What can we learn from B physics?

Sebastian Jäger
US
University of Sussex

Seminar at the University of Warwick, 19/01/2012

Content

- Flavour \& CP: what \& why
- Observables (selection), some theory issues
- A SUSY GUT model
- Conclusions

Baryogenesis

- There are many photons ...

some baryons...

... and essentially no antibaryons in the universe

$$
\eta_{B}=\frac{n_{B}}{n_{\gamma}}=(6.3 \pm 0.3) \times 10^{-10}
$$

- Can arise dynamically from $B=0$ if sufficient...
(I) departure from equilibrium and
(2) C and CP violation and
(3) B violation

Thermal leptogenesis

- CP-violating V_{R} decay:

weak CPV phase in $Y_{v} \quad$ CP-conserving phase from loop
- Resulting net lepton numbers <L/> partially converted to by equilibrium sphalerons

C, P and T

- In local quantum field theory CPT is a symmetry

i.e. simultaneously $t \rightarrow-\mathrm{t}$
(time reversal T)
$\mathrm{x} \rightarrow-\mathrm{x} \quad$ (parity P - up to a rotation) particles \rightarrow antiparticles (charge conjugation C)
in particular CPT implies the existence of antiparticles with identical masses and lifetimes, and opposite conserved charges
(constructive proof at Lagrangian level, or more general proof in axiomatic field theory)

C and P violation

- $\mathrm{C}, \mathrm{P}, \mathrm{T}$ individually need not be symmetries
- chiral fermions violate C \& P maximally [no C,P partners]
- gauge-fermion theories (renormalisable, only spins 1 and $1 / 2$) preserve CP save for vacuum θ angle(s)
- example: SM gauge sector (neglect $\theta_{Q C D}$ for now)

$$
\begin{aligned}
\mathcal{L}_{\text {gauge }}= & \sum_{f} \bar{\psi}_{f} \gamma^{\mu} D_{\mu} \psi_{f}-\sum_{i, a} \frac{1}{4} g_{i} F_{\mu \nu}^{i a} F^{i a \mu \nu} \\
& f=Q_{L j}, u_{R j}, d_{R j}, L_{L j}, e_{R j} \quad j=1,2,3 \quad \text { chiral fermions }
\end{aligned}
$$

- conserves CP; large global flavour symmetry

$$
\begin{aligned}
& G_{\text {flavor }}=S U(3)^{5} \times U(1)_{B} \times U(1)_{A} \times U(1)_{L} \times U(1)_{E} \\
& \qquad Q_{L} \rightarrow e^{i(b / 3+a)} V_{Q_{L}} Q_{L}, u_{R} \rightarrow e^{i(b / 3-a)} V_{u_{R}} u_{R}, d_{R} \rightarrow e^{i(b / 3-a)} V_{d_{R}} d_{R} \\
& L_{L} \rightarrow e^{i(l+a)} V_{L} L_{L}, e_{R} \rightarrow e^{i(l+e-a)} V_{R} e_{R} \quad \text { Chivukula, Georgi 1987 }
\end{aligned}
$$

CP violation

- Vacuum θ angle(s) violate CP

$$
\begin{gathered}
\mathcal{L} \supset-\theta \frac{g^{2}}{32 \pi^{2}} F_{\mu \nu}^{a} \tilde{F}^{\mu \nu a} \propto \vec{E}^{a} \cdot \vec{B}^{a} \\
\mathrm{P} \text { and CP odd }
\end{gathered}
$$

hadronic electric dipole moments (EDMs)

- CP violation generic if scalars are present SM Yukawa interactions: 9 masses

3 mixing angles

CP violation of this type requires 3 generations Kobayashi, Maskawa 1972

- flavour symmetry broken to $U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}$

Observables

- CP-violating, flavour-conserving neutron, electron, atomic EDM's advantage: ultraclean tests of SM and we "know" that BSM CP violation exists disadvantage: CP violation could be at scales >> TeV and possibly out of reach
- CP-violating, flavour-violating
$C P V$ in K, D, B, B_{s} mixing and mixing-decay interference direct CPV (CPV in decay) triple-product asymmetries advantage: various clean tests of SM disadvantage: TeV scale need not be CPV (see above)
- CP-conserving, flavour-violating

Rare K, (D,) B, Bs decays: BR's, kinematic distributions lepton flavour violation advantage: TeV physics is guaranteed to affect these disadvantage: fewer/less clean tests of SM

Unitarity Triangle 2011

The CKM picture of flavour \& CP violation is consistent with observations.

Within the Standard Model, all parameters (except higgs mass) including CKM have been determined, with good precision

Flavour of the TeV scale

- Solutions to the hierarchy problem must bring in particles to cut off the top contribution to the weak scale (Higgs mass parameter).

$$
\propto y_{t}^{2} \Lambda_{\mathrm{UV}}^{2}
$$

- The new particles' couplings tend to break flavour (they do in all the major proposals for TeV physics)

- At least they will have CKM-like flavour violations (minimal flavour violation), so will always affect rare decays

Minimal flavour violation

- in this case, CKM parameters can still be extracted unambiguously beyond the Standard Model

Universal unitarity triangle (UUT)
Buras, Gambino, Gorbahn, SJ, Silvestrini 2000
independent of details of new physics (particle content, masses, couplings)

- however, this is a very restrictive scenario; typically does not apply to dynamical BSM models
- can be generalized (relaxed)

SUSY flavour

Supersymmetry associates a scalar with every SM fermion
Squark mass matrices are 6×6 with independent flavour structure:

