New Low-Energy Excess Results from MicroBooNE

Steve Dennis

University of Warwick Seminar 17th February 2022

μBooNE

Neutrinos in the Standard Model

Neutrinos are light, neutral leptons.

Three known flavours, each corresponding to a charged lepton flavour.

Interact only via the weak force: low cross-sections.

- Charged current respects charged neutrino flavour.
- Neutral current does not.

But we can go beyond the Standard Model?

Of course we can.

Neutrino Oscillation

- Neutrinos change flavour as they propagate.
 - Dependent on L/E and neutrino mass.
- Know of three active flavours, each corresponding to a charged lepton flavour.
- Two known mass splittings.

Neutrino Oscillation - Discovery

Neutrino Oscillation

Neutrino oscillation is a quantum mechanical phenomenon in which a neutrino created with a specific lepton family number ("lepton flavor": electron, muon, or tau) can later be measured to have a different lepton family number. The probability of measuring a particular flavor for a neutrino varies between three known states, as it propagates through space (from Wikipedia, forgive me)

Neutrinos have different mass states and flavour states: they propagate as mass states but interact as flavour states. The mixing is controlled by the PMNS matrix U:

$$|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\nu_{k}\rangle$$
 $|\nu_{k}\rangle = \sum_{\alpha} U_{\alpha k}^{*} |\nu_{\alpha}\rangle$

With only two flavours, the oscillation probabilities take the form:

$$P(\nu_x \to \nu_y) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 (\text{eV}^2) \frac{L(\text{km})}{E(\text{GeV})})$$

Three-flavour Neutrino Oscillation

Parameterise with the PMNS Matrix.

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
Atmospheric & Reactor & Solar &

Atmospheric & LBL disappearance

6 parameters: three mixing angles, two mass-squared splittings and

a CP-violating phase form the PMNS matrix

The PMNS Matrix.

 There are three active neutrinos, and it has been shown they all mix, that opens up the possibility for the mixing matrix to be complex.

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

This complex phase causes neutrinos and antineutrinos to behave differently. If $sin(\delta_{cp})!=0$, we have a source of CP violation. But only in appearance: disappearance has T-symmetry, so CP-violation would also be CPT-violation.

Global Fits to PMNS Parameters

- The global status here I am using is NuFit 5.1.
 - Very much up-to-date (October 2021)

NuFIT 5.1 (2021)

 $sin^2(\theta_{12})$ has 1-sigma uncertainty of ~5%, driven by solar/reactor experiments.

 $\sin^2(2\theta_{23})$ is ~2%, but octant degeneracy smears our $\sin^2(\theta_{23})$ to have 3-sigma uncertainty of ~20%, driven by LBL/atmospheric experiments.

 $\sin^2(\theta_{13})$ uncertainty is ~3%, driven by reactor experiments, aided by LBL experiments.

Δm²_{solar} uncertainty is about 3%, driven by solar/reactor experiments.

Δm²_{atm} uncertainty is about 1%, driven by LBL experiments, aided by reactors.

Not much known about CPV violation.

ŹΙ).					NuFII 5.1 (2021)
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.6)$	
without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$
	$ heta_{12}/^\circ$	$33.44^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.86$	$33.45^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.573^{+0.018}_{-0.023}$	$0.405 \rightarrow 0.620$	$0.578^{+0.017}_{-0.021}$	$0.410 \rightarrow 0.623$
	$ heta_{23}/^\circ$	$49.2_{-1.3}^{+1.0}$	$39.5 \rightarrow 52.0$	$49.5_{-1.2}^{+1.0}$	$39.8 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02220^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02238^{+0.00064}_{-0.00062}$	$0.02053 \rightarrow 0.02434$
	$ heta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{ m CP}/^\circ$	194_{-25}^{+52}	$105 \rightarrow 405$	287^{+27}_{-32}	$192 \rightarrow 361$
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.515^{+0.028}_{-0.028}$	$+2.431 \to +2.599$	$-2.498^{+0.028}_{-0.029}$	$-2.584 \rightarrow -2.413$
with SK atmospheric data		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 7.0$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
	$ heta_{12}/^\circ$	$33.45^{+0.77}_{-0.75}$	$31.27 \rightarrow 35.87$	$33.45^{+0.78}_{-0.75}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.450^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$
	$\theta_{23}/^{\circ}$	$42.1_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	$49.0_{-1.3}^{+0.9}$	$39.8 \rightarrow 51.6$
	$\sin^2 \theta_{13}$	$0.02246^{+0.00062}_{-0.00062}$	$0.02060 \to 0.02435$	$0.02241^{+0.00074}_{-0.00062}$	$0.02055 \to 0.02457$
	$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61^{+0.14}_{-0.12}$	$8.24 \rightarrow 9.02$
	$\delta_{\mathrm{CP}}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \rightarrow 345$
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \to +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.410$

