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Introduction to CP violation

Introduction to CP violation
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Big Bang and matter-antimatter asymmetry

Where is the antimatter in the universe?
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Big Bang and matter-antimatter asymmetry

Initially equal amounts of matter and antimatter...
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Big Bang and matter-antimatter asymmetry

... but today we only see matter!
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Big Bang and matter-antimatter asymmetry

APS/Alan Stonebraker

The difference is very small...
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Big Bang and matter-antimatter asymmetry

Quantum Diaries: “Why B physics? Why not A Physics?”

... but the effects we observe today are obviously huge!
How can we explain this?
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CP violation

CP violation discovery in 1964

Phys. Rev. Lett. 13, 138

Observed K 0
L → π+π−

Since, CP violation has also been
observed in the B, Bs and D systems

Can Standard Model CPV explain the matter-antimatter asymmetry?
Or, could it be physics beyond the SM?
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The CKM matrix and the Unitary Triangle
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The CKM matrix and the Unitary Triangle

In SM, the charged current W± interactions couple (left-handed) up- and
down-type quarks, given by

−g√
2

[
ūL c̄L t̄L

]
γµWµVCKM

dLsL
bL

+ h.c.

t

b

W+

(a) t → bW+

b

c

W−

(b) b → cW−
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The CKM matrix and the Unitary Triangle

The Cabbibo-Kobayashi-Maskawa matrix VCKM,Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


must be a unitary matrix: V †CKMVCKM = I =⇒

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

Represent this constraint as a triangle in the complex plane:
Unitary Triangle
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The CKM matrix and the Unitary Triangle

CPV in SM is described by the Unitary Triangle, with angles α, β, γ

The angle γ = arg
(
− VudV

∗
ub

VcdV
∗
cb

)
is very important:

1 Negligible theoretical uncertainties: Ideal SM benchmark
2 Accessible at tree level: Indirectly probe New Physics that enter loops
3 Compare with α, β measurements: Is the Unitary Triangle a triangle?
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How to measure γ?

How to measure γ?
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Sensitivity through interference

Measure γ through interference effects in B± → DK±

W

ū

B− { b

ū
} D0

c

ū} K−
s

Favoured B− → D0K−

W

ū

B− { b

ū
} K−

s

c̄
} D̄0

u

Suppressed B− → D̄0K−

Superposition of D0 and D̄0

b → uc̄s and b → cūs interference → Sensitivity to γ

A(B−) = AB

(
AD0 + rBe

i(δB−γ)AD̄0

)
A(B+) = AB

(
AD̄0 + rBe

i(δB+γ)AD0

)
The magnitude of interference effects governed by rB ≈ 0.1
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D decays to a CP eigenstate

A well known strategy is to consider D decays to a CP eigenstate

For CP eigenstates, AD0 = AD̄0

D0K−

B− DK−

D̄0K−

AD0AB

AB rBe
i(δB−γ) AD0

|A(B−)|2∝ 1 + r2
B + 2rB cos(δB − γ)
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D decays to a CP eigenstate
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JHEP 04 (2021) 081

In B± → [h+h−]DK
±, we see significant CPV effects
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Doubly Suppressed Cabbibo D decays

Can we enhance the interference effects?

Yes! Use a Doubly Suppressed Cabbibo decay: AD0 = rDe
iδDAD̄0

D0K−

B− DK−

D̄0K−

rDe
iδDA

D̄0AB

AB rBe
i(δB−γ) A

D̄0

|A(B−)|2∝ r2
D + r2

B + 2rB rD cos(δB − γ + δD)
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Doubly Suppressed Cabbibo D decays
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B± → [K∓π±]DK
± has lower statistics, but a spectacular

asymmetry!