3x3 flavour-violating - and supersymmetry-breaking

$$
\mathcal{M}_{\tilde{d}}^{2}=\left(\begin{array}{cc}
\hat{m}_{\tilde{Q}}^{2}+m_{d}^{2}+D_{d L L} & v_{1}\left(\overparen{T}_{D}-\mu^{*} m_{d} \tan \beta\right. \\
v_{1} \hat{T}_{D}^{\dagger}-\mu m_{d} \tan \beta & \hat{m}_{\tilde{d}}^{2}+m_{d}^{2}+D_{d R R}
\end{array}\right) \equiv\left(\begin{array}{cc}
\left(\mathcal{M}_{\tilde{d}}^{2}\right)^{L L} & \left(\mathcal{M}_{\tilde{d}}^{2}\right)^{L R} \\
\left(\mathcal{M}_{\tilde{d}}^{2}\right)^{R L} & \left(\mathcal{M}_{\tilde{d}}^{2}\right)^{R R}
\end{array}\right)
$$

similar for up squarks, charged sleptons. 3×3 LL for sneutrinos

$$
\left(\delta_{i j}^{u, d, e, \nu}\right)_{A B} \equiv \frac{\left(\mathcal{M}_{\tilde{u}, \tilde{d}, \tilde{e}, \tilde{\nu}}^{2}\right)_{i j}^{A B}}{m_{\tilde{f}}} \quad \begin{aligned}
& 33 \text { flavour-violating parameters } \\
& 45 \mathrm{CPV} \text { (some flavour-conserving) }
\end{aligned}
$$

SUSY flavour - observables

$K-\bar{K}, B_{d}-\bar{B}_{d}, B_{s}-\bar{B}_{s}$ mixing
$\Delta \mathrm{F}=1$ decays

$$
\begin{aligned}
& B \rightarrow X_{s} Y \\
& B \rightarrow X_{s} \mu^{+} \mu^{-} \\
& B \rightarrow K^{*} Y, B \rightarrow K^{*} \mu^{+} \mu^{-}, B \rightarrow K \Pi \\
& B_{s, d} \rightarrow \mu^{+} \mu^{-} \\
& K \rightarrow \pi v v \\
& B \rightarrow K v v
\end{aligned}
$$

lepton flavour violation

$$
\mu \rightarrow \mathrm{e} \gamma, \mathrm{~T} \rightarrow \mathrm{e} \mathrm{\gamma} \mathrm{~T} \rightarrow \mu \gamma
$$

$$
\tau \rightarrow \mu \mu \mu, \ldots
$$

$\mu \rightarrow \mathrm{e}$ conversion

SUSY flavour puzzle

$$
\left(\delta_{i j}^{u, d, e, \nu}\right)_{A B} \equiv \frac{\left(\mathcal{M}_{\tilde{u}, \tilde{d}, \tilde{e}, \tilde{\nu}}^{2}\right)_{i j}^{A B}}{m_{\tilde{f}}^{2}}
$$

where are their effects?

Quantity	upper bound
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L L}^{2}\right\|}$	4.0×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{R R}^{2}\right\|}$	4.0×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L R}^{2}\right\|}$	4.4×10^{-3}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d s}^{d}\right)_{L L}\left(\delta_{d s}^{d}\right)_{R R}\right\|}$	2.8×10^{-3}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L L}^{2}\right\|}$	3.2×10^{-3}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{R R}^{2}\right\|}$	3.2×10^{-3}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L R}^{2}\right\|}$	3.5×10^{-4}
$\sqrt{\left\|\operatorname{Im}\left(\delta_{d s}^{d}\right)_{L L}\left(\delta_{d s}^{d}\right)_{R R}\right\|}$	2.2×10^{-4}

Quantity	upper bound
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L L}^{2}\right\|}$	9.8×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{R R}^{2}\right\|}$	9.8×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L R}^{2}\right\|}$	3.3×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{L L}\left(\delta_{d b}^{d}\right)_{R R}\right\|}$	1.8×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{d}\right)_{L L}^{2}\right\|}$	4.8×10^{-1}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{d b}^{d}\right)_{R R}^{2}\right\|}$	4.8×10^{-1}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{d}\right)_{L R}^{2}\right\|}$	1.62×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{s b}^{d}\right)_{L L}\left(\delta_{s b}^{d}\right)_{R R}\right\|}$	8.9×10^{-2}

Quantity	upper bound
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u C}^{\tilde{u}}\right)_{L L}^{2}\right\|}$	3.9×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u d}^{u}\right)_{R R}^{2}\right\|}$	3.9×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u C}^{\bar{u}}\right)_{L R}^{2}\right\|}$	1.20×10^{-2}
$\sqrt{\left\|\operatorname{Re}\left(\delta_{u c}^{\tilde{u}}\right)_{L L}\left(\delta_{u c}^{u}\right)_{R R}\right\|}$	6.6×10^{-3}

- elusiveness of deviations from SM in flavour physics seems to make MSSM look unnatural
- pragmatic point of view: flavour physics highly sensitive to MSSM parameters - and SUSY breaking mechanism in particular

Flavour - warped extra D

SM fermions = zero modes (~ ground state WF of a particle in a box) of fields present in the bulk.
also infinitely many massive KK modes
(\sim higher states of particle in box)
couplings (Yukawa and other) given by wave function overlaps
Higgs localized on IR brane
light (heavy) fermions localized near UV (IR) brane
 also, dangerous four-fermion operators on the IR brane, but fermions localized on the UV brane do not "feel" these much

Flavour - warped ED (2)

- dominant contribution to FCNC generically from tree-level KK boson exchange (rather than brane contact terms)
zero modes
=SM particles

KK mode coupling
SM Yukawa coupling

$$
\begin{aligned}
& \lambda_{k m n}=\int d \phi w(\phi) f^{(m)}(\phi) f^{(n)}(\phi) f_{V}^{(k)}(\phi) \\
& Y_{m n} \propto f^{(m)}(\pi) f^{(n)}(\pi)
\end{aligned}
$$

non-minimal flavour violations !