Two-flavour Oscillation

Can be same flavour (disappearance), or different (appearance)

Physics beyond the Standard Model!

Key Principle of 3F Oscillation Experiments

We control L by placing our detectors, and control E by tuning our sources (where possible)

Reactor and Gallium Anomalies

Many reactor experiments see deficit of electron antineutrinos.

Far too many interesting things with reactors to talk about here!

Sage/GALLEX use electron capture radioactive sources, see deficit of electron neutrinos.

Could indicate additional neutrinos?

Neutrino-4 may have oscillatory pattern?

Serebov et al. PRD 104, 032003 (2021)

What's a sterile neutrino?

We know there are three active neutrinos (that couple to the weak force) thanks to colliders.

But if there's another mass splitting, there has to be a fourth neutrino.

We know this neutrino doesn't couple to the weak force, because it would affect the fraction of Z bosons that decay into neutrinos, unless it is extremely heavy (>40 GeV).

So this hypothesis is called sterile – it doesn't interact directly, you only see it via effects like oscillation.

The LSND and MiniBooNE Excess

- 20 years ago, the Liquid Scintillator Neutrino Detector at LANL saw an unexpected signal.
 - Excess of electron antineutrinos in a muon antineutrino beam, 3.8σ .
 - Note that this an excess rather than a deficit.
 - Evidence for a 1eV sterile neutrino?
- Development of the MiniBooNE experiment to test this hypothesis.
 - MiniBooNE collected 12.84E20 POT in neutrino and 11.27E20 POT in antineutrino mode between 2002 and 2017.
 - Same L/E, different energy, different uncertainties. 10-1
 - Also observed excess of electron-like CCQE events
 - 4.5σ excess in neutrino mode.
 - 4.7σ excess in antineutrino mode.
 - 6.0 σ when combined with LSND.

MiniBooNE Electron-like Excess

MiniBooNE

MiniBooNE is a mineral oil Cerenkov detector.

→ Poor electron-photon separation.

Excess could be photon-like (mismodeled backgrounds) or electron-like (sterile neutrino?)

Or something more exotic?

Enter MicroBooNE

MicroBooNE?

- Designed to probe the LSND-MiniBooNE anomaly.
 - Same beam, baseline, L/E as MiniBooNE.
 - But a vastly improved detector technology the LArTPC.
- Liquid Argon TPCs have excellent ability to distinguish between electrons and photons.
 - Which lets us understand if the MiniBooNE excess was really caused by electron neutrinos, or some kind of photon background induced by the remaining muon neutrinos in the beam.

85 t fiducial LArTPC Exposed in the same beam as MiniBooNE.

Liquid Argon TPCs

Liquid Argon TPC

A fully active tracking calorimeter: excellent resolution, and target-as-tracker is great for neutrinos which need high density.

MicroBooNE Event Displays

Ability to see hadronic system allows vertexing.

Can determine shower distance from vertex:

→ Distinguish electrons and photons.

MicroBooNE Running

- Collected data since 2015.
 - Currently analysing half of the collected POT (6.8x10²⁰ POT)
- Successfully operating LArTPC.
 - Important for future experiments! (eg DUNE)
- Neutrino interaction measurements.
- BSM physics searches.

But before we start:

Signal Processing:

From raw signals on wires to 2D reconstructed "hits"

JINST 13, P07006 (2018) JINST 12 P08003 (2017)

Electric field calibration with lasers and cosmic muons

JINST 15 (2020) 07, P07010 JINST 15 (2020) P12037

Calorimetry calibration with crossing muons and π^0 samples

JINST 15 (2020) 03, P03022 JINST 15 (2020) 02, P02007

Adapted From J. Evans.

