+
i,

where A
µ is the axial current. The Triple-M is composed by a non-resonant term and two

resonant contributions, associated with the � and the f0. The non-resonant amplitude is

a direct prediction from chiral symmetry and represented by a polynomial, with no free

parameters. It describes a proper three-body interaction, rather than the of 2+1 decom-

position (two-body subsystem+spectator). As this contribution involves no loops, it is real

for theoretical reasons and, therefore, adequate for fixing the overall phase of the Triple-M

amplitude.

The resonant contributions involve expressions which are very di↵erent from the Ak used

in the isobar model amplitude A =
P

ck Ak, but these expressions yield a similar line shape.

However, in the Triple-M, the free coe�cients ck are absent, because the intensity of each

resonance is predicted by the underlying dynamics. In particular, the � contribution is

completely fixed, for its intensity is related directly with the decay width into K̄K. The

case of the f0 is di↵erent, just because one does not have precise values for its mass and

couplings. Therefore, the three parameters in the amplitude, namely mf0 , cd, and cm, are

left to be determined by fits to data. In the K
�
K

+
K

+ final state one can access only the

tail of the f0, and therefore this channel may not be the best one for the determination

of these three parameters. The decay D
+
s ! ⇡

�
⇡
+
⇡
+, where the f0(980) is the dominant

component, would be the most adequate for this measurement. It is worth mentioning a

recent work [21] on this subject, where the f0(980) line shape is obtained in the context of

the Chiral Unitary theory, from a study of D+
s decays into ⇡

�
⇡
+
⇡
+ and K

�
K

+
K

+.

Our study also encompasses other dynamical e↵ects, representing corrections to the in-

termediate K̄K scattering amplitude, which were discussed in section IV and found to be

small. We have left them out of the Triple-M, for the time being, since the ability of the

leading contributions to reproduce data must be tested first. This kind of testing would

provide important indications about the importance of e↵ects which are not included in the

the present version of the Triple-M, such as isospin 1 resonances, as well as dynamical e↵ects

associated with processes other than the annihilation diagram.
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+ NR

Lineshapes

In atomic physics, an unstable state appears as a resonance and near the resonance energy
the scattering amplitude is given by the non-relativistic Breit-Wigner formula, which was
created to describe resonant transitions in capture of slow neutrons. [33]:

f(E) /
1

E � Eo + i�/2
. (94)

This is an approximation valid for narrow and isolated resonances. The relativistic
formulation of the Breit-Wigner formula is written as

1

p2 � m2 + im�
. (95)

Since the Isobar model assumes that one particle is the spectator, the resonance occurs in
a given channel, e.g. s12, and the formula for the Isobar model is:

BW(s12) =
1

m2

R � s12 � imR�(s12)
, (96)

where mR is the mass of the resonances and �(s12) is the mass-dependent width:

�(s12) = �R

✓
q

q0

◆2L+1 mR
p
s12

✓
FL
R (z)

FL
R (z0)

◆2

, (97)

where �R is the resonance width.
Another lineshape commonly used for resonances that couple to di↵erent channels is

the Flatté [38]. This formulation will be used in this work to represent a resonance with
mass close to a threshold, such as an f0(980):

F(s12) =
1

m2

R � s12 � imR(⇢⇡⇡g2⇡ + ⇢KKg2K)
, (98)

where g⇡ and gK are dimensionless coupling constants to the KK̄ and ⇡⇡ channels,
respectively, and ⇢⇡⇡ and ⇢KK are the corresponding phase space factors,

⇢⇡⇡ =

r⇣s12
4

� m2
⇡

⌘
+

r⇣s12
4

� m2

⇡0

⌘
(99)

⇢KK =

r⇣s12
4

� m2

K

⌘
+

r⇣s12
4

� m2

K0

⌘
. (100)

4.3 Fitting procedure

The optimum values of the c0ks parameters are obtained using the Maximum Likelihood
Method, taking in account the e�ciency variation across the Dalitz plot and the background
distribution. The fit is performed in the Rio+ software.

36

non-resonant as constant or exponential!
 each resonance as  Breit-Wigner {

-  sum of BW violates two-body unitarity  ( 2 res in the same channel);  
-  do NOT include rescattering and  coupled-channels;
-  free parameters are not connected with theory !  !

F
S
I

WA =        *

unitary, analytic,…

 worst problems: ππ S-wave

isobar BW

0.6 0.7 0.8 0.9 1 1.1 1.2
s (GeV)

(

)(

*(

+(

,(

(-(

()(

m
od

ul
i

f0(980)
f0(600) Mσ=0.6 Γσ=0.5
both

2

fit could change 
this interference 

more than 2 scalars

Pelaez, Yndurain PRD71(2005) 074016
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movement to use better 2-body (unitarity) inputs in data analysis 

Anisovich PLB653(2007)

“K-matrix" : ππ S-wave 5 coupled-channel modulated by a production amplitude  

used by Babar, LHCb, BES II 

contribution in B± ! ⇡+⇡�⇡±
rescattering ⇡⇡ ! KK

Pelaez, Yndurain PRD71(2005) 074016
[arXiv:1905.09244]

LHCb  
[arXiv:1909.05212;

 1909.05211]

B± ! K�K+⇡±
<latexit sha1_base64="mMSZddFn27wxwpC513G8OSJwjQA=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLIIhlpgp2WXQjdFPBPqAzLZk004ZmMiHJCGXoxl9x40IRt36GO//GTNuFth4IHM65l5tzAsGo0o7zbeVWVtfWN/Kbha3tnd09e/+gqeJEYtLAMYtlO0CKMMpJQ1PNSFtIgqKAkVYwus381iORisb8QY8F8SM04DSkGGkj9eyjm64nIujpGNa6F7XuuSdopvTsolNypoDLxJ2TIpij3rO/vH6Mk4hwjRlSquM6QvspkppiRiYFL1FEIDxCA9IxlKOIKD+dBpjAU6P0YRhL87iGU/X3RooipcZRYCYjpIdq0cvE/7xOosOKn1IuEk04nh0KEwZN3KwN2KeSYM3GhiAsqfkrxEMkEdams4IpwV2MvEya5ZJ7WSrfXxWrlXkdeXAMTsAZcME1qII7UAcNgMEEPINX8GY9WS/Wu/UxG81Z851D8AfW5w/9CZVZ</latexit>

new parametrization Pelaez, and  Rodas  EPJ. C78 (2018)  11, 897 

      other scalar and vector form factors available

< ⇡⇡|0 >
<latexit sha1_base64="gUu68W5qwO70FhPZfBHdBnWtQS8=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUwS5ECm5cVrAP6Awlk2ba0EwmJBmhjP0NNy4UcevPuPNvTNtZaOvhXjiccy+5OaHkTBvX/XYKa+sbm1vF7dLO7t7+QfnwqK2TVBHaIglPVDfEmnImaMsww2lXKorjkNNOOL6d+Z1HqjRLxIOZSBrEeChYxAg2VvKvkS+ZrSfk3vTLFbfqzoFWiZeTCuRo9stf/iAhaUyFIRxr3fNcaYIMK8MIp9OSn2oqMRnjIe1ZKnBMdZDNb56iM6sMUJQo28Kgufp7I8Ox1pM4tJMxNiO97M3E/7xeaqJ6kDEhU0MFWTwUpRyZBM0CQAOmKDF8YgkmitlbERlhhYmxMZVsCN7yl1dJu1b1Lqq1+8tKo57HUYQTOIVz8OAKGnAHTWgBAQnP8ApvTuq8OO/Ox2K04OQ7x/AHzucPodeQvA==</latexit>

< K⇡|0 >
<latexit sha1_base64="fOTlH0biGPa2vQwvTJLeNg/uAVo=">AAAB8nicbVBNSwMxEM36WetX1aOXYBE8ld0q2INIwYvgpYL9gO1Ssmm2Dc0mSzIrlLU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsTwQ247rezsrq2vrFZ2Cpu7+zu7ZcODltGpZqyJlVC6U5IDBNcsiZwEKyTaEbiULB2OLqZ+u1Hpg1X8gHGCQtiMpA84pSAlfwrfIe7CX/C7nWvVHYr7gx4mXg5KaMcjV7pq9tXNI2ZBCqIMb7nJhBkRAOngk2K3dSwhNARGTDfUkliZoJsdvIEn1qljyOlbUnAM/X3REZiY8ZxaDtjAkOz6E3F/zw/hagWZFwmKTBJ54uiVGBQePo/7nPNKIixJYRqbm/FdEg0oWBTKtoQvMWXl0mrWvHOK9X7i3K9lsdRQMfoBJ0hD12iOrpFDdREFCn0jF7RmwPOi/PufMxbV5x85gj9gfP5A0Ppj+g=</latexit>

Moussallam  EPJ C 14, 111 (2000); Daub, Hanhart, and B. Kubis JHEP  02 (2016) 009.scalar
vector Hanhart,  PL B715, 170 (2012); Dumm and Roig EPJ C 73, 2528 (2013).

 Moussallam   EPJ C 53, 401 (2008); Jamin, Oller and Pich, PRD 74, 074009 (2006)

Boito, Escribano, and  Jamin EPJ C 59, 821 (2009).

 Albaladejo and Moussallam EPJ C 75, 488 (2015). 

