Exotic hadrons (or not) at LHCb

Tim Burns

Swansea University

19 May 2016

```
[T.B., Eur.Phys.J. A51, 152 (2015), 1509.02460]
[T.B. & E.Swanson, Phys.Lett.B. ..., 1603.04366]
```

Conventional & exotic hadrons

Conventional hadrons in the constituent quark model

Mesons $q\bar{q}$ and baryons qqq are classified according to

- $ightharpoonup J^P$ (or J^{PC} for neutral-flavoured mesons).
- ▶ I for those with u, d quarks.

Strong interactions conserve $J^{P(C)}$ and I.

Non-relativistic decomposition $\vec{J} = \vec{S} + \vec{L}$ where

- ➤ S is the coupling of intrinsic quark spins (0 or 1 for mesons, 1/2 or 3/2 for baryons)
- ▶ L is the orbital angular momentum (each unit of L flips parity)

Masses (and relations among masses) are consistent with potential models "inspired by" QCD (one-gluon exchange, flux tube model).

Beyond this simple picture

Gluonic degrees of freedom

- Hybrid mesons with excited flux tubes, exotic J^{PC}
- ▶ decay selection rules [T.B., PRD74, 034003 (2006)]

The coupling $Q\bar{Q} \to (Q\bar{q})(q\bar{Q})$ and "unquenched" quark models

- model-independent coupling parametrised by angular momentum coefficients [T.B., PRD90,034009(2014)]
- coupling causes mass shifts and spin-dependent splittings, so why does the conventional (quenched) quark model work?

```
[T.B., 1411.2485]
```

This talk:

- "molecular" states (hadronic constituents)
- cusps/threshold effects (hadronic constituents)
- compact multiquarks (quark or diquark constituents)

Molecules

Hadrons interact (eg exchanging pions or quarks), and attractive interactions can give bound states (c.f. the deuteron). Weak binding implies

- masses are tied to thresholds
- expect S-wave only
- extended wavefunctions of colour singlet hadrons

Dominant interactions are π exchange, which restricts possibilities:

- \blacktriangleright conservation of $I(J^P)$ at π vertex limits constituents.
- ▶ not all channels are attractive. E.g. for NN the $I(J^P)$ combinations $O(0^+)$, $O(1^+)$, $O(1^+)$, $O(1^+)$, $O(1^+)$ are possible, but only $O(1^+)$ is bound.

Molecules

Heavy hadronic molecules were predicted years ago.

Since π has $I(J^P) = 1(0^-)$,

- **b** both constituents must have isospin, since $0 \not\to 1 \times 0$
- lacktriangle no molecules with only 0^- constituents, since $0^-
 eq 0^- imes 0^-$

This rules out molecules of $D_s^{(*)}\bar{D}^{(*)},~D_s^{(*)}\bar{D}_s^{(*)},$ and $D\bar{D}.$

For $D^*\bar{D} \oplus D\bar{D}^*$ there are four $I(I^P)$ channels...

$$0(1^{++}) \ 0(1^{+-}) \ 1(1^{++}) \ 1(1^{+-})$$

...but one is uniquely attractive

Molecules

Heavy hadronic molecules were predicted years ago.

Since π has $I(J^P) = 1(0^-)$,

- **b** both constituents must have isospin, since $0 \not\to 1 \times 0$
- lacktriangle no molecules with only 0^- constituents, since $0^-
 eq 0^- imes 0^-$

This rules out molecules of $D_s^{(*)}\bar{D}^{(*)}$, $D_s^{(*)}\bar{D}_s^{(*)}$, and $D\bar{D}$.

For $D^*\bar D \oplus D\bar D^*$ there are four $I(J^P)$ channels. . .

...but one is uniquely attractive

Molecules: X(3872)

[LHCb, PRD92, 011102(2015)]

$$\label{eq:mass} Mass = 3871.69 \pm 0.17~MeV$$

$$D^{0*}\bar{D}^0~threshold = 3871.81 \pm 0.13~MeV$$

Molecules: X(3872)

The charged channel is also nearby

$$Mass = 3871.69 \pm 0.17 \; MeV$$

$$D^{0*}\bar{D}^0 \; threshold = 3871.81 \pm 0.13 \; MeV$$

$$D^{+*}\bar{D}^- \; threshold = 3879.88 \pm 0.14 \; MeV$$

but due to the mass gap the wavefunction is dominated by the neutral pair, so the state has mixed isospin.