- where are their effects?
- strongest tension generally in Kaon sector, then EW precision tests

Soft-wall ED model

- hard brane replaced by extended, "soft" wall Higgs in bulk, localised toward wall
eases EW precision constraints
[Archer, Huber, SJ
JHEP 12(2011)101 [arXiv:1108.1433]]
10^{3}

Other scenarios

- fourth SM generation

CKM matrix becomes 4×4, giving new sources of flavour and $C P$ violation

- little(st) higgs model with T parity
(higgs light because a pseudo-goldstone boson) finite, calculable 1-loop contributions due to new heavy particles with new flavour violating couplings

non-minimal flavour violation!

Unitarity Triangle revisited

Of all constraints on the unitarity triangle, only the y and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations are robust against new physics as they do not involve loops.
It is possible that the TRUE $(\bar{\rho}, \bar{\eta})$ lies here (for example)

"Tree" determinations

Only "robust" measurements of y and $|\mathrm{Vub}|$. Note: the $\gamma(\alpha)$ constraint shown depends on assumptions (absence of BSM $\Delta I=3 / 2$ contributions in B->ாா); a truly robust γ determination should not include B->ாா. Such determinations will be greatly improved by LHCb.

Certainly there is room for $\mathrm{O}(10 \%)$ NP in b->d transitions Moreover, b->s transitions are almost unrelated to (ρ, η). They are the domain of LHCb

Another view

2.8σ
$B R \propto\left|V_{u b}\right|^{2}$ in SM
two-Higgs doublet model (II): $B R(B \rightarrow \tau \nu)=B R(B \rightarrow \tau \nu)_{\mathrm{SM}} \times\left|1-\frac{M_{B}^{2} \tan ^{2} \beta}{M_{H^{+}}^{2}}\right|^{2}$ could be NP in B_{d} mixing; leading uncertainty is bag parameter

BOTTOM-UP

LHCb observables

- mixing
theory well understood data consistent with SM errors still large but $\mathrm{O}(1)$ mixing phase ruled out

- hadronic CPV
amplitudes
time-dependent CP violation
triple products
$\Delta A_{c p}$ in D decays
- semileptonic B decays
constraints on Wilson coefficients
- (This is a narrow subset of what I find interesting.)

Exclusive decays at LHCb

final state strong dynamics \#obs NP enters through

Leptonic

$$
\begin{equation*}
B \rightarrow 1^{+} I^{-} \tag{1}
\end{equation*}
$$

decay constant
$\langle 0| j^{\mu}|B\rangle \propto f_{B}$
form factors
$\langle\pi| j^{\mu}|B\rangle \propto f^{B \pi}\left(q^{2}\right)$
charmless hadronic matrix element $B \rightarrow \pi \pi, \pi K, \phi \phi, \ldots \quad\langle\pi \pi| Q_{i}|B\rangle$
semileptonic, radiative

$$
\mathrm{B} \rightarrow \mathrm{~K}^{*} \mathrm{I}^{+} \mathrm{I}, \mathrm{~K}^{*} \mathrm{Y}
$$

$$
\langle\pi| j^{\mu}|B\rangle \propto f f^{B \pi}\left(q^{2}\right)
$$

O(100)

Non-radiative modes also NP-sensitive via 4-fermion operators Decay constants and form factors accessible by QCD sum rules and, increasingly, by lattice QCD.

QCD a big challenge particularly for nonleptonic modes

Hadronic decay amplitudes

- Any SM amplitude can be written

$$
\begin{array}{cc}
\mathcal{A}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=e^{-i \gamma} T_{M_{1} M_{2}}+P_{M_{1} M_{2}} & \text { "tree" } \\
T_{M_{1} M_{2}}=V_{u D}\left|V_{u b}\right|\left[C_{1}\left\langle Q_{1}^{u}\right\rangle+C_{2}\left\langle Q_{2}^{u}\right\rangle+\sum_{i=3}^{12} C_{i}\left\langle Q_{i}\right\rangle\right] & \text { "penguin" } \\
P_{M_{1} M_{2}}=V_{c D}\left|V_{c b}\right|\left[C_{1}\left\langle Q_{1}^{c}\right\rangle+C_{2}\left\langle Q_{2}^{c}\right\rangle+\sum_{i=3}^{12} C_{i}\left\langle Q_{i}\right\rangle\right] \\
\text { CKM factor } \\
\text { (D=d or s) }
\end{array}
$$

Qi: operators in weak hamiltonian
C_{i} QCD corrections from short distances (<hc/mb) \& new physics $\left\langle Q_{i}\right\rangle=\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle$: QCD at distances $>h c / m_{b}$, strong phases

$B \rightarrow V V$

$$
\begin{aligned}
& \frac{d \Gamma}{d \cos \theta_{1} d \cos \theta_{2} d \phi}=N\left(\left|A_{0}\right|^{2} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{\left|A_{\|}\right|^{2}}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos ^{2} \phi\right. \\
&+\frac{\left|A_{\perp}\right|^{2}}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin ^{2} \phi+\frac{\operatorname{Re}\left(A_{0} A_{\|}^{*}\right)}{2 \sqrt{2}} \sin 2 \theta_{1} \sin 2 \theta_{2} \cos \phi \\
&\left.-\frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}\right)}{2 \sqrt{2}} \sin 2 \theta_{1} \sin 2 \theta_{2} \sin \phi-\frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}\right)}{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi\right)
\end{aligned}
$$

(for $\mathrm{B}_{\mathrm{s}} \rightarrow \phi \phi$ coefficients are time-dependent due to oscillations)