Bruch,Khodjamirian, and Kühn , EPJ C 39, 41 (2005)

< KK|0 >
<latexit sha1_base64="2LGjA9Rl1OXXWjhlYDhUNwV4dYk=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrtVsAeRghehlwr2Q9qlZNNsG5pklyQrlLW/wosHRbz6c7z5b0zbPWjrg4HHezPMzAtizrRx3W9nZXVtfWMzt5Xf3tnd2y8cHDZ1lChCGyTikWoHWFPOJG0YZjhtx4piEXDaCkY3U7/1SJVmkbw345j6Ag8kCxnBxkoPV6iGak/Ive4Vim7JnQEtEy8jRchQ7xW+uv2IJIJKQzjWuuO5sfFTrAwjnE7y3UTTGJMRHtCOpRILqv10dvAEnVqlj8JI2ZIGzdTfEykWWo9FYDsFNkO96E3F/7xOYsKKnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGeVtCN7iy8ukWS5556Xy3UWxWsniyMExnMAZeHAJVbiFOjSAgIBneIU3RzkvzrvzMW9dcbKZI/gD5/MHkNuO6g==</latexit>

quark model with isospin symmetry 

(no data) extrapolate from unitarity model

scalar
vector

Fit from 3-body data PCM, Robilotta + LHCb JHEP 1904 (2019) 063

Limited to low E (2 GeV)!
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QCD factorization approach  factorize the quark currents

ex: B+ ! ⇡+⇡�⇡+

A ~

8

∑

p=u,c

λp
〈

π−(p1)[π
+(p2)π

−(p3)]D|Tp|B−
〉

= XD u(RDπ
−). (12)

In Eq. (7) the chiral factor rπχ is given by rπχ = 2m2
π/[(mb+mu)(mu+md)],

mu and md being the u and d quark masses, respectively. The long distance
functions XS,P,D and YS,P , evaluated in Appendix A, read

XS ≡
〈

[π+(p2)π
−(p3)]S |(ūb)V−A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= −
√

2

3
χS fπ (M2

B − s23) F
BRS
0 (m2

π) Γ
n∗
1 (s23), (13)

YS ≡
〈

π−(p1)|(d̄b)sc−ps|B−
〉 〈

[π+(p2)π
−(p3)]S |(d̄d)sc+ps|0

〉

=

√

2

3
B0

M2
B −m2

π

mb −md
FBπ
0 (s23) Γ

n∗
1 (s23), (14)

XP ≡
〈

[π+(p2)π
−(p3)]P |(ūb)V −A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= NP
fπ
fRP

(s13 − s12) A
BRP
0 (m2

π) F
ππ
1 (s23), (15)

YP ≡
〈

π−(p1)|(d̄b)V−A|B−
〉 〈

[π+(p2)π
−(p3)]P |(ūu)V−A|0

〉

= (s13 − s12)F
Bπ
1 (s23)F

ππ
1 (s23), (16)

XD ≡
〈

[π+(p2)π
−(p3)]D|(ūb)V−A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= −
fπ√
2
FBRD(m2

π)

√

2

3

Gf2D(s12, s23)

m2
RD

− s23 − imRD
Γ(s23)

, (17)

The different quantities entering the above equations are discussed below.
The S-wave strength parameter χS [Eq. (13)] will be fitted together

with the correction P -wave parameter NP [Eq. (15]. The deviation of NP

from 1 corresponds to the possible variation of the strength of this P -wave
amplitude proportional to fπ/fRP

[compare Eqs. (A.7) and (A.19)].
Three scalar-isoscalar f0 resonances, viz. f0(600), f0(980) and f0(1400),

are present in the ππ effective mass range, mππ, considered here. Since some
of them are wide, like f0(600), one could have a possible RS dependence
in χS. The transition form factor from B to RS , F

BRS
0 (m2

π), could also
depend on mππ. However, one expects these dependences to be weaker
than the effective mass dependence of the pion scalar form factor, Γn∗

1 (s23),
in which all these resonances are incorporated. Therefore we assume that
χS and FBRS

0 (m2
π) are constant. This hypothesis will be assessed by the

quality of the fit obtained with our model. We shall take RS ≡ f0(980) for
the evaluation of FBRS

0 (m2
π) and we use FBRS

0 (m2
π) = 0.13 [19].

8
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In Eq. (7) the chiral factor rπχ is given by rπχ = 2m2
π/[(mb+mu)(mu+md)],

mu and md being the u and d quark masses, respectively. The long distance
functions XS,P,D and YS,P , evaluated in Appendix A, read

XS ≡
〈

[π+(p2)π
−(p3)]S |(ūb)V−A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= −
√

2

3
χS fπ (M2

B − s23) F
BRS
0 (m2

π) Γ
n∗
1 (s23), (13)

YS ≡
〈

π−(p1)|(d̄b)sc−ps|B−
〉 〈

[π+(p2)π
−(p3)]S |(d̄d)sc+ps|0

〉

=

√

2

3
B0

M2
B −m2

π

mb −md
FBπ
0 (s23) Γ

n∗
1 (s23), (14)

XP ≡
〈

[π+(p2)π
−(p3)]P |(ūb)V −A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= NP
fπ
fRP

(s13 − s12) A
BRP
0 (m2

π) F
ππ
1 (s23), (15)

YP ≡
〈

π−(p1)|(d̄b)V−A|B−
〉 〈

[π+(p2)π
−(p3)]P |(ūu)V−A|0

〉

= (s13 − s12)F
Bπ
1 (s23)F

ππ
1 (s23), (16)

XD ≡
〈

[π+(p2)π
−(p3)]D|(ūb)V−A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= −
fπ√
2
FBRD(m2

π)

√

2

3

Gf2D(s12, s23)

m2
RD

− s23 − imRD
Γ(s23)

, (17)

The different quantities entering the above equations are discussed below.
The S-wave strength parameter χS [Eq. (13)] will be fitted together

with the correction P -wave parameter NP [Eq. (15]. The deviation of NP

from 1 corresponds to the possible variation of the strength of this P -wave
amplitude proportional to fπ/fRP

[compare Eqs. (A.7) and (A.19)].
Three scalar-isoscalar f0 resonances, viz. f0(600), f0(980) and f0(1400),

are present in the ππ effective mass range, mππ, considered here. Since some
of them are wide, like f0(600), one could have a possible RS dependence
in χS. The transition form factor from B to RS , F

BRS
0 (m2

π), could also
depend on mππ. However, one expects these dependences to be weaker
than the effective mass dependence of the pion scalar form factor, Γn∗

1 (s23),
in which all these resonances are incorporated. Therefore we assume that
χS and FBRS

0 (m2
π) are constant. This hypothesis will be assessed by the

quality of the fit obtained with our model. We shall take RS ≡ f0(980) for
the evaluation of FBRS

0 (m2
π) and we use FBRS

0 (m2
π) = 0.13 [19].
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- challenging for 3-body 
- not all FSI and 3-body NR
- scale issue with charm  !

F
S
I
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Boito et al. PRD96 113003 (2017)   parametrizations for B and D→3h

naive factorization
R FF

- FSI with scalar and vector form factors FF
- intermediate by a resonance R;

how to describe it?

p2, respectively, can be written as,

⟨M1(p1)M
∗
2 (p2)|Heff |B(pB)⟩ =

GF√
2

VCKM

∑

i

Ci(µ)⟨M1(p1)M
∗
2 (p2)|Oi(µ)|B(pB)⟩ , (1)

where pB = p1 + p2, GF is the Fermi constant, VCKM is a product of Cabibbo-Kobayashi-

Maskawa (CKM) matrix elements, Ci(µ) are Wilson coefficients renormalized at the scale µ [26] and

M∗
2 (p2) is the resonant quasi-two body state which decays into two lighter mesons. The hadronic

amplitude ⟨M1(p1)M∗
2 (p2)|Oi(µ)|B(pB)⟩ describes long-distance physics. In the factorization ap-

proach we henceforth employ, this amplitude is the sum of two matrix-element products,

⟨M1(p1)M
∗
2 (p2)|Oi(µ)|B(pB)⟩ =

(

⟨M1(p1)|Jν
1 |B(pB)⟩⟨M∗

2 (p2)|J2ν |0⟩

+⟨M1(p1)|Jν
3 |0⟩⟨M∗

2 (p2)|J4ν |B(pB)⟩
)

[

1 +
∑

n

rnα
n
s (µ) +O

(

ΛQCD

mb

)

]

, (2)

where the strong coupling is evaluated at a scale µ, rn is a combination of constant strong interaction

factors, and |0⟩ is the vacuum state. Thus, at leading order, the decay amplitudes factorize into

two matrix elements with either the weak quark currents J1 and J2 or J3 and J4. Radiative

corrections can be systematically taken into account to a given order αn
s (µ), whereas corrections to

the heavy-quark limit are of nonperturbative nature and therefore much less controlled. This is in

particular true for the charm quark which is neither a light nor a heavy enough quark [27–30]. This

fact makes the systematic improvements of Eq. (2), enclosed in square brackets, less reliable for D

decays. One should keep this limitation in mind but, for lack of a better theoretical framework, the

phenomenological approach to Eq. (2) remains a good starting point to organize the description of

D decays and can be used to provide a first step beyond the isobar model.