Coupling via quark exchange to nearby $J/\psi\rho$ and $J/\psi\omega$ thresholds gives additional attraction [Swanson PLB288, 189 (2004)]

Compact multiquarks

Tetraquarks qqqq or pentaquarks qqqqq with quark (or diquark) constituents, non-trivial spatial and colour wavefunctions. S-wave mass formula:

$$H = \sum_k m_k + \sum_{ij} \alpha_{ij} \vec{S}_i \cdot \vec{S}_j$$

For qqqq:

- ► Full model: bases $\begin{pmatrix} |(q\bar{q})_1(q\bar{q})_1\rangle \\ |(q\bar{q})_8(q\bar{q})_8\rangle \end{pmatrix}$ or $\begin{pmatrix} |(qq)_{\bar{3}}(\bar{q}\bar{q})_3\rangle \\ |(qq)_6(\bar{q}\bar{q})_{\bar{6}}\rangle \end{pmatrix}$.
- "Diquark" models: truncated basis $|(qq)_{\bar{3}}(\bar{q}\bar{q})_3\rangle$.

```
[Maiani et al., PRD71, 014028(2005)]
```

Generically:

- ▶ There is a proliferation of states
- ▶ Masses are not tied to thresholds.

$P_c(4380)$ and $P_c(4450)$

[T.B., Eur.Phys.J. A51, 152 (2015), 1509.02460]

$P_c(4380)$ and $P_c(4450)$

LHCb amplitude analysis of the three-body decay $\Lambda_b\to J/\psi p K^-,$ studying the $p K^-$ and exotic $J/\psi p$ mass spectra.

A state in $J/\psi p$ is a "pentaquark" with flavour $uudc\bar{c}$.

[LHCb, PRL115, 072001, 2015]

 $P_c(4380)$ and $P_c(4450)$

 $P_c(4380)$ and $P_c(4450)$

	$P_c(4380)^+$	$P_{c}(4450)^{+}$
Mass Width	$4380 \pm 8 \pm 29$ $205 \pm 18 \pm 86$	$4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19$
Assignment 1 Assignment 2 Assignment 3	3/2 ⁻ 3/2 ⁺ 5/2 ⁺	5/2 ⁺ 5/2 ⁻ 3/2 ⁻

The J/ ψp combination has I = 1/2 and (in S-wave) 1/2 $^-$ or 3/2 $^-$.

 $P_c(4380)$ and $P_c(4450)$

	The second secon	
	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass Width	$4380 \pm 8 \pm 29$ $205 \pm 18 \pm 86$	$4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19$
Assignment 1	3/2-	5/2 ⁺
Assignment 2	$3/2^{+}$	5/2-
Assignment 3	5/2+	3/2-

$$\Sigma_c^{*+}\bar{D}^0 \qquad \quad (\text{udc})(\text{u}\bar{c}) \ \, 4382.3 \pm 2.4 \label{eq:constraint}$$

The $J/\psi p$ combination has I=1/2 and (in S-wave) $1/2^-$ or $3/2^-$.

 $P_c(4380)$ and $P_c(4450)$

		$P_c(4380)^+$	$P_c(4450)^+$
Mass Width		$4380 \pm 8 \pm 29$ $205 \pm 18 \pm 86$	$4449.8 \pm 1.7 \pm 2.5 35 \pm 5 \pm 19$
Assignment 1 Assignment 2 Assignment 3		3/2 ⁻ 3/2 ⁺ 5/2 ⁺	5/2 ⁺ 5/2 ⁻ 3/2 ⁻
$\Sigma_c^{*+}\bar{\mathrm{D}}^0$	(udc)(uc̄)	4382.3 ± 2.4	
$\Sigma_c^+\bar{D}^{*0}$	$(udc)(u\bar{c})$		4459.9 ± 0.5

The $J/\psi p$ combination has I=1/2 and (in S-wave) $1/2^-$ or $3/2^-$.

 $P_c(4380)$ and $P_c(4450)$

		$P_c(4380)^+$	$P_c(4450)^+$
Mass		4380 ± 8±29	$4449.8 \pm 1.7 \pm 2.5$
Width		$205\pm18\pm86$	$35\pm5\pm19$
Assignment 1		3/2-	5/2+
Assignment 2		$3/2^{+}$	$5/2^{-}$
Assignment 3		5/2+	3/2-
$\Sigma_c^{*+}\bar{D}^0$	(udc)(uc̄)	4382.3 ± 2.4	
$\Sigma_c^+ \bar{\mathrm{D}}^{*0}$	$(udc)(u\bar{c})$		4459.9 ± 0.5
$\Lambda_c^{*+} \bar{D}^0$	$(udc)(u\bar{c})$		4457.09 ± 0.35
χ _c 1p	$(udu)(c\bar{c})$		4448.93 ± 0.07

The $J/\psi p$ combination has I=1/2 and (in S-wave) $1/2^-$ or $3/2^-$.

