

Searching for Majorana neutrinos with NEXT

Roxanne Guenette

The University of Manchester

HEP seminar, University of Warwick 1 February 2024

Brief introduction to neutrinos

- We have known for a while that we have three flavors of neutrinos that only interact weakly
- The biggest discovery for neutrinos was the fact that they oscillate (SuperKamiokande, SNO, KamLand...)
- We "understand" oscillation physics and have measured most of the oscillation parameters with some precision
- Oscillation implies that neutrinos are massive particles, in contradiction with the Standard Model
- While massive neutrinos are a first glimpse of new physics, many open questions of neutrinos could lead to paradigm shifting discoveries!

In Standard Model:

- ✓ Neutrinos are created exclusively via weak interactions
- The charged boson W[±] only couples to left-handed particles (right-handed antiparticles)
- ✓ All neutrinos (antineutrinos) and produced left-handed (righthanded)
- ✓ No evidence of right-handed neutrinos
- ✓ Without right-handed fields, neutrinos remain massless

How to give mass to the neutrinos

 Simplest: extend particle content of SM to add righthanded neutrino fields

$$-\mathcal{L}_{H,\ell} = \frac{y^{\ell}v}{\sqrt{2}} \overline{\ell_{\mathrm{L}}} \, \ell_{\mathrm{R}} + \frac{y^{\nu}v}{\sqrt{2}} \overline{y_{\mathrm{L}}} \, v_{\mathrm{R}} + \frac{y^{\ell}}{\sqrt{2}} \overline{\ell_{\mathrm{L}}} \, \ell_{\mathrm{R}} H + \frac{y^{\nu}}{\sqrt{2}} \overline{v_{\mathrm{L}}} \, v_{\mathrm{R}} H + \mathrm{H.c.}$$
$$m_{\ell} = y^{\ell} \frac{v}{\sqrt{2}} \qquad m_{\nu} = y^{\nu} \frac{v}{\sqrt{2}}$$

$$y^{\nu} \lesssim 10^{-11} \ll y^{e} \sim 10^{-6}$$

This doesn't seem natural...

- What are the absolute neutrino masses?
- What is the mass hierarchy (ordering)

• Is there CP violation? What is δ_{CP} ?

- What is the nature of neutrinos (Dirac or Majorana)?
- Are there sterile neutrinos?

What are the absolute neutrino masses?

What is the masse ordering? $(m_{3})^{2}$ $(m_2)^2$ $(\Delta m^2)_{sol}$ $(m_1)^2$ $(\Delta m^2)_{sol} \sim 10^{-5} \text{ eV}^2$ ν. $(\Delta m^2)_{atm}$ $(\Delta m^2)_{atmo} \sim 10^{-3} \text{ eV}^2$ \mathbf{v}_{μ} (Δm^2)_{atm} ν. $(m_{2})^{2}$ $(\Delta m^2)_{sol}$ $(\mathbf{m}_1)^2$ $(m_{2})^{2}$ normal hierarchy inverted hierarchy

- Simplify oscillation predictions significantly
- Constrain GUT
- \rightarrow Guidance to $0\nu\beta\beta$ experiments

Is there CP violation? What is δ_{CP} ?

Anti-Matter \Rightarrow Matter ???

CP violation!

C: Particle —> Antiparticle P: Helicity —> Reversed helicity

Is there CP violation? What is δ_{CP} ?

Anti-Matter \Rightarrow Matter ???

CP violation!

C: Particle —> Antiparticle P: Helicity —> Reversed helicity

 $\overline{\nu}$ (right-handed) = **CP**[ν (left-handed)]

$$P(\overline{\nu_{\alpha}} \to \overline{\nu_{\beta}}) \neq P(\nu_{\alpha} \to \nu_{\beta})$$

What is the nature of neutrinos (Dirac or Majorana)?

Dirac fermion

$$\overline{\mathcal{V}} \neq \mathcal{V}$$

$$-\mathcal{L}_{\rm D} = m_{\nu} \,\overline{\nu_L} \,\nu_R + {\rm H.c}$$

- 4 degrees of freedom:
- LH particle
- RH particle
- LH anti-particle
- RH anti-particle

Majorana fermion $\overline{v} = v$

$$-\mathcal{L}_{\mathrm{M}} = m_{\nu} \,\overline{\nu_L} \,\nu_L^c + \mathrm{H.c}$$

2 degrees of freedom:

- LH particle/antiparticle
- RH particle/antiparticle

Getting the big picture out of the answers

Absolute Mass

Sterile Neutrinos

Nature Majorana/Dirac

Mass Ordering

CP violation

Getting the big picture out of the answers

What if neutrinos are Majorana particles?