The weak effective Hamiltonian, Heff , in Eq. (1) is given by the sum of local operators Oi(µ)

multiplied by Wilson coefficients Ci(µ) which encode the short-distance effects above the renor-

malization scale µ. For a ∆B = 1 transition, for example, the Hamiltonian is given by [31, 32]

H∆B=1
eff =

GF√
2

∑

p=u,c

V ∗
pqVpb

[

C1(µ)O
p
1(µ) + C2(µ)O

p
2(µ) +

10
∑

i=3

Ci(µ)Oi(µ)

+ C7γ(µ)O7γ(µ) + C8g(µ)O8g(µ)
]

+ h.c. , (3)

where the quark flavor can be q = d, s and Vij are CKM matrix elements. In the decays, the weak

interaction W -boson exchange diagram gives rise to two current-current operators with different

color structure owing to QCD corrections and SU(3) color algebra:

Op
1(µ) = q̄iγ

µ(1− γ5)pi p̄jγµ(1− γ5)bj (4)

Op
2(µ) = q̄iγ

µ(1− γ5)pj p̄jγµ(1− γ5)bi . (5)
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5

Chau [Phys. Rep. 95,1(1983)] +

 

Klein, Mannel, Virto, Keri Vos JHEP10 117 (2017)
modern QDC factorization: improvement to include “long distance”  still developing 



16/1/2020 Patricia Magalhães3-body hadronic decay

14QCD factorisation

QCDF  predictions 

good agreement for Br

F
S
I

WA =        *

Branching fractions (tree-dominated decays) [MB, Huber, Li, 2009]

Theory I Theory II Experiment

B
� ! ⇡�⇡0 5.43 +0.06 +1.45

�0.06 �0.84 (?) 5.82 +0.07 +1.42
�0.06 �1.35 (?) 5.59+0.41

�0.40
B̄

0
d
! ⇡+⇡� 7.37 +0.86 +1.22

�0.69 �0.97 (?) 5.70 +0.70 +1.16
�0.55 �0.97 (?) 5.16 ± 0.22

B̄
0
d
! ⇡0⇡0 0.33 +0.11 +0.42

�0.08 �0.17 0.63 +0.12 +0.64
�0.10 �0.42 1.55 ± 0.19

BELLE CKM 14: 0.90 ± 0.16

B
� ! ⇡�⇢0 8.68 +0.42 +2.71

�0.41 �1.56 (??) 9.84 +0.41 +2.54
�0.40 �2.52 (??) 8.3+1.2

�1.3
B
� ! ⇡0⇢� 12.38 +0.90 +2.18

�0.77 �1.41 (?) 12.13 +0.85 +2.23
�0.73 �2.17 (?) 10.9+1.4

�1.5
B̄

0 ! ⇡+⇢� 17.80 +0.62 +1.76
�0.56 �2.10 (?) 13.76 +0.49 +1.77

�0.44 �2.18 (?) 15.7 ± 1.8

B̄
0 ! ⇡�⇢+ 10.28 +0.39 +1.37

�0.39 �1.42 (??) 8.14 +0.34 +1.35
�0.33 �1.49 (??) 7.3 ± 1.2

B̄
0 ! ⇡±⇢⌥ 28.08 +0.27 +3.82

�0.19 �3.50 (†) 21.90 +0.20 +3.06
�0.12 �3.55 (†) 23.0 ± 2.3

B̄
0 ! ⇡0⇢0 0.52 +0.04 +1.11

�0.03 �0.43 1.49 +0.07 +1.77
�0.07 �1.29 2.0 ± 0.5

B
� ! ⇢�

L
⇢0

L
18.42+0.23

�0.21
+3.92
�2.55 (??) 19.06+0.24

�0.22
+4.59
�4.22 (??) 22.8+1.8

�1.9
B̄

0
d
! ⇢+

L
⇢�

L
25.98+0.85

�0.77
+2.93
�3.43 (??) 20.66+0.68

�0.62
+2.99
�3.75 (??) 23.7+3.1

�3.2
B̄

0
d
! ⇢0

L
⇢0

L
0.39+0.03

�0.03
+0.83
�0.36 1.05+0.05

�0.04
+1.62
�1.04 0.55+0.22

�0.24

Theory I: f
B⇡
+ (0) = 0.25 ± 0.05, A

B⇢
0 (0) = 0.30 ± 0.05,�B(1 GeV) = 0.35 ± 0.15 GeV

Theory II: f
B⇡
+ (0) = 0.23 ± 0.03, A

B⇢
0 (0) = 0.28 ± 0.03,�B(1 GeV) = 0.20+0.05

�0.00 GeV

First error �, |Vcb|. |Vub| uncertainty not included. Second error from hadronic inputs.
Brackets: form factor uncertainty not included.

M. Beneke (TU München), QCDF phenomenology Bad Honnef, February 12, 2016 8

Direct CP asymmetries

M. Beneke (TU München), QCDF phenomenology Bad Honnef, February 12, 2016 24

Direct CP asymmetries

M. Beneke (TU München), QCDF phenomenology Bad Honnef, February 12, 2016 23

Direct CP asymmetries

M. Beneke (TU München), QCDF phenomenology Bad Honnef, February 12, 2016 24

Branching Fraction (tree dominated decays)

not good agreement for Acp

 Acp (penguin dominante decays)

Beneke Seminar at “Future Challenges in 
Non-Leptonic B Decays”, Bad Honnef, 2016 



16/1/2020 Patricia Magalhães3-body hadronic decay

15Models available
Three-body FSI
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shown to be relevant on charm sector
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Decay projected in one pair mass

Scattering 

MK⇡(GeV )
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<latexit sha1_base64="jIRE4d7f9YTNOpHo365eHI4ygXM=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoRfASwTwkWcLsZDYZMo9lZlYIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSjgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNCrVhDaI4kq3I2woZ5I2LLOcthNNsYg4bUWjm6nfeqLaMCUf7DihocADyWJGsHXSo+lld92ETVCvVPYr/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2cETdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZp+j/pMU2L52BFMNHO3IjLEGhPrMiq6EILFl5dJs1oJzivV+4ty7TqPowDHcAJnEMAl1OAW6tAAAgKe4RXePO29eO/ex7x1xctnjuAPvM8flJqQQg==</latexit>
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(beyond 2+1)

(2-body phase)

(3)

PRD92 094005 (2015)

 Niecknig, Kubis, JHEP10 142 (2015) 

3-body approaches
PCM et.al: PRD84 094001 (2011),
S.Nakamura PRD93 014005 (2016)

3-body FSI play a role

data analysis…
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Final State Interaction in B decays as a source of CP violation
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18CPV on data: Puzzle!

�(M ! f)� �(M̄ ! f̄) = |hf |T |Mi|2 � |hf̄ |T | M̄i|2 = �4A1A2 sin(�1 � �2) sin(�1 � �2)∴

 Charge Parity Violation �(M ! f) 6= �(M̄ ! f̄)

12

CP violation in decay, which is 
how this process is known, is of 
the type of direct CP violation.

The first observations of  
CP violation in decay were  
on two-body decays:

B0
(s) ! K±⇡⌥

penguin 
diagram

The diagrams above provide 
the difference in strong and 
weak phases. The results are

ACP (B
0
s ! K�⇡+)=(27± 4)%

ACP (B
0 ! K�⇡+)=(8.0± 0.8)%

B0

B0
s B

0
s

B
0

hf |T |Mi = A1 e
i(�1+�1) +A2 e

i(�2+�2)

hf̄ |T | M̄i = A1 e
i(�1��1) +A2 e

i(�2��2)

CP

  2     amplitudes, SAME final state with strong (   ) and weak (   ) phase�i�i6=

condition to CPV

CP violation for charged B decays

➤ Two amplitudes with different weak (φ) and strong (δ) phases

6

q

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2)

|AB→f |2 − |AB̄→f̄ |2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

➤ CP violation: interfering amplitudes with different weak and strong phases

φ1
φ2

➤ Weak phases: CKM matrix elements 

➤ Strong phases: penguin diagrams and hadronic final state interactions such as 
ππ → KK rescattering 
Not well described in literature

B → ! ! !

CP violation for charged B decays

➤ Two amplitudes with different weak (φ) and strong (δ) phases

6

q

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2)

|AB→f |2 − |AB̄→f̄ |2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

➤ CP violation: interfering amplitudes with different weak and strong phases

φ1
φ2

➤ Weak phases: CKM matrix elements 

➤ Strong phases: penguin diagrams and hadronic final state interactions such as 
ππ → KK rescattering 
Not well described in literature

B → ! ! !
weak phase: CKM

Vub

BSS model
strong phase

+

Bander Silverman & Soni PRL 43 (1979) 242
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19CPV on data: Puzzle!

not enough!!

BSS model +
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Figure 30: AN

CP
in Dalitz plot bins with equal number of events (sWeighted background

subtracted and acceptance corrected) for B
± ! K

±
⇡
+
⇡
� (top left), B± ! K

±
K

+
K

�

(top right), B± ! ⇡
±
⇡
+
⇡
� (bottom left) and B

± ! ⇡
±
K

+
K

� (bottom right).

is located mainly in the low mass region of m⇡⇡ < 1.5GeV/c2, where a clear interference1017

structure appears in the B
+-B� distribution.1018

10.1.2 B
± ! K

±
K

+
K

�
1019

The projections of the B± ! K
±
K

+
K

� Dalitz plot are shown in Figure 34. We can identify1020

in mK+K� low the narrow vector resonances: �(1020) as the first bump around 1GeV/c21021

and �c0(1P ) in the region around 3.4GeV/c2. The resonances in the mK+K� high projection1022

are covered by the � distribution along this axis. There is also a broad concentration at low1023

mass above 2.0GeV2
/c

4, which could correspond to the f2(1525) resonance. Also visible1024

only in the B
± ! K

±
K

+
K

� Dalitz plot (Figure 28) is the contribution of B± ! J/ K
±

1025

with J/ ! K
+
K

�, around 9.6GeV2
/c

4 in m
2
K+K� low. Table 31 shows the Particle Data1026

Group list of measured branching fractions for B± ! K
±
K

+
K

�.1027

The mass projections reveal a clear signature of CP asymmetry, with a large excess of1028

B
+ events for mK+K� low < 1.6GeV/c2 and m

2
K+K� high between 2.4GeV/c2 and 4.0GeV/c2.1029

Figure 35 is a zoom in the mK+K� low region of high asymmetry, that includes the �(1020).1030

68

Kππ KKK

KKππππ

middle looks “empty"
CPV

massive localized Acp

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2016-176
LHCb-PAPER-2016-022

July 20, 2016

Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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B± ! h±h�h+
ACP =

�(M ! f)� �(M̄ ! f̄)

�(M ! f) + �(M̄ ! f̄)
suggest dynamic effect

low-energy CPV with opposite signs  
Frederico, Bediaga, Lourenço 

PRD89(2014)094013 ⇡⇡ ! KK

and B± ! h±K�K+
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CPT Invariance
CPT invariance  ⇒ Same lifetime and same mass to particle and anti-particle. 
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CPV on data
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Figure 30: AN