$P_c(4380)$ and $P_c(4450)$: some possibilities

Cusps: [Guo et al.] [Liu et al.] [Mikhasenko] Xel D(*) Molecules [Karliner & Rosner] [Yang et al.] [He]

Compact pentaquarks[Maiani et al.,Lebed]

$P_c(4380)$ and $P_c(4450)$: partner states

 $\chi_{c1}p$ scenario:

- neutral $\chi_{c1}n$ partner heavier by ≈ 1.29 MeV
- \triangleright 1/2⁻, 3/2⁻ and 5/2⁻ partners (P-wave is required)

$\Lambda_c^{+*}\bar{\rm D}^0$ scenario:

- neutral $\Lambda_c^{+*}D^-$ partner heavier by ≈ 4.77 MeV
- other J^P partners

$\Sigma_c^{(*)} \bar{\mathsf{D}}^{(*)}$ scenario:

- neutral I = 1/2 partner
- > possible I = 3/2 partners including doubly-charged, decaying into $J/\psi\Delta$
- possible J^P partners

Compact pentaquark scenario:

many partners with different flavours and J^P

$P_c(4450)$ as a $\Sigma_c \bar{D}^*$ molecule

No π exchange for $\chi_{c1}p$ (isospin), $\Lambda_c^*\bar{D}$ (isospin) or $\Sigma_c^{(*)}\bar{D}$ (J^P). The remaining π exchange potentials have relative weights:

$\Sigma_c \bar{\mathrm{D}}^*$		$\Sigma_c^* \bar{D}^*$	
$1/2(1/2^-)$	+8	$1/2(1/2^-)$	+10
$1/2(3/2^-)$	-4	$1/2(3/2^{-})$	+4
		$1/2(5/2^-)$	-6
$3/2(1/2^{-})$	-4	$3/2(1/2^{-})$	-5
$3/2(3/2^{-})$	+2	$3/2(3/2^{-})$	-2
		3/2(5/2-)	+3

5 out of 10 channels are repulsive.

$P_c(4450)$ as a $\Sigma_c\bar{D}^*$ molecule

No π exchange for $\chi_{c1}p$ (isospin), $\Lambda_c^*\bar{D}$ (isospin) or $\Sigma_c^{(*)}\bar{D}$ (J^P). The remaining π exchange potentials have relative weights:

$\Sigma_c \bar{\mathrm{D}}^*$		$\Sigma_c^* \bar{D}^*$	
1/2(1/2-)	+8	1/2(1/2-)	+10
$1/2(3/2^-)$	-4	$1/2(3/2^{-})$	+4
		$1/2(5/2^-)$	-6
$3/2(1/2^-)$	-4	$3/2(1/2^{-})$	-5
3/2(3/2-)	+2	$3/2(3/2^{-})$	-2
		3/2(5/2-)	+3

For $J/\psi p$ only I=1/2 is possible. . .

$P_c(4450)$ as a $\Sigma_c\bar{D}^*$ molecule

No π exchange for $\chi_{c1}p$ (isospin), $\Lambda_c^*\bar{D}$ (isospin) or $\Sigma_c^{(*)}\bar{D}$ (J^P). The remaining π exchange potentials have relative weights:

$\Sigma_c \bar{\mathrm{D}}^*$		$\Sigma_c^* \bar{D}^*$	
1/2(1/2-)	+8	1/2(1/2-)	+10
$1/2(3/2^-)$	-4	$1/2(3/2^{-})$	+4
		$1/2(5/2^-)$	-6
$3/2(1/2^{-})$	-4	$3/2(1/2^{-})$	-5
$3/2(3/2^{-})$	+2	$3/2(3/2^{-})$	-2
		3/2(5/2-)	+3

... and $5/2^-$ is D-wave.

$P_c(4450)$ as a $\Sigma_c \bar{D}^*$ molecule

No π exchange for $\chi_{c1}p$ (isospin), $\Lambda_c^*\bar{D}$ (isospin) or $\Sigma_c^{(*)}\bar{D}$ (J^P). The remaining π exchange potentials have relative weights:

$\Sigma_c \bar{\mathrm{D}}^*$		$\Sigma_c^*\bar{\mathrm{D}}^*$	
$1/2(1/2^-)$	+8	1/2(1/2-)	+10
$1/2(3/2^-)$	-4	$1/2(3/2^{-})$	+4
		$1/2(5/2^-)$	-6
$3/2(1/2^{-})$	-4	$3/2(1/2^{-})$	-5
$3/2(3/2^{-})$	+2	$3/2(3/2^{-})$	-2
		3/2(5/2-)	+3

The remaining channel is one of the possibilities at LHCb.

$P_c(4450)$ as a $\Sigma_c\bar{D}^*$ molecule

No π exchange for $\chi_{c1}p$ (isospin), $\Lambda_c^*\bar{D}$ (isospin) or $\Sigma_c^{(*)}\bar{D}$ (J^P). The remaining π exchange potentials have relative weights:

$\Sigma_c \bar{\mathrm{D}}^*$		$\Sigma_c^* \bar{\mathrm{D}}^*$	
1/2(1/2-)	+8	1/2(1/2-)	+10
$1/2(3/2^-)$	-4	$1/2(3/2^{-})$	+4
		$1/2(5/2^{-})$	-6
$3/2(1/2^{-})$	-4	$3/2(1/2^{-})$	-5
$3/2(3/2^{-})$	+2	$3/2(3/2^{-})$	-2
		3/2(5/2-)	+3

If $P_c(4450)$ is $1/2(3/2^-),$ it has a degenerate $3/2(1/2^-)$ partner.