- presence of polarization trebles number of amplitudes
- angular analysis allows extraction of all 6 amplitudes
- already relative weak phases imply CP-violating "triple products", ie no strong phase knowledge required

Theory approaches I

- $1 / \mathrm{N}_{\mathrm{c}}$: hierarchies

	$\mathrm{T} / \mathrm{a}_{1}$	$\mathrm{C} / \mathrm{a}_{2}$	P	$\mathrm{E} / \mathrm{b}_{1}$	$\mathrm{~A} / \mathrm{b}_{1}$
I / N	I	I / N	I / N	I / N	$\mathrm{I}[?]$
$\Lambda / \mathrm{m}_{\mathrm{B}}$	I	I	I	$\Lambda / \mathrm{m}_{\mathrm{B}}$	$\Lambda / \mathrm{m}_{\mathrm{B}}$

- "naive factorization" for N_{c}-> infinity
- strong phases: T, P: O(1/N2), colour-suppressed tree $\mathrm{O}(1)$
- main drawback: can't compute
- QCD light-cone sum rules evaluate correlation function off shell; OPE \& lightcone expansion
- express hadronic matrix elements
 in terms of simpler objects (form factors etc.) and a perturbatively evaluated dispersion integral.
- works also for form factors themselves (and other objects)
- main drawback: uncertainty due to "continuum threshold" is difficult to quantify

Theory approaches II

[Beneke, Buchalla, Neubert, Sachrajda (BBNS); Bauer et al]

- heavy-quark expansion in $\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{B}}$

[QCDF / SCET; pQCD approach]
$T^{1}, T^{\text {II }}$ computable in perturbation theory in strong coupling
- "naive factorization" for $m_{B}->$ infinity
- strong phases [imaginary parts] are $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ or $\mathrm{O}\left(\Lambda_{\mathrm{QCD}} / \mathrm{mb}_{\mathrm{b}}\right)$
- annihilation power suppressed altogether
- hierarchies of penguin amplitudes between final states containing pseudoscalars and vectors
- main drawback: $\mathrm{O}\left(\wedge_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{B}}\right)$ power corrections don't factorize, in general, and hard to estimate
- flavour $\mathrm{SU}(3)$ - relate $\mathrm{b} \rightarrow \mathrm{s}$ and $\mathrm{b} \rightarrow$ d; eliminate amplitudes from data. Good if redundant observables (γ in SM), less powerful for NP search; $\operatorname{SU}(3)$ breaking not controlled

$$
\begin{aligned}
& \left\langle M_{1} M_{2}\right| Q_{i}|\bar{B}\rangle=\quad \text { perturbative, includes strong phases } \\
& \text { non-perturbative QCD } \\
& f_{+}^{B M_{1}}(0) f_{M_{2}} \int d u T_{i}^{\mathrm{I}}(u) \phi_{M_{2}}(u)+f_{B} f_{M_{1}} f_{M_{2}} \int d u d v d \omega T_{i}^{\mathrm{II}}(u, v, \omega) \phi_{B_{+}}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u) \quad+\mathrm{O}\left(\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}\right) \\
& \text { soft overlap (form factor) } \\
& \text { hard spectator scattering } \\
& T_{i}^{\mathrm{I}} \sim 1+t_{i} \alpha_{s}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& \text { "naive BBNS 99-01 Bell 07, } 09 \text { (trees), } \\
& \text { factorization" } \\
& \text { Beneke et al } 09 \text { (trees) } \\
& T_{i}^{\mathrm{II}} \sim H_{i} \star J \\
& \sim\left(1+h_{i} \alpha_{s}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)\left(j^{(0)} \alpha_{s}+j^{(1)} \alpha_{s}^{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right) \\
& \text { BBNS 99-01 } \\
& \text { BBNS 99-01 } \\
& \text { Hill, Becher, Lee, Neubert 2004; Beneke, Yang 2005; Kirilin } 2005
\end{aligned}
$$

Power corrections

- some power-suppressed contributions factorize (later slide); most do not
- varying relevance [size of Wilson/CKM factor multiplying them]
- BBNS proposed \& used a (crude) "cut-off-plus-fudge-factor" model to estimate power corrections, including O(1) undetermined soft strong phases on them.

$$
\int_{0}^{1} \frac{d y}{y} \rightarrow X_{A}^{M_{1}} \quad X_{A}=\left(1+\varrho_{A} e^{i \varphi_{A}}\right) \operatorname{soft} \ln \frac{m_{B}}{\Lambda_{h}},
$$

divergent expression

$$
\begin{gathered}
X_{A}=\left(1+\varrho_{A} e^{i \varphi_{A}}\right) \ln \frac{m_{B}}{\Lambda_{h}} \\
\text { phase }
\end{gathered}
$$

- Some authors have attempted to fit power corrections to data [at expense of predictivity]

Feldmann \& Hurth; Ciuchini et al

- In the 'pQCD' approach power corrections are (mostly) deemed calculable, but the "perturbative" expressions do not appear [to me] to be dominated by perturbative scales

phenomenological summary

- Corrections to naive factorization small for T and $P_{\text {EW, }}$, stable perturbation series ; small uncertainties
- Corrections O(1) for C (and $\mathrm{PEw}^{\mathrm{c}}$), stable perturbation series large uncertainties (hadronic inputs; large incalculable power correction for final states with pseudoscalars)

parameter set "G" (fit hadronic parameters to $B \rightarrow \pi$ (BR's):
$C / T \sim 0.69+0.17 i$
large magnitude, small phase
- (physical) penguin amplitudes moderately affected by powersuppressed incalculable penguin annihilation (\&charm penguin) terms. Spoils precise predictions for direct CP asymmetries
- certain SU(3)-type relations satisfied in good approximation