CP
in Dalitz plot bins with equal number of events (sWeighted background

subtracted and acceptance corrected) for B
± ! K

±
⇡
+
⇡
� (top left), B± ! K

±
K

+
K

�

(top right), B± ! ⇡
±
⇡
+
⇡
� (bottom left) and B

± ! ⇡
±
K

+
K

� (bottom right).

is located mainly in the low mass region of m⇡⇡ < 1.5GeV/c2, where a clear interference1017

structure appears in the B
+-B� distribution.1018

10.1.2 B
± ! K

±
K

+
K

�
1019

The projections of the B± ! K
±
K

+
K

� Dalitz plot are shown in Figure 34. We can identify1020

in mK+K� low the narrow vector resonances: �(1020) as the first bump around 1GeV/c21021

and �c0(1P ) in the region around 3.4GeV/c2. The resonances in the mK+K� high projection1022

are covered by the � distribution along this axis. There is also a broad concentration at low1023

mass above 2.0GeV2
/c

4, which could correspond to the f2(1525) resonance. Also visible1024

only in the B
± ! K

±
K

+
K

� Dalitz plot (Figure 28) is the contribution of B± ! J/ K
±

1025

with J/ ! K
+
K

�, around 9.6GeV2
/c

4 in m
2
K+K� low. Table 31 shows the Particle Data1026

Group list of measured branching fractions for B± ! K
±
K

+
K

�.1027

The mass projections reveal a clear signature of CP asymmetry, with a large excess of1028

B
+ events for mK+K� low < 1.6GeV/c2 and m

2
K+K� high between 2.4GeV/c2 and 4.0GeV/c2.1029

Figure 35 is a zoom in the mK+K� low region of high asymmetry, that includes the �(1020).1030

68
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scattering data  S-Wave

elasticity

one minus the probability of losing signal (1==elastic)

Pelaez, Yndurain PRD71(2011) 074016⇡⇡
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elasticity:

Phase-shift

sets of phase shifts for the S0 wave, leaving only a few
solutions which are consistent with dispersion relations
(and, as it turns out, very similar one to the other, as
discussed in Sec. IV).

When dealing with different data sets one has to weigh
not only the data on a single experiment but one has to take
into account the reliability of the experiments themselves.
So we have done for many waves, where some clearly
faulty experimental data have only been considered to
conservatively enlarge the uncertainties. Concerning the
most controversial S0 wave, we have used the very reliable
data coming from Kl4 and K ! !! decays; to this we add
the results from other experimental analyses of !! scat-
tering available in the literature, either separately or com-
bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 ! 0:95 GeV and a bit less so
( & 1:5" level) in the whole energy range, 2M! " s1=2 "
1:42 GeV, and even below threshold, down to s1=2 #
!!!

2
p
M!. The greater uncertainties affect the S0 wave for

s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s$ u crossing
(by checking the dispersion relations), also verify s$ t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities %a&0'0 $ a&2'0 (2 and
#&0'
0 &m2

K' $ #&2'
0 &m2

K' for which we find

%a&0'0 $ a&2'0 (2 # &0:077 ) 0:008'M$2
! ;

#&0'
0 &m2

K' $ #&2'0 &m2
K' # 52:9 ) 1:6o:

Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our !! amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is

devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above !1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF&I', f&I'l ; we will specify the channel, F&Is', when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F&It'.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F&Is'&s; t' # 2 *
X

l#even

&2l + 1'Pl&cos$'f&Is'l &s'; Is # even;

F&Is'&s; t' # 2 *
X

l#odd

&2l + 1'Pl&cos$'f&Is'l &s'; Is# odd;

f&I'l &s' # 2s1=2

!k
f̂&I'l ; f̂&I'l # sin#&I'l &s'ei#&I'l &s': (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l&s' #
"
%le2i#l $ 1

2i

#

: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I # 0; 2 and odd waves must necessarily have
isospin I # 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f&1'1 , f&1'3 . Another convenient simplification that we use
here is to denote the!! partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity %l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of #l and %l by

"el
l # 1

2

$
1 + %2

l

2
$ % cos2#l

%

; "inel
l # 1$ %2

l

4
;

(1.2)

"el
l ;"

inel
l are defined so that, for collision of particles A, B

(assumed distinguishable),

"tot #
4!2

&1=2&s;mA;mB'
2s1=2

!k

X

l

&2l + 1'%"el
l + "inel

l (:

(1.3)

When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M! # m!) ’
139:57 MeV. We also define scattering lengths, a&I'l , and
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sets of phase shifts for the S0 wave, leaving only a few
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(and, as it turns out, very similar one to the other, as
discussed in Sec. IV).

When dealing with different data sets one has to weigh
not only the data on a single experiment but one has to take
into account the reliability of the experiments themselves.
So we have done for many waves, where some clearly
faulty experimental data have only been considered to
conservatively enlarge the uncertainties. Concerning the
most controversial S0 wave, we have used the very reliable
data coming from Kl4 and K ! !! decays; to this we add
the results from other experimental analyses of !! scat-
tering available in the literature, either separately or com-
bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 ! 0:95 GeV and a bit less so
( & 1:5" level) in the whole energy range, 2M! " s1=2 "
1:42 GeV, and even below threshold, down to s1=2 #
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s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s$ u crossing
(by checking the dispersion relations), also verify s$ t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities %a&0'0 $ a&2'0 (2 and
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K' for which we find
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Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our !! amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is

devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above !1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF&I', f&I'l ; we will specify the channel, F&Is', when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F&It'.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F&Is'&s; t' # 2 *
X

l#even

&2l + 1'Pl&cos$'f&Is'l &s'; Is # even;

F&Is'&s; t' # 2 *
X

l#odd

&2l + 1'Pl&cos$'f&Is'l &s'; Is# odd;

f&I'l &s' # 2s1=2
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f̂&I'l ; f̂&I'l # sin#&I'l &s'ei#&I'l &s': (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l&s' #
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%le2i#l $ 1

2i
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: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I # 0; 2 and odd waves must necessarily have
isospin I # 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f&1'1 , f&1'3 . Another convenient simplification that we use
here is to denote the!! partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity %l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of #l and %l by

"el
l # 1

2

$
1 + %2

l

2
$ % cos2#l

%

; "inel
l # 1$ %2

l

4
;

(1.2)

"el
l ;"
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l are defined so that, for collision of particles A, B

(assumed distinguishable),
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4!2

&1=2&s;mA;mB'
2s1=2
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X
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&2l + 1'%"el
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l (:

(1.3)

When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M! # m!) ’
139:57 MeV. We also define scattering lengths, a&I'l , and
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(a) (b)

(c) (d)

Figure 6: Fit projections of each model (a) in the low mlow region and (b) in the full range
of mhigh, with the corresponding asymmetries shown beneath in (c) and (d). The normalised
residual or pull distribution, defined as the di↵erence between the bin value less the fit value
over the uncertainty on the number of events in that bin, is shown below each fit projection.

indeed this occurs in B+! ⇡+⇡+⇡� decays. The CP asymmetry integrated across the
Dalitz plot is consistent, in all three models, with the value previously determined through
model-independent analysis [12].

7.3 S-wave projections

The squared amplitude and phase motion of the S-wave models as a function of m(⇡+⇡�)
can be seen in Fig. 13(a) and (b) for the isobar approach, Fig. 13(c) and (d) for the
K-matrix approach and Fig. 13(e) and (f) for the QMI approach. A comparison of all
three models, for the CP -averaged S-wave projections, can be seen in Fig. 14. The QMI
S-wave is recorded in Table 18, while the statistical and systematic correlation matrices

28

Table 1: Results for CP -conserving fit fractions, quasi-two-body CP asymmetries, and phases
for each component relative to the ⇢(770)0–!(782) model, given for each S-wave approach. The
first uncertainty is statistical while the second is systematic.

Contribution Fit fraction (10�2) ACP (10�2) B+ phase (�) B� phase (�)

Isobar model

⇢(770)0 55.5 ± 0.6 ± 2.5 +0.7± 1.1± 1.6 — —

!(782) 0.50± 0.03± 0.05 �4.8± 6.5± 3.8 �19± 6± 1 +8± 6± 1

f2(1270) 9.0 ± 0.3 ± 1.5 +46.8± 6.1± 4.7 +5± 3± 12 +53± 2± 12

⇢(1450)0 5.2 ± 0.3 ± 1.9 �12.9± 3.3± 35.9 +127± 4± 21 +154± 4± 6

⇢3(1690)0 0.5 ± 0.1 ± 0.3 �80.1± 11.4± 25.3 �26± 7± 14 �47± 18± 25

S-wave 25.4 ± 0.5 ± 3.6 +14.4± 1.8± 2.1 — —

Rescattering 1.4 ± 0.1 ± 0.5 +44.7± 8.6± 17.3 �35± 6± 10 �4± 4± 25

� 25.2 ± 0.5 ± 5.0 +16.0± 1.7± 2.2 +115± 2± 14 +179± 1± 95

K-matrix

⇢(770)0 56.5 ± 0.7 ± 3.4 +4.2± 1.5± 6.4 — —

!(782) 0.47± 0.04± 0.03 �6.2± 8.4± 9.8 �15± 6± 4 +8± 7± 4

f2(1270) 9.3 ± 0.4 ± 2.5 +42.8± 4.1± 9.1 +19± 4± 18 +80± 3± 17

⇢(1450)0 10.5 ± 0.7 ± 4.6 +9.0± 6.0± 47.0 +155± 5± 29 �166± 4± 51

⇢3(1690)0 1.5 ± 0.1 ± 0.4 �35.7± 10.8± 36.9 +19± 8± 34 +5± 8± 46

S-wave 25.7 ± 0.6 ± 3.0 +15.8± 2.6± 7.2 — —

QMI

⇢(770)0 54.8 ± 1.0 ± 2.2 +4.4± 1.7± 2.8 — —

!(782) 0.57± 0.10± 0.17 �7.9± 16.5± 15.8 �25± 6± 27 �2± 7± 11

f2(1270) 9.6 ± 0.4 ± 4.0 +37.6± 4.4± 8.0 +13± 5± 21 +68± 3± 66

⇢(1450)0 7.4 ± 0.5 ± 4.0 �15.5± 7.3± 35.2 +147± 7± 152 �175± 5± 171

⇢3(1690)0 1.0 ± 0.1 ± 0.5 �93.2± 6.8± 38.9 +8± 10± 24 +36± 26± 46

S-wave 26.8 ± 0.7 ± 2.2 +15.0± 2.7± 8.1 — —

of the behaviour of the S-wave, given in Ref. [29], shows that this CP asymmetry remains
approximately constant up to the inelastic threshold 2mK , where it appears to change
sign; this is seen in all three approaches to the S-wave description. Estimates of the
significance of this CP -violation e↵ect, obtained from the change in negative log-likelihood
between the baseline fit for each S-wave approach and alternative fits where no such CP
violation is allowed, give values in excess of ten Gaussian standard deviations (�) in all
the S-wave models.