Isospin violation in the $\Sigma_c^{(*)} ar{D}^{(*)}$ scenario

The uudcc̄ combination is $\left\{ \begin{array}{l} (udc)(u\bar{c}) = \Sigma_c^{(*)+}\bar{D}^{(*)0} \\ (uuc)(d\bar{c}) = \Sigma_c^{(*)++}D^{(*)-} \end{array} \right.$

Isospin-conserving interactions would produce $|I,\,I_3\rangle$ eigenstates,

$$\left(\begin{array}{c} |\frac{1}{2},\frac{1}{2}\rangle \\ |\frac{3}{2},\frac{1}{2}\rangle \end{array} \right) = \left(\begin{array}{c} -\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} \end{array} \right) \left(\begin{array}{c} |\Sigma_c^+\bar{D}^0\rangle \\ |\Sigma_c^{++}D^-\rangle \end{array} \right)$$

but isospin is broken by the threshold masses:

$$\begin{split} P_c(4380) &= 4380 \pm 8 \pm 29 & P_c(4450) &= 4449 \pm 1.7 \pm 2.5 \\ \Sigma_c^{*+} \bar{D}^0 &= 4382.3 \pm 2.4 & \Sigma_c^{+} \bar{D}^{*0} &= 4459.9 \pm 0.5 \\ \Sigma_c^{*++} D^- &= 4387.5 \pm 0.7 & \Sigma_c^{++} D^{*-} &= 4464.24 \pm 0.23 \end{split}$$

The $\Sigma_c^{(*)+}\bar{D}^{(*)0}$ components are enhanced and the physical states are admixtures of $|\frac{1}{2},\frac{1}{2}\rangle$ and $|\frac{3}{2},\frac{1}{2}\rangle$.

Isospin violation in the $\Sigma_c^{(*)} ar{D}^{(*)}$ scenario

Decays by quark-rearrangement are related.

In the $\Sigma_c^{(*)}\bar{\mathrm{D}}^{(*)}$ scenario with mixing angle

$$|P_c\rangle = \cos\varphi |\frac{1}{2}\text{, }\frac{1}{2}\rangle + \sin\varphi |\frac{3}{2}\text{, }\frac{1}{2}\rangle$$

and assuming the most natural assignment:

$$J/\psi N: J/\psi \Delta: \eta_c \Delta = 2\cos^2 \varphi: 5\sin^2 \varphi: 3\sin^2 \varphi \quad [P_c(4380)]$$

$$J/\psi N: J/\psi \Delta: \eta_c \Delta = \cos^2 \varphi: 10 \sin^2 \varphi: 6 \sin^2 \varphi \qquad [P_c(4450)]$$

The Δ^+ modes could be inferred from the ratio of $p\pi^0$ to $n\pi^+$.

There are further relations and selection rules for other scenarios.

$P_c(4450)$: parallels with X(3872)

P_c states in the Cabibbo-suppressed mode

Before P_c discovery LHCb had previously observed $\Lambda_b \to J/\psi p \pi^-$, and reported no sign of a $J/\psi p$ structure.

[LHCb, JHEP07(2014)103]

P_c states in the Cabibbo-suppressed mode

X(5568)

```
[T.B. & E.Swanson, Phys.Lett.B. ..., 1603.04366]
```

X(5568): discovery at DØ

In $p\bar{p}$ collisions DØ discovers $B_s\pi^+$ state,

$$M = 5567.8 \pm 2.9^{+0.9}_{-1.9} \text{ MeV}$$

 $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{ MeV}$

With $B_s=s\bar{b}(0^-)$ and $\pi^+=u\bar{d}(0^-)$,

- Quark content $su\bar{b}\bar{d}$, with no "hidden" flavour
- ► I = 1
- $ightharpoonup J^P = 0^+ \text{ (or } 1^-, 2^+, \ldots)$

(Another possibility is $B_s^*\pi^+$ with a hidden $B_s^* o B_s\gamma$).

X(5568): discovery at DØ

X(5568): non-observation at LHCb ($p_T > 5$ GeV)

X(5568): non-observation at LHCb ($p_T > 10$ GeV)

DØ fraction of B_s from $X(5568) \to B_s \pi$ around 9%; at LHCb the upper limit is around 10× smaller. [LHCb-CONF-2016-004]

X(5568): the possibilities

The $su\bar{b}\bar{d}$ thresholds $(s\bar{b})(u\bar{d})$ and $(u\bar{b})(s\bar{d})$ are

$$B_s\pi=5507~MeV$$

 $B_s^*\pi=5554~MeV$
 $B\bar{K}=5774~MeV$

We looked at weak coupling scenarios

- threshold enhancement (opening of $B_s \pi$)
- ▶ cusp (due to $B_s^*\pi \to B_s\pi$)
- ▶ hadronic molecule $(B_s\pi B\bar{K})$

and the strong coupling scenario

► "compact" tetraquark sub̄d̄

Nothing works.