The MicroBooNE LEE Analyses

- Released four independent Low Energy Excess analyses.
 - Carefully validated before unblinding.
 - Search for a MiniBooNE-like excess in our data which we can do without assuming a specific new-physics hypothesis.
- Three search for an electron-neutrino induced MiniBooNE-like excess.
 - Exclusive two-body charged current quasi-elastic nuE scattering (1e1p).

Semi-inclusive charged current nuE scattering without final state

pions (1eNp0pi and 1e0p0pi)

- Inclusive nuE scattering (1eX).
- One searches for a photonic MiniBooNE-like excess.
 - Using NC △ → Ny hypothesis
 - 1γ0p, 1γ1p

Photon-Like Analysis

Uses two two-photon selections to constrain $NC\pi^0$ background.

Physics modeled with GENIE v3.0.6

- → Berger-Sehgal resonance model.
- To match MiniBooNE excess, requires 3.18x scaling of NC Δ → Ny model.
- Rare process, never directly observed, GENIE predicts 121.4 events for our 6.8x10²⁰ POT dataset (pre-scaling).

Photon selection BDTs

Photon-like data

Photon Results

Entirely consistent with nominal prediction at 1-sigma.

arXiv:2110.00409

 Rejects the NC Δ → Ny LEE hypothesis at 94.8% CL.

Interpreted as branching fraction:

$$\mathcal{B}_{ ext{eff}}(\Delta o N \gamma) < 1.38\%$$
 90% CL

More than 50x better than world's previous limit!

Electron-like Search.

Three independent analyses using different reconstruction.

- Deep learning used for 1e1p.
- Pandora used for 1eNp0pi/1e0p0pi.
- Wire-Cell used for 1eX.
- Start with high-statistics muon-like samples.
 - Use to make data-driven electron-like prediction.
 - Heavily reduces uncertainties on electron-like spectrum.
- Use unfolded MiniBooNE-like excess to test hypothesis.
 - → Not a sterile model!

Pandora Reconstruction

Eur. Phys. J. C78, 82 (2018)

Deep Learning Reconstruction

Uses computer vision methods for event classification.

Wire-Cell Reconstruction

From X. Qian.

Constraints from muons

First complete analysis for LArTPC systematic uncertainties!

arXiv:2111.03556

Uses novel data-driven technique.

1eX (Wire-Cell)

Electron-like Results - Neutrino Energy

Electron-like Results - Hadronic Energy

Electron-like Results – Lepton Angle

Electron-like Results

Observe electron neutrino candidates at or below predicted rates.

arXiv:2110.14054

Reject the hypothesis that simple electron neutrino charged current explains fully the MiniBoonE results at >97% CL in all analyses.

1eX analysis rejected median MiniBooNE electron-like model at 3.75σ

So, what's happening?

- I don't know.
 - But it's going to be interesting to find out.

But the LSND-MiniBooNE data exists. It doesn't go away just because another experiment didn't see it. It still needs to be explained.

Or what else?

- Decay of O(keV) Sterile Neutrinos to active neutrinos
 - [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020)
 - [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141
- New resonance matter effects
 - [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018)
- · Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay
 - [7] Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470
- · Decay of heavy sterile neutrinos produced in beam
 - [4] Gninenko, Phys.Rev.D83:015015,2011
 - [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020)
 - [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018)
 - [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020)
- Decay of upscattered heavy sterile neutrinos or new scalars mediated by Z' or more complex higgs sectors
 - [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018)
 - [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531
 - [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019)
 - [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020)
 - [6] Abdallah, Gandhi, Roy, Phys. Rev. D 104, 055028 (2021)
- · Decay of axion-like particles
 - [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021)
- · A model-independent approach to any new particle
 - [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021)

Produces
true electrons

Produces
true photons

Produces
e+e- pairs

PRL 121, 241801 (2018)

- Many of these models predict more complex final states (e+e-) and/or differing levels of hadronic activity
- → The hadronic state is becoming increasingly more important as a model discriminator
- We are fortunate that LArTPCs are sensitive to these possibilities

From J. Evans.