Penguin anatomy: 1/mb

like quark chiralities

$\alpha_{4}^{c}=$

("scalar penguin")

However: $\quad r_{\chi}^{\pi}(\mu)=\frac{2 m_{\pi}^{2}}{m_{b}(\mu)\left(m_{u}+m_{d}\right)(\mu)} \sim \frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$
but ~ 1 numerically
"chiral enhancement"
no chiral enhancement present for vector M_{2}-> much smaller penguin amplitudes

penguin annihilation [in QCDF terminology]: $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$, does not factorize modeled by naively factorized expression with IR cutoff by BBNS
large and complex in pQCD approach
[Keum, Li, Sanda 2000] small in light-cone sum rules

Annihilation β_{3}

- The colour-leading piece to the annihilation contribution β_{3} to the QCD penguin amplitude has a naively factorizing structure

(where Q6 has been "Fierzed" to colour singlet x singlet form)

This is proportional to the "scalar form factor". A QCD sum rule calculation gives a small and approximately real result.
[Khodjamirian Mannel, Melcher, Melic, hep-ph/0509049]

- In contrast, the pQCD approach finds a large and complex value albeit with large uncertainties. [Keum, Li, Sanda 2000]
- This is also the case for the BBNS annihilation model.

Penguins (QCDF) vs data

$$
P_{M_{1} M_{2}} /\left(C_{\pi \pi}+T_{\pi \pi}\right) \sim \hat{\alpha}_{4}^{c}\left(M_{1} M_{2}\right) /\left(\alpha_{1}(\pi \pi)+\alpha_{2}(\pi \pi)\right)
$$

can be fit to $\mathrm{BR}, \mathrm{AcP}_{c \mathrm{P}}\left(\pi^{+} \mathrm{K}^{-}\right)$and $\mathrm{BR}\left(\pi^{+} \pi \pi^{-}\right)$using one $\mathrm{SU}(3)$ relation

BBNS model

pattern (hierachies \& numbers) agree quite well with $1 / m_{b}$ expectations (also for $\rho \mathrm{K}, \mathrm{\rho K}^{*}$)
wrong imaginary part for $\pi \mathrm{K}$ unless annihilation is fairly large (well known problem)
[Beneke, Neubert 2003; Beneke, SJ 2007]

Comparison to data: $S_{C P}$

\section*{$\sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \underset{\text { Beauty 2011 }}{\text { HFA }}$
 | Beauty 2011 |
| :--- |
| PRELIMINARY |}

- Beneke 2005 (NLO QCDF) small corrections (and small errors) to "naive" expectation
similar conclusion in BPRS
approach [Williamson, Zupan 2006]
pQCD see

$$
\begin{aligned}
& A_{f}=\langle f \mid B\rangle
\end{aligned}
$$

Theory: ScP

f CP eigenstate

$$
\frac{B R\left(B^{0}(t) \rightarrow f\right)-B R\left(\bar{B}^{0}(t) \rightarrow f\right)}{B R\left(B^{0}(t) \rightarrow f\right)+B R\left(\bar{B}^{0}(t) \rightarrow f\right)}=-S_{f} \sin \left(\Delta m_{B} t\right)+C_{f} \cos \left(\Delta m_{B} t\right)
$$

$\sin \left(2 \beta^{\text {eff }}\right)$
time-dependent CP asymmetry
$\overbrace{-\eta_{\mathrm{CP}}(f) \cdot S_{f}} \approx \sin (2 \beta)+2 \cos (2 \beta) \sin \gamma \operatorname{Re} \frac{T_{f}+P_{f}^{u}}{P_{f}^{c}}+S_{f}^{\text {N.P. }}$

need only real part of small amplitude (weak strong-phase dependence)

$B \rightarrow \pi \pi, \pi \rho, \rho \rho:$ P/T, C/T

Ratio	Value/Range	Value G
$\frac{P_{\pi \pi}}{T_{\pi \pi}}$	$-0.122_{-0.003}^{+0.033}+\left(-0.024_{-0.048}^{+0.047}\right) i$	$-0.162+0.022 i$
$\frac{P_{\rho \rho}}{T_{\rho \rho}}$	$-0.036_{-0.009}^{+0.06}+\left(-0.009_{-0.007}^{+0.07}\right) i$	$-0.037-0.009 i$
$\frac{P_{\pi \rho}}{T_{\pi \rho}}$	$-0.037_{-0.028}^{+0.015}+\left(-0.005_{-0.024}^{+0.024}\right) i$	$-0.070+0.006 i$
$\frac{P_{\rho \pi}}{T_{\rho \pi}}$	$0.042_{-0.023}^{+0.039}+\left(0.004_{-0.030}^{+0.030}\right) i$	$0.051-0.024 i$
$\frac{C_{\pi \pi}}{T_{\pi \pi}}$	$0.363_{-0.156}^{+0.277}+\left(0.029_{-0.103}^{+0.166}\right) i$	$0.691+0.165 i$
$\frac{C_{\rho \rho}}{T_{\rho \rho}}$	$0.198_{-0.150}^{+0.233}+\left(-0.009_{-0.097}^{+0.145}\right) i$	$0.344+0.042 i$
$\frac{C_{\pi \rho}}{T_{\pi \rho}}$	$0.250_{-0.143}^{+0.229}+\left(-0.012_{-0.099}^{+0.127}\right) i$	$0.467+0.071 i$
$\frac{C_{\rho \pi}}{T_{\rho \pi}}$	$0.134_{-0.156}^{+0.199}+\left(-0.024_{-0.117}^{+0.152}\right) i$	$0.283+0.138 i$
$\frac{T_{\rho \pi}}{T_{\pi \rho}}$	$0.869_{-0.207}^{+0.275}+\left(0.014_{-0.057}^{+0.058}\right) i$	$0.945-0.004 i$