X(5568) as a $B_s\pi$ threshold enhancement

X(5568) as a $B_s^*\pi \to B_s\pi$ cusp

r (fm)

Shape of V_{eff} is right, but there is no resonance.

X(5568) as a tetraquark: mass

Very quickly several authors claimed to explain X(5568) as an $su\bar{b}\bar{d}$ tetraquark using constituent quark models.

But its mass is too low:

- ▶ Compare to sub baryons $\Xi_b = 5794 MeV$, $\Xi_b^* = 5945 MeV$.
- ▶ It is around $B_s^{(*)}\pi$ threshold, but π is anomalously light in the constituent quark picture.
- Estimating the sums of constituent quark masses:

$$\begin{split} (u\bar{b})(s\bar{d}): & \quad \frac{1}{4}\left(3B^*+B+3K^*+K\right) = 6107 MeV \\ (s\bar{b})(u\bar{d}): & \quad \frac{1}{4}\left(3B_s^*+B_s+3\rho+\pi\right) = 6019 MeV \end{split}$$

So how did they get the mass right?

X(5568) as a tetraquark: neutral partners

Whereas for the cusp there is one neutral partner, for the tetraquark there are two.

If isospin is good, the partners of $|I,\,I_3\rangle=|1,+1\rangle=|su\bar{b}\bar{d}\rangle$ are

$$\left(\begin{array}{c} |1,0\rangle \\ |0,0\rangle \end{array}\right) = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} |su\bar{b}\bar{u}\rangle \\ |sd\bar{b}\bar{d}\rangle \end{array}\right)$$

- ▶ $|1,0\rangle$ peak in $B_s\pi^0$, degenerate with X(5568) (c.f. cusp, lower)
- $\blacktriangleright |0,0\rangle$ state has no open channels! ($B_s\eta,~B\bar{K}$ are much higher)

For mixed isospin,

- ► masses split either side of X(5568)
- **b** both decay into $B_s \pi^0$ via $|1,0\rangle$ component
- two $B_s \pi^0$ peaks, either side of X(5568), and narrower

X(5568) as a tetraquark: other partners

Discovery of partners can discriminate models:

In both models the lightest states are a $0^+/1^+$ doublet, so if X(5568) is one of these, it must have a nearly degenerate partner.

X(5568) as a tetraquark: other partners

The proliferation of partner states in tetraquark models cannot be "explained away".

If $X(5568) \rightarrow B_s \pi$ is the lightest $I(J^P) = 1(0^+)$ state,

- ▶ Doublet partner $1(1^+) \to B_s^*\pi$ with less phase space. Narrow.
- ▶ Doublet $0(0^+)$ and $0(1^+)$ have no strong decays. Narrow.
- ▶ Higher $0(0^+)$, $0(1^+)$ and $0(2^+)$ likely below $B^{(*)}\bar{K}^{(*)}$. Narrow.
- ▶ $1(2^+) \rightarrow B_s^{(*)} \pi$ in D-wave and HQ spin violation. Narrow.

... and in more general models there are twice as many states.

Conclusions

- ightharpoonup Meson-baryon degrees of freedom seem to be relevant for the P_c states, and their roles can be inferred from missing partners and strong decays.
- ▶ The $P_c(4450)$ emerges naturally as a $\Sigma_c \bar{D}^*$ state due to π exchange, which also implies a degenerate partner.
- ▶ There are other intriguing parallels between $P_c(4450)$ and X(3872), including the signature of isospin violation.
- ▶ Models cannot easily accommodate X(5568), and it very likely does not exist.
- Models based on interacting hadronic constituents are better constrained and do not suffer the proliferation of partners expected for compact multiquarks.

	P _c *				P_c	
	χ _{c1} p	$\Sigma_c\bar{D}^*$	$\Lambda_c^* \bar{D}$	J/ψN*	$\Sigma_c^* \bar{D}$	J/ψN*
J/ψN	√	√	√	√	√	√
$\eta_c N$	×	×	\checkmark	×	×	×
J/ψΔ	×	√	×	×	√	×
$\eta_c\Delta$	×	\checkmark	×	×	\checkmark	×
$\Lambda_{ m c}ar{ m D}$	√	[×]	[√]	×	[×]	×
$\Lambda_{ m c}ar{ m D}^*$	\checkmark	\checkmark	[√]	\checkmark	\checkmark	\checkmark
$\Sigma_{ m c}ar{ m D}$	\checkmark	$[\times]$	\checkmark	×	$[\times]$	×
$\Sigma_c^* \bar{\mathrm{D}}$	\checkmark	\checkmark	$[\times]$	\checkmark		
Ϳ/ψΝπ	×	√	×	√	√	\checkmark
$\Lambda_{ m c}ar{ m D}\pi$	×	×	×	×	\checkmark	×
$\Lambda_{ m c}ar{ m D}^*\pi$	×	\checkmark	×	×		
$\Sigma_c^+ ar{\mathrm{D}}^0 \pi$	$^{0}\times$	\checkmark	\checkmark	×		

X(5568) as a cusp

Since X(5568) is near $B_s^*\pi$ threshold (5554 MeV), could it be a cusp due to $B_s^*\pi \to B_s\pi$ rescattering? Consider generic process (invariant mass \sqrt{s}) producing $B_s^*\pi$ loop.