- That makes neutrinos even more special!
- It could give constraints for the absolute neutrino mass
- It provides strong basis on neutrino mass mechanism (new mechanism beside Higgs one)
- It give serious ground to *Leptogenesis* (Majorana neutrinos are an excellent ingredient)
- It proves that the Standard Model is only a low-energy effective theory AND it gives the scale of new physics!

Searching for Majorana neutrinos

Please search for Majorana neutrinos! O Martin Patter

How to find a Majorana neutrino?

The only *known* way to search for Majorana neutrinos is studying **double beta decays**

What about double beta decay?

Allowed regular ββ Source: APS/<u>Alan Stonebraker</u>

Neutrinoless ββ ource: APS/<u>Alan Stonebraker</u>

What about double beta decay?

Then let's do it! Yes, but....

- These decays are rare!
- Allowed regular decays have half-life $T_{1/2} \sim 10^{19-21}$ y
- For neutrinoless double beta decay $(0\nu\beta\beta)$:

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

Then let's do it! Yes, but....

- These decays are rare!
- Allowed regular decays have half-life $T_{1/2} \sim 10^{19-21}$ y
- For neutrinoless double beta decay $(0\nu\beta\beta)$:

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

At least 5 orders of magnitudes smaller!

Expected signal region

•Pick a model

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

Expected signal region

• Pick a model (**note**: there are several models!) Warning: don't stick to $m_{\beta\beta}$ metric, just go on with $T_{1/2}!$ Variety of $0\nu\beta\beta$ mechanisms:

 $0\nu\beta\beta$ from any mechanism \rightarrow Majorana nature of ν would be established anyway

Slide from <u>The Mid and Long Term Future of Neutrinoless Double Beta Decay</u>, Andrea Giuliani, Neutrinno2018, https://doi.org/10.5281/zenodo.1286915

Expected signal region

Pick a model
 (note: there are several models!)

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$

Oscillation parameters (from PMNS)

$$m_{\beta\beta} \equiv \left| \mathrm{e}^{ilpha} \left[U_{ei}^2 m_1 \right] + \mathrm{e}^{ilpha_i} \left[U_{e2}^2 m_2 \right] + \left[U_{e3}^2 m_3 \right] \right|$$

Mass, depends on mass ordering

Looking for $0\nu\beta\beta$ experimentally

We are going to be looking at **extremely rare events** ($T_{\frac{1}{2}} > 10^{25}$ y) that have a very **specific energy**

1. Great energy resolution

(to identify the $0\nu\beta\beta$ over the regular $2\nu\beta\beta)$

2. Extremely low background

(to see the very rare signal over radioactive events)

3.Scalability

Easier said than done!

Current status of experiments (demonstrated) Energy resolution

Easier said than done!

Current experimental efforts

Many cutting edge technologies Several different approaches

Current experimental efforts

Many cutting edge technologies Several different approaches

Density: Higher pressure means more isotope in same volume

• Energy resolution: Great intrinsic energy resolution in gas

Bolotnikov and Ramsey. "<u>The</u> <u>spectroscopic properties of</u> <u>high-pressure xenon</u>."NIM A 396.3 (1997): 360-370

1. **Isotope:** High enough abundance, $Q_{\beta\beta} = 2.5$ MeV

2. Noble gas: Ideally suited to detection technology (TPC)

Source = detector!

NEXT (Neutrino Experiment with Xenon TPC)

Electroluminescence

The NEXT project

The NEXT project

Many great results

Demonstration of technology Construction completed in Fall 2023!

Next-White (NEW)

2.2.0

00

-

0

42

NEW detector

NEW detector

NEW readout

Energy plane

Tracking plane

12 Hamamatsu R11410

~2000 SensL 1-mm² SiPMs

NEW calibration with Krypton-83

NEXT Collaboration, *JINST* **13** (2018) P10014

46

NEW calibration with Krypton-83

NEW calibration with Krypton-83

NEW energy resolution (calibration sources)

NEXT Collaboration, JHEP 10 (2019) 230

NEW energy resolution (calibration sources)

NEXT Collaboration, JHEP 10 (2019) 230

NEXT Collaboration, JHEP 07 (2021) 146

Topological separation

Cut-based analysis

~70% efficiency ~20% bkg contamination

Topological separation

• DNN analysis

NEXT Collaboration, "Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment ", JHEP 01 (2021) 189

Topological separation

Richardson-Lucy deconvolution analysis

NEW backgrounds

Low-background data taking proceeding after detector calibration campaign. NEXT background model assessed using these data.