An additional source of CP violation, associated principally with the interference
between S- and P-waves, is clearly visible when inspecting the cos ✓hel distributions
separately in regions above and below the ⇢(770)0 peak (Fig. 3(a) and (b)). Here, ✓hel is
the angle, evaluated in the ⇡+⇡� rest frame, between the pion with opposite charge to
the B and the third pion from the B decay. These asymmetries are modelled well in all
three approaches to the S-wave description. Evaluation of the significance of CP violation
in the interference between S- and P-waves gives values in excess of 25� in all the S-wave
models.

At higher m(⇡+⇡�) values, the f2(1270) component is found to have a CP -averaged
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c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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Table 1: Results of the Dalitz plot fit, where the first uncertainty is statistical and the second
systematic. The fitted values of ci (c̄i) are expressed in terms of magnitudes |ci| (|c̄i|) and phases
arg(ci) (arg(c̄i)) for each B+ (B�) contribution. The top row corresponds to B+ and the bottom
to B� mesons.

Contribution Fit Fraction(%) ACP (%) Magnitude (B+/B�) Phase[o] (B+/B�)
K⇤(892)0 7.5± 0.6± 0.5 +12.3± 8.7± 4.5 0.94± 0.04± 0.02 0 (fixed)

1.06± 0.04± 0.02 0 (fixed)
K⇤

0(1430)
0 4.5± 0.7± 1.2 +10.4± 14.9± 8.8 0.74± 0.09± 0.09 �176± 10± 16

0.82± 0.09± 0.10 136± 11± 21
Single pole 32.3± 1.5± 4.1 �10.7± 5.3± 3.5 2.19± 0.13± 0.17 �138± 7± 5

1.97± 0.12± 0.20 166± 6± 5
⇢(1450)0 30.7± 1.2± 0.9 �10.9± 4.4± 2.4 2.14± 0.11± 0.07 �175± 10± 15

1.92± 0.10± 0.07 140± 13± 20
f2(1270) 7.5± 0.8± 0.7 +26.7± 10.2± 4.8 0.86± 0.09± 0.07 �106± 11± 10

1.13± 0.08± 0.05 �128± 11± 14
Rescattering 16.4± 0.8± 1.0 �66.4± 3.8± 1.9 1.91± 0.09± 0.06 �56± 12± 18

0.86± 0.07± 0.04 �81± 14± 15
�(1020) 0.3± 0.1± 0.1 +9.8± 43.6± 26.6 0.20± 0.07± 0.02 �52± 23± 32

0.22± 0.06± 0.04 107± 33± 41
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Figure 2: Distribution of m2
⇡±K⌥ . Data are represented by points for B+ and B� candidates

separately, with the result of the fit overlaid.
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Fig. 2. Left diagram: Penguin for B+ ! K�K+K+. Right diagram: double charm
partonic loop contribution to B+ ! K�K+K+.

We considered the charm penguins contributions as represented in the dia-
gram of Fig. 2. However, is very hard to precise which are the charm mass
propagating inside the loop and how does hadronization a↵ect this picture. To
guide our calculation one follows the structure (recipe) proposed by Mannel
at al. ?? to describe the center region of the Dalitz plot for B+ ! ⇡�⇡+⇡+.
The authors propose a functional form of this form factor to be:

Ap(s) = T (s)(M2
B
� s)f+(s) (1)

where f+(q2) is the B ! K vector form factor, which can assume the single
pole parametrization:

f+(s) =
1

1� s/M⇤2
Bs

(2)

for M⇤
Bs

the mass of a vector meson B⇤
s
. One identify the kernel T as the charm

bubble loop contribution. This amplitude was also calculated by Gerard and
Hu (1991)[?] and gave a simple amplitude, with a real and imaginary part
given by:
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where x = q2/m2. This is exactly the bubble loop function we know very
well, but considering a double charm propagation. The real and imaginary
distribution are shown in the Figure below for the case of m = 1.864 which is
the D0 mass:
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FIG. 3: Leading vector current contribution, dressed by form factors and ππ interactions (in the

small green blob).

by A0 the amplitude for the process D+ → K0π0π+ without FSIs and by TKπ that for

π0K̄0 → π+K−, the amplitude A1 of Fig.3 can be schematically written as

A1 = −i

∫

d4ℓ

(2π)4
T S
Kπ ∆π ∆K A0 , (1)

where ℓ is the loop variable, ∆π and ∆K are pion and kaon propagators and A0 is the tree

level amplitude, given by

A0 = −
1√
2
[GF cos2 θC ] ⟨ π+ π0|Vµ|0 ⟩ ⟨ K̄0|V µ|D+ ⟩ , (2)

derived in App.B, eq(B17). The matrix element ⟨ K̄0|V µ|D+ ⟩ describes the D → WK̄

vertex, eq.(B13), including D∗

s intermediate states [25], and corresponds to form factors

parametrized in terms of vector and scalar nearest poles, eq.(B14). The factor ⟨ π+ π0|Vµ|0 ⟩

is associated with the process W → ππ, shown in Fig.4, and includes the ρ with a dynamical

width, eq(B10). The bare resonance is treated by employing the formalism developed in

Ref.[21] and its width is constructed using the P -wave elastic ππ amplitude.

The W → ππ form factor is time-like and its inclusion into the vector series of Fig.2 can,

in principle, give rise to final state interactions depending on both ππ and Kπ amplitudes.

With the purpose of keeping complications to a minimum, we consider just ππ interactions

that occur before the first Kπ scattering.

The evaluation of Fig.3 requires the Kπ amplitude in the interval 0.401GeV2 ≤ s ≤

2.993GeV2. As LASS data[1] begins only at s = 0.681GeV2, one covers the low-energy

region by means of theoretical amplitudes, based on unitarized chiral symmetry[21]. Our

intermediate S-wave Kπ amplitude, denoted by T S
Kπ, is thoroughly discussed in App.C.

5

B+ ! ⇡+⇡�⇡+ D+ ! ⇡+K�⇡+

 PRD 92  094005 (2015) [arXiv:1504.06346]
PCM et al

 PRD 84 094001 (2011 ) [arXiv:1105.5120]

PCM & M Robilotta

~1%          1000 x Br [B ! DD⇤
s ] Br [B ! KKK]

scattering amplitudeD0D̄0 ! K+K�

phenomenological:

weak transition   B+ ! W+D̄0 form factor to regulateC0 ⇥

form factor for W+ ! D0K+

S- matrix unitarity + Regge theory
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Figure 3: Distribution of events for the signal region 6.2 < m(K+K�⇡+) < 6.35GeV/c2 in the
m2(K�⇡+) vs. m2(K+K�) plane for (left) OBDT > 0.12 and (right) OBDT > 0.18. The vertical
red dashed lines represent a band of width ±60MeV/c2 around the �c0 mass. The horizontal blue
dot-dashed line indicates the upper bound of the annihilation region at m(K�⇡+) = 1.834GeV/c2,
representing 17% of the available phase space area.

since no peak is seen in m(K+K�⇡+) at the B+
c mass [9].

To determine the B+
c ! �c0(! K+K�)⇡+ signal yield, the two-dimensional

m(K+K�⇡+) vs. m(K+K�) distributions are fitted simultaneously for the three BDT
bins. The m(K+K�⇡+) distribution is modelled in the same way as described above. The
m(K+K�) distribution, defined in the range 3.20 < m(K+K�) < 3.55GeV/c2, is modelled
with a Breit–Wigner function, with mean and width fixed to their known values [23],
convolved with a Gaussian resolution function, representing the �c0 ! K+K� shape, and
a first-order polynomial representing K+K� background. Figure 4 shows the projections
of the fit result. The yield obtained is N�c0 = 20.8+7.2

�6.4, with a statistical significance of
4.1 �. The fits for the D0 and B0

s regions, where no signal is observed, can be found at
Ref. [9].