S parameter gives good y determination ${ }_{-0.1}$ small corrections to naive factorisation $\begin{array}{llllllllll}-0.6 & -0.5 & -0.4 & -0.3 & -0.2 & -0.1 & 0 & 0.1\end{array}$
C parameter - direct CPV
[$\left|V_{u b} / V_{c b}=0.09\right|$ in P/T extraction] zero in naive factorisation

Comparison to data: annihilation

- Annihilation power suppressed, small branching fractions predicted (but with large uncertainties)
- LHCb has published data on $\mathrm{B}_{\mathrm{s}}->$ pi pi and $\mathrm{B}^{0}->\mathrm{K} \mathrm{K}$

QCDF [Beneke, Neubert 2003 "S4"]

$$
\begin{array}{ll}
\mathcal{B R}\left(B_{s}^{0} \rightarrow \pi^{+} \pi^{-}\right)=\left(0.98_{-0.19}^{+0.23} \pm 0.11\right) \times 10^{-6} & 0.155 \times 10^{-6} \\
\mathcal{B R}\left(B^{0} \rightarrow K^{+} K^{-}\right)=\left(0.13_{-0.05}^{+0.06} \pm 0.07\right) \times 10^{-6} & 0.07 \times 10^{-6}
\end{array}
$$

consistent with CDF
The $B_{s} B F$ is in excess of estimates, whereas the B^{0} decay fits nicely. Both decays are $\mathrm{SU}(3)$-related.

However, BF is quadratic in annihilation (other processes are affected at linear order), need (only) about factor 2-3 enhancement of an annihilation contribution

- more an issue for $\operatorname{SU}(3)$ than for factorisation (which implies $\mathrm{SU}(3)$ relations) per se. Could this be NP ?

Polarisation \& NP

- Triple-product asymmetries in B-> $\phi \mathrm{K}^{*}$

$$
\begin{aligned}
\mathcal{A}_{T}^{(1) \text { chg-avg }} & \equiv \frac{[\Gamma(S>0)+\bar{\Gamma}(\bar{S}>0)]-[\Gamma(S<0)+\bar{\Gamma}(\bar{S}<0)]}{[\Gamma(S>0)+\bar{\Gamma}(\bar{S}>0)]+[\Gamma(S<0)+\bar{\Gamma}(\bar{S}<0)]} \quad \begin{array}{l}
\text { [Datta, Duraisamy, London; } \\
\text { Gronau, Rosner 2011] }
\end{array} \\
& =-\frac{2 \sqrt{2}}{\pi} \frac{\operatorname{Im}\left(A_{\perp} A_{0}^{*}-\bar{A}_{\perp} \bar{A}_{0}^{*}\right)}{\left(\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)+\left(\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}\right)} \\
\mathcal{A}_{T}^{(2) c h g-\text { avg }} & \equiv \frac{[\Gamma(\sin 2 \phi>0)+\bar{\Gamma}(\sin 2 \bar{\phi}>0)]-[\Gamma(\sin 2 \phi<0)+\bar{\Gamma}(\sin 2 \bar{\phi}<0)]}{[\Gamma(\sin 2 \phi>0)+\bar{\Gamma}(\sin 2 \bar{\phi}>0)]+[\Gamma(\sin 2 \phi<0)+\bar{\Gamma}(\sin 2 \bar{\phi}<0)]} \\
& =-\frac{4}{\pi} \frac{\operatorname{Im}\left(A_{\perp} A_{\|}^{*}-\bar{A}_{\perp} \bar{A}_{\|}^{*}\right)}{\left(\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)+\left(\left|\bar{A}_{0}\right|^{2}+\left|\bar{A}_{\perp}\right|^{2}+\left|\bar{A}_{\|}\right|^{2}\right)} .
\end{aligned}
$$

- HFAG data for the entire set of polarization amplitudes exists; Triple products at most $5-10 \%$ in either case
[Gronau, Rosner 2011]
- A SM calculation in QCD factorization (based on the heavyquark expansion) is consistent with the HFAG data
[Beneke, Rohrer, Yang 2006]
- Also "fake" triple-product asymmetries which require strong phases - small in QCDF, small in obs.

Polarisation observables

- "Factorization predicts $\mathrm{f}_{\mathrm{L}} \approx 1$, in disagreement with data." Really?
- comprehensive phenomenological analysis of polarisation observables in (QCD) factorization exists

Observable		Theory			Experiment	HFAG 2010		
		default	constrained X_{A}	$\hat{\alpha}_{4}^{c-}$ from data				
$\overline{f_{L} / \%}$	ϕK^{*-}	45_{-0-36}^{+0+58}	45_{-0-31}^{+0+35}	44_{-0-23}^{+0+23}	50 ± 7			
	$\phi \bar{K}^{* 0}$	44_{-0}^{+0+36}	44_{-0}^{+0+35}	43_{-0}^{+0+23}	49 ± 3			
$\phi_{\\|} /{ }^{\circ}$	ϕK^{*-}	-41_{-0-53}^{+0+84}	-41_{-0-30}^{+0+35}	-40_{-0-21}^{+0+21}	-60 ± 16	-46 ± 10	CP-averaged phase difference (mostly	
	$\phi \bar{K}^{* 0}$	-42_{-0-54}^{+0+87}	-42_{-0-30}^{+0+35}	-42_{-0}^{+0+21}	-44 ± 8	-42 ± 8	$\begin{aligned} & \text { difference (mostly } \\ & \text { strong phase } \\ & \text { difference) } \end{aligned}$	
	$\phi \phi$	-39_{-0-57}^{+0+86}		-37_{-0-24}^{+0+21}				
$\Delta \phi_{\\|} /{ }^{\circ}$	ϕK^{*-}	0_{-0-1}^{+0+0}	$\begin{aligned} & 0_{-0-0}^{+0+0} \\ & 0_{-0-0}^{+0+0} \end{aligned}$	0_{-0-0}^{+0+0}	$\begin{aligned} & \mathrm{n} / \mathrm{a} \\ & 6 \pm 8 \end{aligned}$	4 ± 12	CP-asymmetric phase difference (mostly weak phase difference) hrer, Yang 2006]	
	$\phi \bar{K}^{* 0}$	0_{-0-0}^{+0+0}		0_{-0-1}^{+0+0}		6 ± 7		
		0_{-0-1}^{+0+0}		0_{-0}^{+0+1}		neke, Roh		