Non-relativistic model with contact interactions:

$$\Pi(s) = \int \frac{d^3q}{(2\pi)^3} \frac{q^{2L} e^{-2q^2/\beta^2}}{\sqrt{s} - M_{B_s^*} - M_\pi - q^2/(2\mu) + i\varepsilon}$$

and require L = 1.

X(5568) as a cusp

Problems:

- ▶ Requires $\beta = 50$ MeV, an order of magnitude too small.
- P-wave scattering is typically weak.
- ► Low energy hadron scattering entails flavour exchange, but no such diagram is possible.

Consequences:

- ightharpoonup X(5568) is a 1^- state.
- ▶ A peak in $B_s^*\pi^+ \to B_s\pi^+$ implies a peak in $B_s^*\pi^0 \to B_s\pi^0$, so X(5568) has a neutral partner around 5 MeV lighter.
- ▶ Analogous state(s) at 5909 MeV due to $B_s^*\bar{K} \to B_s\bar{K}$.

X(5568) as a hadronic molecule

The thresholds are all wrong...

$$B_s \pi = 5507 \text{ MeV}, \qquad B_s^* \pi = 5554 \text{ MeV}, \qquad B\bar{K} = 5774 \text{ MeV}$$

 \dots and there is no π exchange.

An alternative: a coupled-channel $B_s\pi-B\bar{K}$ system?

- Quark-level interactions and quark exchange
- ► No elastic scattering
- ► $T(B_s\pi \to B\bar{K})$ gives $V(B_s\pi \to B\bar{K})$

Conventional hadrons in the constituent quark model

$n^{\ 2s+1}\ell_J$	J^{PC}	l = 1	$I = \frac{1}{2}$	I = 0	I = 0	
		$u\overline{d}$, $\overline{u}d$, $\frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$u\overline{s}, d\overline{s}; \overline{ds}, -\overline{u}s$	f'	f	
$1 \ ^1S_0$	0^{-+}	π	K	η	$\eta'(958)$	
$1\ ^3S_1$	1	$\rho(770)$	$K^*(892)$	$\phi(1020)$	$\omega(782)$	
$1\ ^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
$1 \ ^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	
$1~^3P_1$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	
$1\ ^3P_2$	2++	$a_2(1320)$	$K_2^*(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	
$1\ ^1D_2$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$	
$1\ ^3D_1$	1	$\rho(1700)$	$K^*(1680)$		$\omega(1650)$	
$1 \ ^3D_2$	2		$K_2(1820)$			
$1\ ^3D_3$	3	$ ho_{3}(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$	
$1\ ^3F_4$	4++	$a_4(2040)$	$K_4^*(2045)$		$f_4(2050)$	
$1\ ^{3}G_{5}$	5	$\rho_5(2350)$	$K_5^*(2380)$			
$1~^3H_6$	6++	$a_6(2450)$			$f_6(2510)$	
$2\ ^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$	
$2~^3S_1$	1	ho(1450)	$K^*(1410)$	$\phi(1680)$	$\omega(1420)$	