The e�ciencies for the signals, ✏c, and normalization channel, ✏u, are inferred from
simulated samples and are corrected using data-driven methods as described in Ref. [20].
They include the e↵ects of reconstruction, selection and detector acceptance. An e�ciency
map defined in the m2(K�⇡+) vs. m2(K+K�) plane is computed. The e�ciency for the
annihilation region is estimated in two ways: first, by taking the simple average e�ciency
from the map for m(K�⇡+) < 1.834GeV/c2 and alternatively, by taking the e�ciency
weighted according to the sparse distribution of candidates in data in the m2(K�⇡+)
vs. m2(K+K�) plane. The average of the two values is taken as the e�ciency and the
di↵erence is treated as a systematic uncertainty (labelled as “event distribution” in Table
1) reflecting the limited knowledge of the distribution of the signal events due to low
statistics. A correction accounting for the vetoed m(K+K�) regions described above is
included. In the calculation of the observable Rf the e�ciency ratio ✏u/✏c is required.
The values obtained are 1.698± 0.015 for the annihilation region and 1.241± 0.012 for
the B+

c ! �c0(K+K�)⇡+ mode. The uncertainties are due to the limited sizes of the
simulated samples. The di↵erences between the B+ and B+

c e�ciencies are caused by the

4

charm rescattering can be the dominant mechanism

Charm rescattering  
I. Bediaga, PCM, T Frederico

PLB 785 (2018) 581
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LHCb run 2 to confirm

 real data: interference between ≠ triangles & NR sources & resonances

canNOT change the signature of a minima between the bumps and phases! 

If direct  production (annihilation)      expect resonances in KK and Kπ channels
not observed

main mechanism to produce this final state0
D

D 0

D

(p  ) 1

(p  ) 2

(p  ) 3

B
+
c

K

K

π

*+

+

 +

 −

B+
c ! K�K+⇡+

Triangle hadronic loop with charm  FSI play an important role!

B± ! K+K�K+

(p  ) 3

B
+

(p  ) 1

K
+ (p  ) 2

0
D

D 0

D
*0

Κ
 +

Κ
 −

s mechanism to produce 
CP asymmetry at high mass 
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34final remarks

superposition of resonant and non-resonant at low and high energy

FSI are important and play a major role in hadronic 3-body decays! 

Lots of theoretical limitations to be developed:
need to merge the short and long distance descriptions! 

extend the meson-meson interaction to high E, …

Charm rescattering is under intense investigation : CPV on B, 
exotics, anomalies, …… 

Successful examples of cooperation between theory and experiment !!! 

Important tool !

Thank you very much!

image credit: unknown
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not well understand on literature

 important  as FSI in B two-body decays 

Donoghue et al., PRL 77(1996)2178;  
Suzuki,Wolfenstein, PRD 60 (1999)074019; 
 Falk et al. PRD 57,4290(1998); 
Blok, Gronau, Rosner, PRL 78, 3999 (1997).  

36scattering amplitudeD0D̄0 ! K+K�

phenomenological amplitude

unitarity of the S-matrix

inspired in the damping factor of the S matrix i.e. ⇡⇡ ! KK

S-matrix LL-HH

1 The amplitude

We can parametrize the S-matrix writing the modulus as

M =

(

cos θ sin θ
− sin θ cos θ

)

(1)

what guarantees unitarity and the phase as

P =

(

eiα 0
0 eiβ

)

(2)

The S-matrix is obtained by

S = P ·M · P =

(

cos θ e2iα sin θ ei(α+β)

− sin θ ei(α+β) cos θ e2iβ

)

(3)

Writing cos θ = η we have that cos θ = η =
√
1− sin2 θ, so sin θ =

√
1− η2, and we can

write a more familiar form of the parametrization

S =

(

η e2iα
√
1− η2 ei(α+β)

−
√
1− η2 ei(α+β) η e2iβ

)

(4)

where η is interpreted as an inelasticity parameter.
Now let us define the following for the S-matrix modulus

η = sin θ = Si = N
√

s/sth − 1/(s/sth)
α (5)

and for the phases

e2iα = Sp = 1− 2ik1
c

1−k1/k0
+ ik1

(6)

and

e2iβ = Sd = 1− 2ik
1
a + ik

(7)

where k =
√

s−sth
4 , k1 =

√

s−sth1
4 and k0 =

√

s0−sth
4 .

Now the matrix for the modulus becomes

1

M =

⎛

⎝

√

1− S2
i Si

−Si

√

1− S2
i

⎞

⎠ (8)

and

P =

(
√

Sp 0

0
√
Sd

)

(9)

and we get for the S-matrix

S = P ·M · P =

⎛

⎝

√

1− S2
i Sp Si

√

Sp Sd

−Si

√

Sp Sd

√

1− S2
i Sd

⎞

⎠ (10)

This allows us to write the t-matrix using Sβ,α = δβ,α+ itβ,α, where tβ,α =
√
1− η2ei(α+β),

or for the case of (10)

td,i = −iSi

√

Sp Sd (11)

2

M =

⎛

⎝

√

1− S2
i Si

−Si

√

1− S2
i

⎞

⎠ (8)

and

P =

(
√

Sp 0

0
√
Sd

)

(9)

and we get for the S-matrix

S = P ·M · P =

⎛

⎝

√

1− S2
i Sp Si

√

Sp Sd

−Si

√

Sp Sd

√

1− S2
i Sd

⎞

⎠ (10)

This allows us to write the t-matrix using Sβ,α = δβ,α+ itβ,α, where tβ,α =
√
1− η2ei(α+β),

or for the case of (10)

td,i = −iSi

√

Sp Sd (11)

2

⌘ = N
p

s/sth � 1/(s/sth)
2.5

e2i↵ = 1� 2ik1
c

1�k1/k0
+ ik1

e2i� = 1� 2ik
1
a + ik

S-matrix LL-HH

1 The amplitude

We can parametrize the S-matrix writing the modulus as

M =

(

cos θ sin θ
− sin θ cos θ

)

(1)

what guarantees unitarity and the phase as

P =

(

eiα 0
0 eiβ

)

(2)

The S-matrix is obtained by

S = P ·M · P =

(

cos θ e2iα sin θ ei(α+β)

− sin θ ei(α+β) cos θ e2iβ

)

(3)

Writing cos θ = η we have that cos θ = η =
√
1− sin2 θ, so sin θ =

√
1− η2, and we can

write a more familiar form of the parametrization

S =

(

η e2iα
√
1− η2 ei(α+β)

−
√
1− η2 ei(α+β) η e2iβ

)

(4)

where η is interpreted as an inelasticity parameter.
Now let us define the following for the S-matrix modulus

η = sin θ = Si = N
√

s/sth − 1/(s/sth)
α (5)

and for the phases

e2iα = Sp = 1− 2ik1
c

1−k1/k0
+ ik1

(6)

and

e2iβ = Sd = 1− 2ik
1
a + ik

(7)

where k =
√

s−sth
4 , k1 =

√

s−sth1
4 and k0 =

√

s0−sth
4 .

Now the matrix for the modulus becomes

1

,   DD:KK:

Antunes, Bediaga, Frederico, PCM
ICHEP2016 - proceedings
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FSI in three-body decay :

I. Bediaga, I., T. Frederico, T. and O. Louren   Phys. Rev. D89, 094013(2014),[arXiv:1307.8164]


J. H. Alvarenga Nogueira, I. Bediaga, A. B. R. Cavalcante, T. Frederico and O. Louren ̧ Phys. Rev. D92, 
054010 (2015) [ArXiv:1506.08332].


PC Magalhães and I Bediaga   arXiv:1512.09284; 


P. C Magalhães and R.Robilotta,  Phys. Rev. D92  094005 (2015) [arXiv:1504.06346] ; P.C.Magalhães et. al. 
Phys. Rev. D84 094001 (2011) [arXiv:1105.5120]; P.C. Magalhães and Michael C. Birse, PoS QNP2012, 144 
(2012). 


 I. Caprini,  Phys. Lett. B 638 468 (2006). 


Bochao Liu, M. Buescher, Feng-Kun Guo, C. Hanhart, and Ulf-G. Meissner,  Eur. Phys. J. C 63 93  (2009). 


F Niecknig  and B Kubis - JHEP 10 142 (2015) ArXiv:1509.03188


 H. Kamano, S.X. Nakamura, T.-S.H. Lee and T. Sato, Phys. Rev. D 84, 114019 (2011).
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many more ...
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39 multi meson model - D+ ! K�K+K+

amplitude analysis for D decay 

D+ ! K�K+K+
<latexit sha1_base64="igVVIRC5sdRAB3PpU+Mroqe7Zs8=">AAAB+nicbVDLSgMxFL1TX7W+prp0EyyCUCwzVdBlRRdCNxXsA9ppyaSZNjTzIMkoZeynuHGhiFu/xJ1/Y9rOQlsPCRzOuZd773EjzqSyrG8js7K6tr6R3cxtbe/s7pn5/YYMY0FonYQ8FC0XS8pZQOuKKU5bkaDYdzltuqPrqd98oEKyMLhX44g6Ph4EzGMEKy31zPxNt4g6KkTV7mm1W9SvZxaskjUDWiZ2SgqQotYzvzr9kMQ+DRThWMq2bUXKSbBQjHA6yXViSSNMRnhA25oG2KfSSWarT9CxVvrIC4X+gUIz9XdHgn0px76rK32shnLRm4r/ee1YeZdOwoIoVjQg80FezJE+dZoD6jNBieJjTTARTO+KyBALTJROK6dDsBdPXiaNcsk+K5XvzguVqzSOLBzCEZyADRdQgVuoQR0IPMIzvMKb8WS8GO/Gx7w0Y6Q9B/AHxucPYhWSIg==</latexit>

 

Multimeson model for the D + → K +K −K + decay amplitude
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We propose an approach to describe the Dþ → K−KþKþ decay amplitude, based on chiral effective
Lagrangians, which can be used to extract information about KK̄ scattering. It relies on factorization and its
main novel feature is the role played by multimeson interactions characteristic of chiral symmetry. Our trial
function is an alternative to the widely used isobar model and includes both nonresonant three-body
interactions and two-body rescattering amplitudes, based on coupled channels and resonances, for S- and
P-waves with isospin 0 and 1. The latter are unitarized in the K-matrix approximation and represent the
only source of complex phases in the problem. The nonresonant component, given by chiral symmetry as a
real polynomium, is an important prediction of the model, which goes beyond the (2þ 1) approximation.
Our approach allows one to disentangle the two-body scalar contributions with different isospins,
associated with the f0ð980Þ and a0ð980Þ channels. We show how the KK̄ amplitude can be obtained from
the decay Dþ → K−KþKþ and discuss extensions to other three-body final states.