Additionally, the partially reconstructed background has an equal but
opposite asymmetry
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The B± → [K+K−π+π−]DK
± decay mode

The B± → [K+K−π+π−]DK
± decay

mode
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The B± → [K+K−π+π−]DK
± decay mode

The mode B± → [K+K−π+π−]DK
± has been proposed

as a powerful channel for a measurement of γ

D → K+K−π+π− has the best of both worlds:
1 Singly Cabbibo Suppressed decay: Larger branching fraction
2 Interference effects from over 25 resonance components

Large interference effects in local regions of the 5D phase space

First proposed by J. Rademacker and G. Wilkinson

Phys. Lett. B647 (2007) 400
FOCUS amplitude model predicts a 14◦ precision with 1000 candidates

State of the art amplitude analysis by LHCb:

JHEP 02 (2019) 126
Exploits the huge dataset of charm decays collected by LHCb
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The B± → [K+K−π+π−]DK
± decay mode

Why do four-body decays have large local interferences?

D0

π+

π−

K+

K−

φ(1020)

ρ0

φ(1020)(→ K+K−)ρ0(→ π+π−)

D0

π+

π−

K+

K−

K1(1400)+

K∗(892)0

K1(1400)+(→ K∗(892)0(→ K+π−))K−

Many possible decay paths, in different phase space locations,
contribute to the total decay amplitude...
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The B± → [K+K−π+π−]DK
± decay mode

Amplitude |ck| arg(ck) [rad] Fit fraction [%]

D0 → [φ(1020)(ρ− ω)0]L=0 1 (fixed) 0 (fixed) 23.82± 0.38± 0.50
D0 → K1(1400)+K− 0.614± 0.011± 0.031 1.05± 0.02± 0.05 19.08± 0.60± 1.46
D0 → [K−π+]L=0[K+π−]L=0 0.282± 0.004± 0.008 −0.60± 0.02± 0.10 18.46± 0.35± 0.94
D0 → K1(1270)+K− 0.452± 0.011± 0.017 2.02± 0.03± 0.05 18.05± 0.52± 0.98
D0 → [K∗(892)0K∗(892)0]L=0 0.259± 0.004± 0.018 −0.27± 0.02± 0.03 9.18± 0.21± 0.28
D0 → K∗(1680)0[K−π+]L=0 2.359± 0.036± 0.624 0.44± 0.02± 0.03 6.61± 0.15± 0.37
D0 → [K∗(892)0K∗(892)0]L=1 0.249± 0.005± 0.017 1.22± 0.02± 0.03 4.90± 0.16± 0.18
D0 → K1(1270)−K+ 0.220± 0.006± 0.011 2.09± 0.03± 0.07 4.29± 0.18± 0.41
D0 → [K+K−]L=0[π+π−]L=0 0.120± 0.003± 0.018 −2.49± 0.03± 0.16 3.14± 0.17± 0.72
D0 → K1(1400)−K+ 0.236± 0.008± 0.018 0.04± 0.04± 0.09 2.82± 0.19± 0.39
D0 → [K∗(1680)0K∗(892)0]L=0 0.823± 0.023± 0.218 2.99± 0.03± 0.05 2.75± 0.15± 0.19
D0 → [K∗(1680)0K∗(892)0]L=1 1.009± 0.022± 0.276 −2.76± 0.02± 0.03 2.70± 0.11± 0.09
D0 → K∗(1680)0[K+π−]L=0 1.379± 0.029± 0.373 1.06± 0.02± 0.03 2.41± 0.09± 0.27
D0 → [φ(1020)(ρ− ω)0]L=2 1.311± 0.031± 0.018 0.54± 0.02± 0.02 2.29± 0.08± 0.08
D0 → [K∗(892)0K∗(892)0]L=2 0.652± 0.018± 0.043 2.85± 0.03± 0.04 1.85± 0.09± 0.10
D0 → φ(1020)[π+π−]L=0 0.049± 0.001± 0.004 −1.71± 0.04± 0.37 1.49± 0.09± 0.33
D0 → [K∗(1680)0K∗(892)0]L=1 0.747± 0.021± 0.203 0.14± 0.03± 0.04 1.48± 0.08± 0.10
D0 → [φ(1020)ρ(1450)0]L=1 0.762± 0.035± 0.068 1.17± 0.04± 0.04 0.98± 0.09± 0.05
D0 → a0(980)0f2(1270)0 1.524± 0.058± 0.189 0.21± 0.04± 0.19 0.70± 0.05± 0.08
D0 → a1(1260)+π− 0.189± 0.011± 0.042 −2.84± 0.07± 0.38 0.46± 0.05± 0.22
D0 → a1(1260)−π+ 0.188± 0.014± 0.031 0.18± 0.06± 0.43 0.45± 0.06± 0.16
D0 → [φ(1020)(ρ− ω)0]L=1 0.160± 0.011± 0.005 0.28± 0.07± 0.03 0.43± 0.05± 0.03
D0 → [K∗(1680)0K∗(892)0]L=2 1.218± 0.089± 0.354 −2.44± 0.08± 0.15 0.33± 0.05± 0.06
D0 → [K+K−]L=0(ρ− ω)0 0.195± 0.015± 0.035 2.95± 0.08± 0.29 0.27± 0.04± 0.05
D0 → [φ(1020)f2(1270)0]L=1 1.388± 0.095± 0.257 1.71± 0.06± 0.37 0.18± 0.02± 0.07
D0 → [K∗(892)0K∗