Reco Models topology	1e0p	1e1p	1eNp	1eX	e ⁺ e ⁻ + nothing	e+e-X	1γ0p	1γ1p	1γΧ
eV Sterile ν Osc	/	/	/	/					
Mixed Osc + Sterile ν	[7]	[7]	1 [7]	1 [7]			[7]		
Sterile ν Decay	[13,14]	[13,14]	[13.14]	[13,14]			[4,11,12,15]	[4]	1 [4]
Dark Sector & Z' *	[2,3]				[2,3]	[2,3]	[1,2,3]	[1,2,3]	[1,2,3]
More complex higgs *					[10]	[10]	[6,10]	[6,10]	[6,10]
Axion-like particle *					[8]		[8]		
Res matter effects	1 [5]	1 [5]	1 [5]	[5]					
SM γ production							/	/	/

^{*}Requires heavy sterile/other new particles also

Short Baseline Neutrino Program

What next for MicroBooNE?

- Bright future!
 - Only analysed a fraction of the dataset, there will be updated LEE results, with higher sensitivity.
 - Many neutrino cross-section results coming out.
 - Liquid Argon R&D to help future experiments.
- But also an upgraded short baseline program at FNAL.
 - Two new detectors:
 - One upstream of MicroBooNE (SBND)
 - One downstream (ICARUS)
 - Can use the powerful near-detector method to drastically reduce systematic uncertainties on baseline-dependent physics.
 - All LArTPCs, so additional interaction and detector uncertainties can be cancelled.

Thanks for listening

Backup Slides

All cartoons by Yuki Akimoto - Higgstan KEK Pamphlet

LSND Excess

The LSND Anomaly

3.8 sigma excess

arXiv:nucl-ex/9605002

Solar Neutrinos

- Nuclear processes in the Sun produce a lot of neutrinos.
 - Solar neutrino flux accurately predicted by
 J. Bahcall (PRL 12,300 1964)
 - Measured by the Homestake Experiment by
 R. Davis et al(PRL 20,1205 1968)
 - Homestake was 380m³ of drycleaning fluid, rich in Chlorine.
 - Captured electron neutrinos via inverse beta decay.

$$\bigcirc$$
 ³⁷Cl + $\nu_e \rightarrow$ ³⁷Ar + e^-

Only saw a third of the predicted rate!

We have a problem.

Is there a problem?

- Initially, many people believed the Homestake experimental result was wrong.
 - It's counting single digit numbers of argon atoms on a monthly basis, who even knows if they're from solar neutrinos?
- But other solar neutrino experiments were conducted, and the experimental deficit became fully accepted.
- For example, Super-Kamiokande detected using elastic scattering, at a much higher threshold.

 Can reconstruct direction, actually see they're from the

sun.

LSU

R. Svoboda and K. Gordan.

Super-Kamiokande

50 kt ultrapure water Cherenkov detector instrumented with 11,000 PMTS in the inner detector for 40% photo-coverage. 1 km underground to reduce background.

Excellent muon-electron separation You'll be seeing this again later...

Other solar experiments

- Also, important to mention the Gallium experiments, SAGE and GALLEX.
 - Observed much lower energy neutrinos.
 - Saw a smaller deficit.
 - The deficit is energy dependent?

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Solar Neutrino Problem

- So, the deficit is real.
 - Is the solar model wrong?
 - Bahcall's Standard Solar Model works very well for everything except neutrinos.
 - Eg helioseismology.
- No way to change the solar model to reduce the neutrino flux enough without breaking it in other ways.
 - Something "wrong" with the neutrinos!

Great, another anomaly.

- But Super-K wasn't just looking at solar neutrinos.
- They could study atmospheric neutrinos.
 - Produced in the upper atmosphere, by high energy cosmic rays.
 - As they're not attenuated by the Earth, flux should be isotropic.

 Not only did they see a reduced rate of muon-like neutrinos compared to electron-like, but with a dependence on zenith angle – effectively how far the neutrino had travelled since being created in the upper

cose = 0

L = 500 km

Detector

Core

Cosmic ray

Detector

Detector

Core

Samosphere

Amosphere