Several improvements in the setup have reduced backgrounds by a factor of ~4:

- New radiopure components in field cage.
- Radon-free air introduced in lead shielding.
- Additional layer of shielding added.

NEW backgrounds

NEXT Collaboration, JHEP 10 (2019) 51

Summary of NEW results

1.Great energy resolution

• With several calibration sources (different energies), energy resolution better than 1% FWHM at $Q_{\beta\beta}$ is achieved

2. Powerful topology separation \checkmark

 Traditional cut-based and DNN analyses show promising backgrounds ejection power

- Backgrounds measured in NEW and used for future predictions
- Identification of potential improvements

4.Scalability

•NEXT-100

NEXT-100

NEXT-100 is now completed!

NEXT-100 should demonstrate a background rate competitive with HPGe detectors: a few counts per ton and year in ROI

- NEXT-100 should demonstrate a background rate competitive with HPGe detectors: a few counts per ton and year in ROI
- Ample room for improvement in several areas:
 - ✓ Reconstruction algorithms (i.e. better energy resolution and topological discrimination)
 - ✓ Radiopurity (e.g. get rid of PMTs)
 - ✓ Low-diffusion gas mixtures and denser tracking plane to improve tracking signature

Focused R&D devoted to these 3 points!

- NEXT-100 should demonstrate a background rate competitive with HPGe detectors: a few counts per ton and year in ROI
- Ample room for improvement in several areas:
 - ✓ Reconstruction algorithms (i.e. better energy resolution and topological discrimination)
 - ✓ Radiopurity (e.g. get rid of PMTs)
 - ✓ Low-diffusion gas mixtures and denser tracking plane to improve tracking signature
- Last but not least: gaseous xenon could make possible a true background-free experiment via tagging of the barium decay product

Ba tagging

Ba tagging

D.R. Nygren, J. Phys. Conf. Ser. 650 (2015) 012002

Ba tagging

NEXT Collaboration, *Phys. Rev. Lett.* **120** (2018) 132504 66

Ba Tagging

D. Nygren , J.Phys.Conf.Ser. 650 (2015) no.1, 012002 JINST 11 (2016) no.12, P12011

A.D. McDonald et al. (NEXT Collaboration) Phys. Rev. Lett. 120, 132504 (2017)

Sci Rep 9, 15097 (2019)

Nature 583, 48-54 (2020)

NEXT-ton (~2025)

Two approaches developed in parallel:

- NEXT-HD, High Definition: incremental approach, using/improving existing technology.
- NEXT-BOLD, Barium Tagging: based on disruptive new concept (SMFI Ba++ tagging).

Phased approach

- ~1 ton of 136Xe introduced per phase.
- Ultra pure materials. SiPMs as the only sensor.

NEXT-HD:

- Improves topological signature, improves energy resolution
- Reduces radioactive budget (no PMTs)
- Energy plane made of large area SiPMs (design similar to that of DarkSide)
- Potential to reduce SiPM dark count by cooling detector
- Background: 0.39 cts [ton ROI yr]⁻¹ (standard)
 0.07 cts [ton ROI yr]⁻¹ (feasible)

NEXT-BOLD:

- Tracking and energy measured in anode.
- Cathode implements Barium Tagging System
- Virtually background free

- HPGTPCs have unique advantages for neutrinoless double-beta decay searches
- NEW demonstrated that topology selection and great energy resolution can be achieved
- NEXT-100, now under commissioning, will demonstrate scalability and will have sensitivity similar to current generation of experiments
- The ton-scale is really where we want to go and NEXT proposes a staged approach with unique potential to reach near the normal mass ordering phase space

Summary

 HPGTPCs have unique advantages for neutrinoless double-beta decay searcher

Thank

- NEW demonstress of the second se
- NEXT-100, scalability experimen

 The ton-so d NEXT proposes a staged approach with unique potential to reach near the normal mass ordering phase space

d great energy

rent generation of

honstrate