2(1430)0]L=1 1.530± 0.086± 0.131 2.01± 0.07± 0.09 0.18± 0.02± 0.02

Sum of fit fractions 129.32± 1.09± 2.38
χ2/ndf 9242/8121 = 1.14

Fitresult.tex

JHEP 02 (2019) 126

... and I really mean a lot of resonances!
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The B± → [K+K−π+π−]DK
± decay mode

Our equations suddenly become a lot more complicated

AD0(Φ) now depends on a 5D phase space point Φ

Defining AD̄0 = rDe
iδDAD0 , rD and δD are now also functions of Φ!

D0K−

B− DK−

D̄0K−

AD0 (Φ)AB

AB rBe
i(δB−γ) rD(Φ)e iδD (Φ)AD0 (Φ)

|A(B−)|2∝ 1 + r2
B r

2
D(Φ) + 2rB rD(Φ) cos(δB − γ + δD(Φ))
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The B± → [K+K−π+π−]DK
± decay mode

rD(Φ) and δD(Φ) can be predicted using the LHCb
amplitude model

However, there are many reasons why we should not do this:

1 rD(Φ) can be measured directly in data at LHCb

2 Amplitude models are just models, which may not reflect reality

3 In fact, the model is fitted to data that knows nothing about δD(Φ)

4 It is impossible to assign an objective error to a model!

We wish to do a model independent measurement
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Binned analysis of the D → K+K−π+π− mode

Binned analysis of the D → K+K−π+π−
mode
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Binned analysis of the D → K+K−π+π− mode

Solution: Split phase space into bins, labelled by i = 1, 2, ...

Study the CP asymmetry separately in each bin

For the decays D0 → K 0
Sπ

+π− and K 0
SK

+K−, the binning scheme
may be visualised on a Dalitz plot

K 0
Sπ

+π− K 0
SK

+K−
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Binned analysis of the D → K+K−π+π− mode

B− → [K 0
Sπ

+π−]DK
− B+ → [K 0

Sπ
+π−]DK

+

Can you find the asymmetries?
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Binned analysis of the D → K+K−π+π− mode

Back to rate equation:

|A(B−)|2 ∝ 1 + r2
B r

2
D

+ 2rB rD
(

cos(δB − γ) cos(δD)− sin(δB − γ) sin(δD)
)

Integrate rate over a local region Φi , which we call bin i :

N−i ∝ Fi + r2
B F̄i

+ 2rB

√
Fi F̄i

(
cos(δB − γ)ci − sin(δB − γ)si

)
Amplitude averaged strong phase

ci ≡
∫
i dΦ|AD0 ||AD̄0 |cos(δD(Φ))√∫

dΦ|AD0 |2
∫
dΦ|A

D̄0 |2
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Binned analysis of the D → K+K−π+π− mode