DOI: 10.1103/PhysRevD.98.056021

I. INTRODUCTION

Nonleptonic weak decays of heavy-flavored mesons are
extensively used in light meson spectroscopy. Owing to a
rich resonant structure, these decays provide a natural place
to study hadron-hadron interactions at low energies. In
particular, almost 20 years ago, three-body decays of
charmed mesons could confirm the existence of the con-
troversial scalar states f0ð600Þ (or sigma) [1] and K$

0ð800Þ
(or kappa) [2]. More comprehensive investigations can be
done nowadays, using the very large and pure samples
provided by the LHC experiments, and still more data is
expected in the near future, with Belle II experiments.
Three-body hadronic decays of heavy-flavored mesons

involve combinations of different classes of processes,
namely heavy-quark weak transitions, hadron formation
and final-state interactions (FSI), whereby the hadrons
produced in the primary vertex are allowed to interact in
many different ways before being detected. Final-state
processes include both proper three-body interactions
and a wide range of elastic and inelastic coupled channels

involving resonances. In this framework, a question arises
concerning how to obtain information about two-body
scattering amplitudes from the abundant data on three-
body systems.
The key issue of this program is the modeling of the

decay amplitudes. Most amplitude analyses have been
performed using the so-called isobar model, in which
the decay amplitude is represented by a coherent sum
of both nonresonant and resonant contributions. This
approach, albeit largely employed [3], has conceptual
limitations. The outcome of isobar model analyses are
resonance parameters such as fit fractions, masses and
widths, which are neither directly related to any underlying
dynamical theory nor provide clues to the identification of
two-body substructures. Thus, the systematic interpretation
of the isobar model results is rather difficult.
This situation motivated in the past decade efforts

towards building models that are based on more solid
theoretical grounds. Those models improve essentially the
two-meson interaction description in the FSI, with the use
of dispersion relations and chiral perturbation theory. Most
of them work in the quasi-two-body (2þ 1) approximation,
where interactions with the third particle are neglected.
Recently, a collection of parametrizations based on analytic
and unitary meson-meson form factors for D and B three-
body hadronic decays within the (2þ 1) approximation
was presented in Ref. [4]. Three-body FSIs were also
considered and, in particular, shown to play a significant
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c decays to the K+K�⇡+

final state and evidence for the decay

B+
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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 track the ingredients we include in our model! 

parameters have physical meaning: resonance masses and coupling constants 

Triple-M

depart from a fundamental theory  Chiral Lagrangian

D+ ! K�K+K+

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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W
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of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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after (a) or before (b) the weak interaction.

8

full FSI: coupled channel,  



16/1/2020 Patricia Magalhães3-body hadronic decay

41Triple - M 

 NLO
a0, f0, ⇢,�

width obtained through dynamics

isobar

3

1

2

1

2

3

1

2

33

2

11

2

3

3 3

2

1

2

1

3

1

2

+

(4A)

+

(3B)

+

(4B)(3A)

+

(2A) (2B)

+

K

K

K

+

+

−

3

2

1

K

K

K

+

+

−

3

2

1

b

a

+

= +

(1B)(1A)

+

FIG. 5: Dynamical structure of triangle vertices in Fig.4; the wavy line is the W+, dashed lines

are mesons, continuous lines are resonances and the full red blob represent meson-meson scattering

amplitudes, described in Fig.6; all diagrams within square brackets should be symmetrized, by

making 2 ↔ 3.

chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.

11

Chiral symmetry
LO: non-resonant

3

1

2

1

2

3

1

2

33

2

11

2

3

3 3

2

1

2

1

3

1

2

+

(4A)

+

(3B)

+

(4B)(3A)

+

(2A) (2B)

+

K

K

K

+

+

−

3

2

1

K

K

K

+

+

−

3

2

1

b

a

+

= +

(1B)(1A)

+

FIG. 5: Dynamical structure of triangle vertices in Fig.4; the wavy line is the W+, dashed lines

are mesons, continuous lines are resonances and the full red blob represent meson-meson scattering

amplitudes, described in Fig.6; all diagrams within square brackets should be symmetrized, by

making 2 ↔ 3.

chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.

11

3

1

2

1

2

3

1

2

33

2

11

2

3

3 3

2

1

2

1

3

1

2

+

(4A)

+

(3B)

+

(4B)(3A)

+

(2A) (2B)

+

K

K

K

+

+

−

3

2

1

K

K

K

+

+

−

3

2

1

b

a

+

= +

(1B)(1A)

+

FIG. 5: Dynamical structure of triangle vertices in Fig.4; the wavy line is the W+, dashed lines

are mesons, continuous lines are resonances and the full red blob represent meson-meson scattering

amplitudes, described in Fig.6; all diagrams within square brackets should be symmetrized, by

making 2 ↔ 3.

chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.

11

3

1

2

1

2

3

1

2

33

2

11

2

3

3 3

2

1

2

1

3

1

2

+

(4A)

+

(3B)

+

(4B)(3A)

+

(2A) (2B)

+

K

K

K

+

+

−

3

2

1

K

K

K

+

+

−

3

2

1

b

a

+

= +

(1B)(1A)

+

FIG. 5: Dynamical structure of triangle vertices in Fig.4; the wavy line is the W+, dashed lines

are mesons, continuous lines are resonances and the full red blob represent meson-meson scattering

amplitudes, described in Fig.6; all diagrams within square brackets should be symmetrized, by

making 2 ↔ 3.

chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.

11

KK̄= + + + ...

= +(a)
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced

12

coupled-channel unitary amplitude isospin decomposition [J, I = (0, 1), (0, 1)]
⇡⇡, ⌘⌘, ⇡⌘, ⇢⇡
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parameter value

F 94.3+2.8
−1.7± 1.5MeV

ma0 947.7+5.5
−5.0± 6.6MeV

mSo 992.0+8.5
−7.5± 8.6MeV

mS1 1330.2+5.9
−6.5± 5.1MeV

mφ 1019.54+0.10
−0.10± 0.51MeV

Gφ 0.464+0.013
−0.009± 0.007

cd −78.9+4.2
−2.7± 1.9MeV

cm 106.0+7.7
−4.6± 3.3MeV

c̃d −6.15+0.55
−0.54± 0.19MeV

c̃m −10.8+2.0
−1.5± 0.4MeV

Table 3. Results of the D+ → K−K+K+ Dalitz plot fit with the Triple-M amplitude.
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Figure 11. Projections of the Dalitz plot onto (top left) sK+K− , (top right) sK+K+ , (bottom left)
shighK+K− and (bottom right) slowK+K− axes, with the fit result with the Triple-M amplitude superim-
posed, whereas the dashed green line is the phase space distribution weighted by the efficiency. The
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the fit result superimposed. The projections indicate that the model is in good agreement

with the data. The distribution of the normalised residuals over the Dalitz plot is shown

in the right panel of figure 12. The distribution of normalised residuals, shown in the left

panel of figure 12, is consistent with a normal Gaussian.
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Table 3. Results of the D+ → K−K+K+ Dalitz plot fit with the Triple-M amplitude.
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the fit result superimposed. The projections indicate that the model is in good agreement

with the data. The distribution of the normalised residuals over the Dalitz plot is shown

in the right panel of figure 12. The distribution of normalised residuals, shown in the left

panel of figure 12, is consistent with a normal Gaussian.
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14 ± 1 29 ± 1 131 ± 2 7.1 ± 0.9 0.26 ± 0.01 94 ± 1

Table 4. Relative fractions (%) of the various components of the Triple-M amplitude. The uncer-
tainties correspond to the combined statistical and systematic uncertainties.

with

TS = TS
NR + T 00 + T 01 (7.5)

and

TP = TP
NR + T 11 + T 10 . (7.6)

The relative contribution of each individual component of the Triple-M amplitude is

determined by integrating the modulus squared of each term in the right-hand side of

eq. (7.2) over the phase space of the D+→ K−K+K+ decay,

FFNR =

∫
ds12 ds13 |TNR(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

, FFJI =

∫
ds12 ds13 |T JI(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

. (7.7)

Similarly, the S-wave contribution can be determined by the integral over the phase

space of the modulus squared of the TS component, defined in eq. (7.5), and divided by

the integral of the modulus squared of the decay amplitude T . The results are summarised

in table 4. There is a large destructive interference between the two scalar below-threshold

states, a0(980) and f0(980), yielding an S-wave contribution of (94 ± 1)%. The large

a0(980)/f0(980) interference may be, in part, due to the fact that in the K+K− mass

spectrum these two states have very similar lineshapes, since only the tails are visible.

This large interference is also observed in the fit with the isobar model C, yielding similar

fit fractions for the S-wave component. A more accurate determination of the relative

contribution of the a0(980) and f0(980) resonances could be obtained from a simultaneous

analysis of the D+ → π+π−π+ and D+ → ηπ+π0. The contribution of the φ(1020)

resonance, (7.1± 0.5)%, is consistent to that observed in the fit with the isobar model.

7.2.2 Decay and scattering amplitudes

The phases of the S-wave amplitude, TS , and the K+K− → K+K− scattering amplitudes,

A0I
K+K− , for the two allowed isospin states, are shown in figure 13 as a function of theK+K−

invariant mass. The bands correspond to the statistical and systematic uncertainties added

in quadrature. The kink in the phase of TS at m(K+K−) ∼ 1.25GeV is due to the opening

of the ηη channel. The curves of figure 13 illustrate the difference between decay and

scattering amplitudes. The latter, which depends on spin and isospin, is a substructure

of the former, which depends only on spin. The expressions of the various scattering

amplitudes, derived in ref. [3], are reproduced in appendix C.