Conventional hadrons in the constituent quark model

$n^{\;2s+1}\ell_{J} \;\; J^{PC}$	$l = 0$ $c\overline{c}$	$\mathbf{l} = 0$ $b\overline{b}$	$\begin{array}{c} I = \frac{1}{2} \\ c\overline{u}, c\overline{d}; \overline{c}u, \overline{c}d \end{array}$	$l = 0$ $c\overline{s}; \overline{c}s$	$ \begin{aligned} I &= \frac{1}{2} \\ b\overline{u}, b\overline{d}; \overline{b}u, \overline{b}d \end{aligned} $	$l = 0$ $b\overline{s}; \overline{b}s$	$l = 0$ $b\overline{c}; \overline{b}c$
1 ¹ S ₀ 0 ⁻⁺	$\eta_c(1S)$	$\eta_b(1S)$	D	D_s^{\pm}	В	B_s^0	B_c^{\pm}
1 3S1 1	$J/\psi(1S)$	$\Upsilon(1S)$	D^*	$D_s^{*\pm}$	B^*	B_s^*	
1 ¹ P ₁ 1 ⁺⁻	$h_c(1P)$	$h_b(1P)$	$D_1(2420)$	$D_{s1}(2536)^\pm$	$B_1(5721)$	$B_{s1}(5830)^0$	
1 ³ P ₀ 0 ⁺⁺	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$D_0^*(2400)$	$D_{s0}^*(2317)^{\pm\dagger}$			
1 3P1 1++	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	$D_1(2430)$	$D_{s1}(2460)^{\pm\dagger}$			
1 ³ P ₂ 2 ⁺⁺	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	$D_2^*(2460)$	$D_{s2}^*(2573)^\pm$	$B_2^*(5747)$	$B_{s2}^*(5840)^0$	
1 3D1 1	$\psi(3770)$			$D_{s1}^*(2860)^{\pm \ddagger}$			
1 ³ D ₃ 3				$D_{s3}^*(2860)^{\pm}$			
2 1 S0 0-+	$\eta_c(2S)$	$\eta_b(2S)$	D(2550)				
2 3S1 1	$\psi(2S)$	$\Upsilon(2S)$		$D_{s1}^*(2700)^{\pm\ddagger}$			
2 ¹ P ₁ 1 ⁺⁻		$h_b(2P)$					
2 ³ P _{0,1,2} 0 ⁺⁺ , 1 ⁺⁺ , 2 ⁺⁺	$\chi_{c0,2}(2P)$	$\chi_{b0,1,2}(2P)$					
$3\ ^3P_{0,1,2}\ 0^{++},1^{++},2^{++}$		$\chi_b(3P)$					

Chromomagnetism

A common potential for mesons and baryons

$$H = \sum_{i} \left(m_i + \frac{p_i^2}{2m_i} \right) + \sum_{ij} \left(V(r_{ij}) - \frac{C}{m_i m_j} \delta^3(\vec{r}_{ij}) \vec{\lambda}_i \cdot \vec{\lambda}_j \vec{S}_i \cdot \vec{S}_j \right) + \dots$$

[De Rujula, Georgi and Glashow PRD12, 147 (1975)]

$$\begin{array}{ll} q\bar{q}: & 3\times\bar{3}=1+8 \\ qqq: & 3\times3\times3=3\times(\bar{3}+6) \\ & = 3\times\bar{3}+3\times6 \\ & = 1+8+\dots \end{array}$$

Any qq pair in a baryon is in colour 3, and

$$\langle \vec{\lambda}_q \cdot \vec{\lambda}_{\bar{q}} \rangle_1 = 2 \langle \vec{\lambda}_q \cdot \vec{\lambda}_q \rangle_{\bar{3}}$$

It works.

X(5568): discovery at DØ

Data after applying a "cone cut":

X(5568) as a tetraquark: mass

Several authors found masses (almost) in agreement with experiment. How?

- ▶ Liu et al. [1603.011310] take s, u, \bar{d} from crude fit to $D_{sJ}(2632)$, and \bar{b} from ...? The masses fail badly for conventionals e.g. 5390 MeV for sub baryons (cf. $\Xi_b=5794$ MeV, $\Xi_b^*=5945$ MeV)
- ▶ Wang and Zhu [1602.08806] get the diquark masses from $a_0(980)$ as an S-wave $(us)(\bar{u}\bar{s})$ and $\Upsilon(10890)$ as a P-wave (!) $(bd)(\bar{b}\bar{d})$.
- ▶ Stancu [1603.03322] fits hyperfine term to the $\rho-\pi$ mass difference.

X(5568) as a tetraquark: other partners

For each flavour and colour, the $qq\bar{q}\bar{q}$ configuration in S-wave has

- ► two scalars (0⁺)
- ▶ three axials (1⁺)
- ightharpoonup one tensor (2^+)

Splittings are controlled by the hyperfine term in

$$H = \sum_k m_k + \sum_{ij} \alpha_{ij} \vec{S}_i \cdot \vec{S}_j$$

For simplicity consider truncated diquark model, with interactions

- between all pair-wise constituents (Type I)
- only within diquarks (Type II)

X(5568) as a tetraquark: other partners (Type I)

Hyperfine terms involving heavy quarks Q vanish as $m_O
ightarrow \infty$. In the heavy quark limit the $su\bar{b}\bar{d}$ splittings are determined by the $su\bar{d}$ spins, $1 \quad 1/2 \quad 0^+, 1^+$ leading to three degenerate doublets.

sud subd su $0 1/2 0^+.1^+$ 1 3/2 1^+ , 2^+

After a simple calculation,

$$\begin{split} M_{0^+} &= M_{1^+} = M - 3 \kappa_{q\,q}/2 \\ M_{0^+}' &= M_{1^+}' = M + \kappa_{q\,q}/2 - 2 \kappa_{q\,\bar{q}} \\ M_{1^+}'' &= M_{2^+} = M + \kappa_{q\,q}/2 + \kappa_{q\,\bar{q}} \end{split}$$

so definitely a
$$\begin{pmatrix} 0^+/1^+ \\ 1^+/2^+ \end{pmatrix}$$
 doublet is $\begin{pmatrix} \text{heaviest} \\ \text{lightest} \end{pmatrix}$.