To “decouple” the interference effects in B+ and B−,
define the CP violating observables

x± ≡ rB cos(δB ± γ), y± ≡ rB sin(δB ± γ)

Our final equation, which relates the CP observables to
experimentally measured yields, is

N−i ∝ Fi + r2
B F̄i + 2

√
Fi F̄i

(
x−ci − y−si

)
Amplitude averaged strong phase

ci ≡
∫
i dΦ|AD0 ||AD̄0 |cos(δD(Φ))√∫

dΦ|AD0 |2
∫
dΦ|A

D̄0 |2
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Binned analysis of the D → K+K−π+π− mode

Bin yield

N−i ∝ Fi + r2
B F̄i + 2

√
Fi F̄i

(
x−ci − y−si

)

The strategy for measuring γ is now clear:

1 Measure bin yields N±i in B± → [K+K−π+π−]DK
± decays

2 Do a likelihood maximisation to determine Fi , F̄i , ci , si , x± and y±

3 From x± and y±, extract rB , δB and γ

4 Publish new measurement of γ!
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Strong phase input from charm factories

Strong phase input from charm factories
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Strong phase input from charm factories

Unfortunately, it is unlikely that this fit will converge...
Sensitivity to ci and si is very limited with current statistics
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Strong phase input from charm factories

Unfortunately, it is unlikely that this fit will converge...
Sensitivity to ci and si is very limited with current statistics

Instead, we can join forces with BESIII and measure ci and si directly

+

This has never been done for D0 → K+K−π+π−

More on this later!
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Constraining Fi with B± → Dπ±

Constraining Fi with B± → Dπ±
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Constraining Fi with B± → Dπ±

The fractional bin yields Fi are yields in the abscence of CP violation

In principle we can measure these directly at both LHCb and BESIII

Four strategies:

1 Calculate from amplitude model

2 Measure in B− → D0µ−ν̄µ at LHCb

3 Measure with flavour tagged D0 decays at BESIII

4 Measure in B± → Dπ±
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Constraining Fi with B± → Dπ±

The fractional bin yields Fi are yields in the abscence of CP violation

In principle we can measure these directly at both LHCb and BESIII

Four strategies:

1 Calculate from amplitude model Avoid model dependence

2 Measure in B− → D0µ−ν̄µ at LHCb

3 Measure with flavour tagged D0 decays at BESIII

4 Measure in B± → Dπ±
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Constraining Fi with B± → Dπ±

The fractional bin yields Fi are yields in the abscence of CP violation

In principle we can measure these directly at both LHCb and BESIII

Four strategies:

1 Calculate from amplitude model Avoid model dependence

2 Measure in B− → D0µ−ν̄µ at LHCb Different acceptance effects

3 Measure with flavour tagged D0 decays at BESIII

4 Measure in B± → Dπ±
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Constraining Fi with B± → Dπ±

The fractional bin yields Fi are yields in the abscence of CP violation

In principle we can measure these directly at both LHCb and BESIII

Four strategies:

1 Calculate from amplitude model Avoid model dependence

2 Measure in B− → D0µ−ν̄µ at LHCb Different acceptance effects

3 Measure with flavour tagged D0 decays at BESIII

4 Measure in B± → Dπ± Small CPV effects?
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Constraining Fi with B± → Dπ±

The fractional bin yields Fi are yields in the abscence of CP violation

In principle we can measure these directly at both LHCb and BESIII

Four strategies:

1 Calculate from amplitude model Avoid model dependence

2 Measure in B− → D0µ−ν̄µ at LHCb Different acceptance effects

3 Measure with flavour tagged D0 decays at BESIII

4 Measure in B± → Dπ± Small CPV effects?

No problem, include B± → Dπ± as a signal channel

Martin Tat (University of Oxford) B± → [K+K−π+π−]Dh± 9th February 2023 39 / 80



Constraining Fi with B± → Dπ±

B± → Dπ± has an identical topology to B± → DK±

CPV effects are highly suppressed because rDπB ≈ 0.005

Branching fraction more than 10 times larger

As a signal channel, we add another 4 free parameters to our fit:

xDπ± = rDπB cos
(
δDπB − γ

)
, yDπ± = rDπB sin

(
δDπB − γ

)
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Constraining Fi with B± → Dπ±