- transverse polarisation fractions can be large, naive factorisation is not reliable; $f_{\perp} \& f_{\|}$depend on incalculable power corrections so 1-fL not a good probe of new physics.
- QCDF does give negligible relative weak phases in the SM (this is because it preserves dominance of penguin amplitudes)

Polarisation \& NP

- Triple-product asymmetries in $\mathrm{B}_{\mathrm{s}^{-}}>\phi \phi$
- similar pair of TP asymmetries
- time-dependence -> mixing-decay interference
- one can define two combinations A_{u}, A_{v} sensitive to

$$
\operatorname{Im}\left[A_{\perp}(t) A_{i}^{*}(t)+\bar{A}_{\perp}(t) \bar{A}_{i}^{*}(t)\right] \quad \mathrm{i}=0, \|
$$

[Gronau, Rosner 2011]

- CDF $\quad A_{U}=-0.007 \pm 0.064$ (stat) ± 0.018 (syst)

$$
A_{V}=-0.120 \pm 0.064(\text { stat }) \pm 0.016(\text { syst }) .
$$

- LHCb $\quad A_{U}=-0.064 \pm 0.057$ (stat.) ± 0.014 (syst.)

$$
A_{V}=-0.070 \pm 0.057(\text { stat. }) \pm 0.014 \text { (syst.) }
$$

- No quantitative theoretical calculation exists at the moment but qualitatively it is clear that the SM predicts both TP asymmetries to be small (strong penguin dominance)

Polarisation \& NP

- $1 / \mathrm{m}_{\mathrm{b}}$ expansion predicts a hierarchy $\overline{\mathcal{A}}_{0}: \overline{\mathcal{A}}_{-}: \overline{\mathcal{A}}_{+}=1: \frac{\Lambda_{\mathrm{QCD}}}{m_{b}}:\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{2}$ in \bar{B} decay (+/- interchanged in B decays); however, the suppression of the negative-helicity amplitude is numerically spoiled by annihilation contributions
[Kagan 2004]

- A nonvanishing positive-helicity amplitude could be a sign of NP and could even be turned into quantitative information on "right-handed currents"
[Kagan 2004]
- The (presumable) smallness of the negative-helicity amplitude suppresses one of the two triple-product asymmetries, making it a probe of right-handed currents

EWP effect in B->V V

> low-virtuality photon, makes A- formally leading (but $\alpha_{E M}$ suppressed), important contribution in the SM

- If NP involves a right-handed dipole operator Q_{7} this can give a sizable A_{+}
- would be present in $B_{s}->\phi \phi$
- full polarisation analysis would be interesting

CPV in D decays

- LHCb has measured [essentially] the difference

$$
\begin{aligned}
& \Delta \mathrm{A}_{\mathrm{cP}}=\mathrm{A}_{\mathrm{cP}}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)-\mathrm{AcP}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& \left.\left.\quad \Delta A_{C P}=[-0.82 \pm 0.21 \text { (stat. }) \pm 0.11 \text { (sys. }\right)\right] \%
\end{aligned}
$$

- $\operatorname{SU}(3)$ symmetry predicts equal and opposite relative sign between the two asymmetries, i.e. no cancellation expected
- but GIM cancellations suggest, in the SM, strong suppression of the penguin amplitude ($|\mathrm{P} / \mathrm{T}| \sim 10^{-3}$)

- to explain in SM would need about an order of magnitude enhancement of the penguin amplitude. Current theoretical control much worse than for B decays; recent discussion in

Semileptonic decay

- kinematics described by dilepton invariant mass q^{2} and three angles
- Systematic theoretical description based on heavy-quark expansion ($\wedge / \mathrm{m}_{\mathrm{b}}$) for $\mathrm{q}^{2} \ll \mathrm{~m}^{2}(\mathrm{~J} / \Psi)$ (SCET) Beneke, Feldmann, Seidel 01 also for $\mathrm{q}^{2} \gg \mathrm{~m}^{2}(\mathrm{~J} / \psi)$ (OPE) Grinstein et al; Beylich et al 2011 Theoretical uncertainties on form factors, power corrections

$\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mu^{+} \mu^{-}$

Ali et al ; Beneke et al; ..

- Most well-known observable: forward-backward asymmetry

- Many more observables to consider

Krueger, Matias; ...

Constraints on NP

TOP-DOWN

SUSY (again)

- SUSY virtues
solves naturalness problem

$\propto y_{t}^{2} \Lambda_{\mathrm{UV}}^{2}$
gauge coupling unification
dark matter, strings, ...