The physics of two-body scattering is encompassed by the phase shifts and inelasticities.

These quantities are obtained from the scattering amplitudes, following the procedure

described in ref. [3]. The phase shifts, δJIK+K− , and inelasticities ηJIK+K− , are displayed in

figure 14 for J=0 and I=0, 1.
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chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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Similarly, the S-wave contribution can be determined by the integral over the phase

space of the modulus squared of the TS component, defined in eq. (7.5), and divided by

the integral of the modulus squared of the decay amplitude T . The results are summarised

in table 4. There is a large destructive interference between the two scalar below-threshold

states, a0(980) and f0(980), yielding an S-wave contribution of (94 ± 1)%. The large

a0(980)/f0(980) interference may be, in part, due to the fact that in the K+K− mass

spectrum these two states have very similar lineshapes, since only the tails are visible.

This large interference is also observed in the fit with the isobar model C, yielding similar

fit fractions for the S-wave component. A more accurate determination of the relative

contribution of the a0(980) and f0(980) resonances could be obtained from a simultaneous

analysis of the D+ → π+π−π+ and D+ → ηπ+π0. The contribution of the φ(1020)

resonance, (7.1± 0.5)%, is consistent to that observed in the fit with the isobar model.

7.2.2 Decay and scattering amplitudes

The phases of the S-wave amplitude, TS , and the K+K− → K+K− scattering amplitudes,

A0I
K+K− , for the two allowed isospin states, are shown in figure 13 as a function of theK+K−

invariant mass. The bands correspond to the statistical and systematic uncertainties added

in quadrature. The kink in the phase of TS at m(K+K−) ∼ 1.25GeV is due to the opening

of the ηη channel. The curves of figure 13 illustrate the difference between decay and

scattering amplitudes. The latter, which depends on spin and isospin, is a substructure

of the former, which depends only on spin. The expressions of the various scattering

amplitudes, derived in ref. [3], are reproduced in appendix C.

The physics of two-body scattering is encompassed by the phase shifts and inelasticities.

These quantities are obtained from the scattering amplitudes, following the procedure

described in ref. [3]. The phase shifts, δJIK+K− , and inelasticities ηJIK+K− , are displayed in

figure 14 for J=0 and I=0, 1.
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unitarized amplitude 

unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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F 94.3+2.8
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ma0 947.7+5.5
−5.0± 6.6MeV

mSo 992.0+8.5
−7.5± 8.6MeV

mS1 1330.2+5.9
−6.5± 5.1MeV

mφ 1019.54+0.10
−0.10± 0.51MeV

Gφ 0.464+0.013
−0.009± 0.007

cd −78.9+4.2
−2.7± 1.9MeV

cm 106.0+7.7
−4.6± 3.3MeV

c̃d −6.15+0.55
−0.54± 0.19MeV

c̃m −10.8+2.0
−1.5± 0.4MeV

Table 3. Results of the D+ → K−K+K+ Dalitz plot fit with the Triple-M amplitude.
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Figure 11. Projections of the Dalitz plot onto (top left) sK+K− , (top right) sK+K+ , (bottom left)
shighK+K− and (bottom right) slowK+K− axes, with the fit result with the Triple-M amplitude superim-
posed, whereas the dashed green line is the phase space distribution weighted by the efficiency. The
magenta histogram represents the contribution from the background.

the fit result superimposed. The projections indicate that the model is in good agreement

with the data. The distribution of the normalised residuals over the Dalitz plot is shown

in the right panel of figure 12. The distribution of normalised residuals, shown in the left

panel of figure 12, is consistent with a normal Gaussian.
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with
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The relative contribution of each individual component of the Triple-M amplitude is
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Similarly, the S-wave contribution can be determined by the integral over the phase

space of the modulus squared of the TS component, defined in eq. (7.5), and divided by

the integral of the modulus squared of the decay amplitude T . The results are summarised

in table 4. There is a large destructive interference between the two scalar below-threshold

states, a0(980) and f0(980), yielding an S-wave contribution of (94 ± 1)%. The large

a0(980)/f0(980) interference may be, in part, due to the fact that in the K+K− mass

spectrum these two states have very similar lineshapes, since only the tails are visible.

This large interference is also observed in the fit with the isobar model C, yielding similar

fit fractions for the S-wave component. A more accurate determination of the relative

contribution of the a0(980) and f0(980) resonances could be obtained from a simultaneous

analysis of the D+ → π+π−π+ and D+ → ηπ+π0. The contribution of the φ(1020)

resonance, (7.1± 0.5)%, is consistent to that observed in the fit with the isobar model.

7.2.2 Decay and scattering amplitudes

The phases of the S-wave amplitude, TS , and the K+K− → K+K− scattering amplitudes,

A0I
K+K− , for the two allowed isospin states, are shown in figure 13 as a function of theK+K−

invariant mass. The bands correspond to the statistical and systematic uncertainties added

in quadrature. The kink in the phase of TS at m(K+K−) ∼ 1.25GeV is due to the opening

of the ηη channel. The curves of figure 13 illustrate the difference between decay and

scattering amplitudes. The latter, which depends on spin and isospin, is a substructure

of the former, which depends only on spin. The expressions of the various scattering

amplitudes, derived in ref. [3], are reproduced in appendix C.

The physics of two-body scattering is encompassed by the phase shifts and inelasticities.

These quantities are obtained from the scattering amplitudes, following the procedure

described in ref. [3]. The phase shifts, δJIK+K− , and inelasticities ηJIK+K− , are displayed in

figure 14 for J=0 and I=0, 1.
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FIG. 5: Dynamical structure of triangle vertices in Fig.4; the wavy line is the W+, dashed lines

are mesons, continuous lines are resonances and the full red blob represent meson-meson scattering

amplitudes, described in Fig.6; all diagrams within square brackets should be symmetrized, by

making 2 ↔ 3.

chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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Figure 12. (left) Two-dimensional distribution of the normalised residuals for the Triple-M fit.
(right) Distribution of normalised residuals of each bin.

7.2 Interpretation

The resonance masses in the Triple-M are introduced in the denominators, D, of

eqs. (B.21)–(B.24), where the functions M are imaginary and proportional to interaction

kernels which contain the bare masses of the effective chiral Lagrangian, ma0 , mSo , mS1

and mφ. The Triple-M amplitude is derived assuming that only the imaginary part of the

two-body propagators in eqs. (B.25)–(B.28) is relevant. In this approximation, the bare

masses coincide with the masses of the physical states and the association mSo = mf0(980)

and mS1 = mf0(1370) can be made. As in the case of the isobar model, the masses in the

Triple-M correspond to the values of sK+K− for which the real part of the denominator

D of eqs. (B.21)–(B.24) vanishes. At these values of sK+K− , only the imaginary parts

of the denominators remain, corresponding to the model prediction for the widths. The

denominators D would be very similar to those from the isobar model if no coupled chan-

nel was considered. The inclusion of coupled channels is, therefore, the main difference

between the Triple-M and Breit-Wigner denominators, resulting in widths with different

dynamical content.

7.2.1 Resonant structure

The nonresonant contribution in the Triple-M is a three-body amplitude predicted by chiral

symmetry. It can be projected into the S- and P-waves rewriting eq. (B.4) as

TNR =
C

4

[
(m2

D −m2
K + s12) + (s13 − s23) + (m2

D −m2
K + s13) + (s12 − s23)

]

= TS
NR + TP

NR , (7.3)

where C is a constant common to all components of the Triple-M amplitude, and defined

in eq. (B.2). The decay amplitude can then be written as the sum of scalar and vector

components

T =
[
TS + TP + (2 ↔ 3)

]
, (7.4)
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Figure 10. Diagrams contributing to the amplitude T for the decay D+ → K− K+ K+: (a) the
final state kaons are produced directly from the weak vertex; (b) a bare resonance is produced
directly from the weak vertex; (c) particles produced at the weak vertex undergo final state
interactions; (d) final state interactions endow finite widths to the resonances. The full circle
represents the unitary ab → K+K− scattering amplitude with angular momentum J and isospin
I, and ab = KK, ππ, ηπ and ηη.

ma0 , in the scalar-isovector T 01 components; one coupling, GV , for the vector components,

T 10 and T 11, and one mass, mφ, in the vector-isoscalar component. In the fit to the data,

the combination Gφ ≡ GV sin θω−φ/F is used as free parameter, where θω−φ is the ω − φ

mixing angle. The parameter F is the SU(3) pseudoscalar decay constant, common to

all components. For convenience, the formulae of the various components of the Triple-M

amplitude are reproduced from ref. [3] in appendix B.

Equation (7.2) resembles that of the isobar model, but there are several significant

differences. The free parameters in the Triple-M amplitude are real quantities from the

chiral Lagrangian. Some of these parameters appear in different spin-isospin components

of the model. In the isobar model the free parameters are the complex coefficients ck,

from which the individual contributions of the resonances are determined. In the Triple-M

amplitude, the relative contributions of the various components are fixed by theory. The

nonresonant component is usually represented by an empirical constant in fits with the

isobar model. In the Triple-M amplitude, it is a function of the Dalitz plot coordinates

and is fully determined by chiral symmetry.

7.1 Fit results

The optimum values of the Triple-M parameters are determined by an unbinned maximum-

likelihood fit, as described in section 5. The fitted values of the Triple-M parameters are

listed in table 3, with statistical and systematic uncertainties.

The quality of the fit with the Triple-M amplitude is tested with the metric defined in

eq. (5.4). The value of χ2/ndof is 1.12. The projections of the Dalitz plot onto the sK+K−

and the sK+K+ axes, as well as the projections onto the highest and lowest invariant masses

squared of the two K+K− combinations, shighK+K− and slowK+K− , are shown in figure 11, with
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= 1.12 (Isobar 1.14-1.6)