To avoid degeneracy, reduce this to 2 additional parameters using this
parameterisation:

xξ = Re(ξ), yξ = Im(ξ), ξ =
rDπB e iδ

Dπ
B

rDK
B e iδ

DK
B

In summary:

1 Both B± → DK± and B± → Dπ± are signal channels, with xDK
± ,

yDK
± , xξ and yξ as CP observables

2 B± → DK± has lower statistics, but higher CPV effects

3 B± → Dπ± has higher statistics and constrain Fi in the fit, but
sensitivity to CPV is limited
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Binning scheme

Binning scheme
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Binning scheme

We need to split the phase space into bins

But how do we navigate through a 5D space? How do we decide on
the bin boundaries?

Let the amplitude model guide us!
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Binning scheme

Back to the amplitude averaged strong phase:

ci ≡
∫
i dΦ|AD0 ||AD̄0 |cos(δD(Φ))√∫

dΦ|AD0 |2
∫
dΦ|AD̄0 |2

If the strong phase varies significantly within a bin, the interference
effects will be diluted when integrating

We need to group regions of similar strong phase into the same bin

This was done for K 0
Sh

+h−, resulting in colourful “butterfly” plots
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Binning scheme

Back to our yield formula:

N−i ∝ Fi + r2
B F̄i + 2

√
Fi F̄i

(
x−ci − y−si

)
In the charm system, CP is (approximately) conserved, so each D0

decay has a corresponding identical CP conjugated decay

Split each bin i into two “CP mirror bins”, labelled by ±i
In K 0

Sh
+h−, this is indicated by the black symmetry line

Under CP, δD → −δD , so ci → ci and si → −si
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Binning scheme

A binning scheme must satisfy the following:
Minimal dilution of strong phases when integrating over bins

Enhance interference between B± → D0K± and B± → D̄0K±

How to bin a 5-dimensional phase space?
1 For each B± candidate, use the amplitude model to calculate

A(D0)

A(D̄0)
= rDe

iδD

2 Split δD into uniformly spaced bins

3 Use the symmetry line rD = 1 to separate bin +i from −i
4 Optimise the binning scheme by adjusting the bin boundaries in δD
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Binning scheme
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Mass fits and yield extraction

Mass fits and yield extraction
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Mass fits and yield extraction

In the end, this analysis is a counting experiment

Counting strategy:

1 Perform a “global fit” of all B± candidates

2 Fix all shape parameters

3 Sort B± candidates by charge and bins

4 Perform a “CP fit” simultaneously, but only let bin yields float

5 From the bin yields, determine xDK
± , yDK

± , xξ and yξ
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Mass fits and yield extraction
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Signal yield:

B± → DK± : 3026± 38

B± → Dπ± : 44 349± 218
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Mass fits and yield extraction

CP fit setup

No measurement of ci and si available yet, use model predictions

Fix mass shape from global fit

Split by B± charge and D phase space bins (64 categories)

1 CP observables xDK
± , yDK

± xDπξ , yDπξ (6 parameters )

2 Fractional bin yields Fi (15 parameters)

3 Low mass and combinatorial background (128 parameters)

4 Yield normalisation (4 parameters)

In total: 153 free parameters
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CP fit results and γ

CP fit results and γ
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Fractional bin asymmetries
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(a) B± → DK±

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8
Bin number

0.1−

0.05−

0

0.05

0.1

A
sy

m
m

et
ry

±πD→±B

Data
Fit projection
No CPV prediction

-19 fb
LHCb

(b) B± → Dπ±

Useful cross check to compare measured bin asymmetries against bin
asymmetries predicted by the fitted CP observables