X(5568) as a tetraquark: other partners (Type II)

The Type II model treat diquarks genuinely as degrees of freedom...but is not well-motivated theoretically. The pattern is

$$\begin{array}{ll} (s\mathfrak{u})_0(\bar{b}\bar{d})_0: & M_{0^+}=M \\ (s\mathfrak{u})_0(\bar{b}\bar{d})_1: & M_{1^+}=M+\delta \\ (s\mathfrak{u})_1(\bar{b}\bar{d})_0: & M'_{1^+}=M+\Delta \\ (s\mathfrak{u})_1(\bar{b}\bar{d})_1: & M'_{0^+}=M''_{1^+}=M_{2^+}=M+\delta+\Delta \end{array}$$

Note that $\Delta=(s\mathfrak{u})_1-(s\mathfrak{u})_0>>\delta=(\bar{b}\bar{d})_1-(\bar{b}\bar{d})_0.$

$P_c(4380)$ and $P_c(4450)$

Tetraquarks $qq\bar{q}\bar{q}$ or pentaquarks $qqqq\bar{q}$ with quark (or diquark) constituents, non-trivial spatial and colour wavefunctions. Start with a simple model for

$$H = \sum_k m_k + \sum_{ij} \alpha_{ij} \vec{S}_i \cdot \vec{S}_j$$

with coefficients α_{ij} weighted by colour factors.

[De Rujula, Georgi and Glashow PRD12, 147 (1975)]

Any qq pair in a baryon is in $\bar{3}$, and $(\alpha_{q\bar{q}})_1 = 2(\alpha_{qq})_{\bar{3}}$. It works. Inverting systems of equations for different mesons and baryons, e.g.

$$m_q + m_{\bar{q}} = \frac{1}{4} \left(3 M_{^3S_1} + M_{^1S_0} \right)$$

gives independent extractions of m_q and $m_{\bar q}$, remarkably consistent.

[Godfrey & Isgur PRD32, 189 (1985)]

For multiquarks the colour wavefunctions are more intricate, e.g.

$$\begin{array}{ll} q\bar{q}q\bar{q}: & qq\bar{q}\bar{q}: \\ 3\times\bar{3}\times3\times\bar{3} & 3\times3\times\bar{3} \\ = (1+8)\times(1+8) & = (\bar{3}+6)\times(3+\bar{6}) \\ = 1\times1+8\times8+\dots & = \bar{3}\times3+6\times\bar{6}+\dots \\ = 1+(1+8+8+10+\bar{10}+27)+\dots & = (1+8)+(1+8+27)+\dots \end{array}$$

Use either basis
$$\begin{pmatrix} |(q\bar{q})_1(q\bar{q})_1\rangle \\ |(q\bar{q})_8(q\bar{q})_8\rangle \end{pmatrix}$$
 or $\begin{pmatrix} |(qq)_{\bar{3}}(\bar{q}\bar{q})_3\rangle \\ |(qq)_6(\bar{q}\bar{q})_{\bar{6}}\rangle \end{pmatrix}$.

In "diquark" models the Fock space is truncated to $|(qq)_{\bar{3}}(\bar{q}\bar{q})_3\rangle$, and the massive constituents are $(qq)_{\bar{3}}$ and $(\bar{q}\bar{q})_3$ diquarks.

[Maiani et al., PRD71, 014028(2005)]

Masses are not tied to thresholds.

States can decay via their 1×1 component.

There is a proliferation of states, because

- ► Fock space is (in general) twice as large
- ► No restrictions due to J^P
- No restrictions due to flavour
- No restriction to S-wave

X(5568) as a threshold enhancement

Near threshold the rate for $B_s\pi$ in partial wave L grows as

$$\sigma(s) \sim \left(\sqrt{s} - M_{B_s} - M_{\pi}\right)^{L+1/2}$$

and at higher s is attenuated by hadronic overlaps.

Competing effects produce a peak; can it explain X(5568)?

Amplitudes for P_c states

Cusps and triangle singularities

These effects are also connected to thresholds.

Belle study of decays

$$\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$$

 $\Upsilon(5S) \to h_b(nS)\pi^+\pi^-$

discovers charged Z_b states in $\Upsilon(nS)\pi^\pm$ and $h_b(nS)\pi^\pm$, just above $B^*\bar{B}$ and $B^*\bar{B}^*$ thresholds.

 $\gamma(ss)$ \overline{B}^* $\gamma(ns)$

BESIII study of decays

$$Y(4260) \to J/\psi \pi^+\pi^-$$

discovers charged Z_c states in $J/\psi \pi^\pm$, just above $D^*\bar{D}$ and $D^*\bar{D}^*$ thresholds.

Cusps and triangle singularities

An example for the Z_b states:

[Swanson PRD91,034009(2015)]