The B± → DK± mode show non-zero bin asymmetries, and the
non-trivial distribution is driven by the change in strong phases across
phase space

Martin Tat (University of Oxford) B± → [K+K−π+π−]Dh± 9th February 2023 53 / 80



CP fit results
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(b) xDπ
ξ vs yDπ

ξ

xDK
± = rB cos(δB ± γ)

yDK
± = rB sin(δB ± γ)

The B± → DK± contours are distinct, indicating CP violation

The B± → Dπ± mode has very low sensitivity to CP violation
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Interpretation of γ

We can interpret our CP observables in terms of the
physics parameters γ, rDKB , δDKB , rDπB , δDπB

γ = (116+12
−14)◦,

δDK
B = (81+14

−13)◦,

rDK
B = 0.110+0.020

−0.020,

δDπB = (298+62
−118)◦,

rDπB = 0.0041+0.0054
−0.0041,

However, the latest γ and charm combination result is:

γ = (63.8+3.5
−3.7)◦

What went wrong?!
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Interpretation of γ

γ = (116+12
−14)◦

Do we trust the model predicted ci and si , or their uncertainties? No!

Let’s go and measure ci and si at BESIII!
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Strong phase analysis of D0 → K+K−π+π− at BESIII

Strong phase analysis of
D0 → K+K−π+π− at BESIII
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Strong phase analysis of D0 → K+K−π+π− at BESIII

BESIII: Beijing Spectrometer III, a detector at the Beijing
Electron-Positron Collider II, located at IHEP

e+e− collider at the ψ(3770)→ D0D̄0 threshold
2010-2011: 3 fb−1

2022: 5 fb−1

Expect 20 fb−1 in total by end of 2024
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Strong phase analysis of D0 → K+K−π+π− at BESIII

Double-tag analysis: Reconstruct signal (KKππ) and tag mode

D0D̄0 pair is quantum correlated

D0 D̄0

ψ(3770)

Equivalently, we can consider D+D−
D± = 1√

2
(D0 ± D̄0) are CP eigenstates

D+ D−

ψ(3770)

The DD pair is quantum correlated, spooky action at a distance!
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Strong-phase in quantum correlated D0D̄0 decays

Tag mode can be a flavour tag

K−π+, K−π+π0, K−π+π−π+, K−e+νe

π−

π+

K−

K+

π+

K−

Flavour tags do not exhibit quantum correlation effects
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Strong-phases in quantum correlated D0D̄0 decays

Tag mode can be a CP even tag

KK , ππ, πππ0, KSπ
0π0, KLπ

0, KLω

π−

π+

K−

K+

K+

K−

D → K+K−, which is CP even, forces D → K+K−π+π− to be CP odd
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Strong-phase in quantum correlated D0D̄0 decays

Tag mode can be a CP odd tag

KSπ
0, KSω, KSη, KSη

′, KLπ
0π0

π−

π+

K−

K+

π0

KS

D → K 0
Sπ

0, which is CP odd, forces D → K+K−π+π− to be CP even
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Strong phase analysis of D0 → K+K−π+π− at BESIII

Quantum correlation can modify the effective branching fraction:

NDT

NST
= B(D0 → KKππ)

(
1± c1

)

arXiv:2212.06489

c1 is the cosine of the strong phase, averaged over the whole phase space

Martin Tat (University of Oxford) B± → [K+K−π+π−]Dh± 9th February 2023 63 / 80



Strong phase analysis of D0 → K+K−π+π− at BESIII

Our next task is to change the phase space inclusive analysis,

NDT

NST
=B(D0 → KKππ) (flavour tag)

NDT

NST
=B(D0 → KKππ)

(
1± c1

)
(CP tag)

into a binned phase space analysis:

NDT
i

NST
=B(D0 → KKππ)Fi (flavour tag)

NDT
i

NST
=B(D0 → KKππ)

(
Fi + F̄i ± 2

√
Fi F̄ici

)
(CP tag)

1 Fi : Measure using flavour tags

2 ci : Determine from asymmetry of CP even and odd tags
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Strong phase analysis of D0 → K+K−π+π− at BESIII

Our next task is to change the phase space inclusive analysis,

NDT

NST
=B(D0 → KKππ) (flavour tag)

NDT

NST
=B(D0 → KKππ)

(
1± c1

)
(CP tag)

into a binned phase space analysis:

NDT
i

NST
=B(D0 → KKππ)Fi (flavour tag)

NDT
i

NST
=B(D0 → KKππ)

(
Fi + F̄i ± 2

√
Fi F̄ici

)
(CP tag)

1 Fi : Measure using flavour tags

2 ci : Determine from asymmetry of CP even and odd tags

3 si : Analogous to ci , but requires binning of tag mode
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Strong phase analysis of D0 → K+K−π+π− at BESIII

Our next task is to change the phase space inclusive analysis,

NDT

NST
=B(D0 → KKππ) (flavour tag)

NDT

NST
=B(D0 → KKππ)

(
1± c1

)
(CP tag)

into a binned phase space analysis:

NDT
i

NST
=B(D0 → KKππ)Fi (flavour tag)

NDT
i

NST
=B(D0 → KKππ)

(
Fi + F̄i ± 2

√
Fi F̄ici

)
(CP tag)

1 Fi : Measure using flavour tags

2 ci : Determine from asymmetry of CP even and odd tags

3 si : Analogous to ci , but requires binning of tag mode
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!
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Summary and conclusion

1 I have presented a CPV study of B± → [K+K−π+π−]Dh
±

2 Multi-body decays, such as D0 → K+K−π+π−, have a great
potential for measuring γ

3 The optimised binning scheme, developed with an amplitude model,
successfully identified regions with large, local CP asymmetries

4 However, amplitude model
predictions of δD
should not be trusted

Making binning
scheme with
amplitude model

Predicting strong
phases with
amplitude model
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Summary and conclusion

5 The fit results, using model predicted strong phases, were found to
have a 3σ tension with the current LHCb combination

6 External inputs from charm factories, such as BESIII, are crucial to
constrain charm strong phases

7 Combined, the LHCb and BESIII analyses will lead to the first model
independent measurement of γ in this channel

8 Work is ongoing in similar four-body modes:

D0 → π+π−π+π−

D0 → K 0
Sπ

+π−π0

Thanks for your attention!
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Backup slides

Backup slides
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The LHCb detector

The LHCb detector
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The LHCb detector

LHCb: A beauty experiment with a lot of charm
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The LHCb detector

VELO: Vertex locator to reconstruct B and D vertices
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The LHCb detector

RICH: Identify B and D daughter particles
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Event selection

Event selection
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Event selection

Decay topology

Look for:

1 5 charged tracks

2 Displaced B vertex

3 1 bachelor track with
good PID information

4 Displaced D vertex with
invariant mass within
25 MeV of the D0 mass IP

π+

π−

K+

K−

K−

B−

D
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Event selection

Offline selection has 3 stages

Initial cuts:

1 Invariant D and B mass cuts

2 Momentum and RICH requirements

Boosted Decision Tree (BDT)

Signal sample: Simulation samples

Background sample: Upper B mass sideband

28 variables describing kinematics, impact parameters, vertex quality

Final selection

1 D Flight distance

2 Particle Identification of bachelor

3 K 0
S veto

Martin Tat (University of Oxford) B± → [K+K−π+π−]Dh± 9th February 2023 76 / 80



Event selection

BDT is highly efficient at rejecting combinatorial background
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Event selection

Very important, combinatorial background is large in multi-body decays

Martin Tat (University of Oxford) B± → [K+K−π+π−]Dh± 9th February 2023 78 / 80



Event selection
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The invariant B mass, after online selection, show no visible signal...
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Event selection
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... but the BDT does a great job cleaning this up!
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