- many 'soft' parameters in absence of a theory of SUSY breaking violate flavour: flavour puzzle

$$
\left(\delta_{i j}^{u, d, e, \nu}\right)_{A B} \equiv \frac{\left(\mathcal{M}_{\tilde{u}, \tilde{d}, \tilde{e}, \tilde{\nu}}^{2}\right)_{i j}^{A B}}{m_{\tilde{f}}}
$$

33 flavour-violating parameters
45 CPV (some flavour-conserving)

- flavour probes the SUSY breaking; GUT relations

CMSSM / mSUGRA

- standard approach: "CMSSM" ("mSUGRA")
- universal scalar mass, gaugino mass, A-terms ($\left.A_{i j}=a Y_{i j}\right)$ at the GUT scale, $\operatorname{sign}(\mu)$
- 3 parameters \& 1 sign, RG evolution down to TeV scale
- flavour puzzle absent [CMSSM still needs to be justified]
- Straightforward interpretation of experimental constraints

Grand unification

$\binom{u_{L}}{d_{L}}$	$\begin{aligned} & u_{R} \\ & d_{R} \end{aligned}$	$\binom{c_{L}}{s_{L}}$	$\begin{aligned} & c_{R} \\ & s_{R} \end{aligned}$	$\binom{t_{L}}{b_{L}}$	t_{R} b_{R}	$\begin{aligned} & Q=+2 / 3 \\ & Q=-1 / 3 \end{aligned}$
$\binom{\nu_{e L}}{e_{L}}$	- e_{R}	$\binom{\nu_{\mu_{L}}}{\mu_{L}}$	- μ_{R}	$\binom{\nu_{\tau_{L}}}{\tau_{L}}$	- τ_{R}	$\begin{aligned} & Q=0 \\ & Q=-1 \end{aligned}$

- SM in highly reducible representations of the gauge group SM gen $=(3,2)_{1 / 6}+(\overline{3}, 1)_{-2 / 3}+(\overline{3}, 1)_{1 / 3}+(1,2)_{-1 / 2}+(1,1)_{1}$
- however,

$$
\begin{array}{ll}
S M \text { gen } & =[10+\overline{5}] \operatorname{su}(5) \\
S M \text { gen }+\mathrm{V}^{\mathrm{c}} & =16 \mathrm{so}(10)
\end{array}
$$

- if either group is gauged, no gauge invariant distinction of baryons and leptons - baryon \& lepton number violation
what about flavour?

Flavour of SUSY GUTs

- small, hierarchical mixing in the quark sector

$$
K=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- large mixings in the lepton sector

$$
U=\left(\begin{array}{ccc}
c e^{i \alpha_{1} / 2} & s e^{i \alpha_{2} / 2} & s_{13} e^{-i \delta} \tag{1}\\
-s e^{i \alpha_{1} / 2} & c e^{i \alpha_{2} / 2} / \sqrt{2} & 1 / \sqrt{2} \\
s e^{i \alpha_{1} / 2} & -c e^{i \alpha_{2} / 2} / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

SUSY radiative corrections can "transfer" leptonic mixing angles to the hadronic sector

Barbieri\&Hall 1994, Barbieri,Hall,Strumia 1995

CMM Model

- $\mathrm{SO}(10)$ gauge theory with superpotential

$$
W_{Y}=\frac{1}{2} 16_{i} \mathrm{Y}_{1}^{i j} 16_{j} 10_{H}+16_{i} \mathrm{Y}_{2}^{i j} 16_{j} \frac{45_{H} 10_{H}^{\prime}}{2 M_{\mathrm{Pl}}}+16_{i} \mathrm{Y}_{N}^{i j} 16_{j} \frac{\overline{16}_{H} \overline{16}_{H}}{2 M_{\mathrm{Pl}}}
$$

- assumptions:
- Y_{1} and Y_{N} simultaneously diagonalisable
- breaking via SU(5)

$$
\begin{aligned}
\mathrm{SO}(10) \xrightarrow{\left\langle 16_{H}\right\rangle,\left\langle\overline{16}_{H}\right\rangle,\left\langle 45_{H}\right\rangle} \mathrm{SU}(5) \xrightarrow{\left\langle 45_{H}\right\rangle} \mathrm{G}_{\mathrm{SM}} \equiv \mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \\
\xrightarrow{\left\langle 10_{H}\right\rangle,\left\langle 10_{H}^{\prime}\right\rangle} \mathrm{SU}(3)_{C} \times \mathrm{U}(1)_{\mathrm{em}}
\end{aligned}
$$

- MSSM Higgs doublets in different copies of 10 of SO(10)

$$
\begin{aligned}
& 10_{H}=\left(*, \mathbf{5}_{H}\right)=\left(*,\left(\mathbf{3}_{H}, H_{u}\right)\right) \\
& 10_{H}^{\prime}=\left(\overline{5}_{H}, *\right)=\left(\left(\overline{3}_{H}, H_{d}\right), *\right)
\end{aligned}
$$

Nonrenormalizable Y_{2} term gives naturally small $\tan (\beta)$

- keep universal ("CMSSM-like") SUSY breaking, at MPlanck

Flavour structure

$$
\begin{array}{cc}
W_{Y}=\frac{1}{2} 16_{i} \mathrm{Y}_{1}^{i j} 16_{j} 10_{H}+16_{i} \mathrm{Y}_{2}^{i j} 16_{j} \frac{45_{H} 10_{H}^{\prime}}{2 M_{\mathrm{Pl}}}+16_{i} \mathrm{Y}_{N}^{i j} 16_{j} \frac{\overline{16}_{H} \overline{16}_{H}}{2 M_{\mathrm{Pl}}} \\
\mathrm{Y}_{1}=L_{1} \mathrm{D}_{1} L_{1}^{\top}, & \\
\mathrm{Y}_{2}=L_{2} \mathrm{D}_{2} R_{2}^{\dagger}, & L_{1}^{\dagger} R_{N}=\mathbb{1} \begin{array}{l}
\text { (Y) } \\
\mathrm{Y}_{1} \text { and } \mathrm{Y}_{\mathrm{N}} \text { simult } \\
\text { diagonalisable })
\end{array} \\
V_{N}=R_{N} \mathrm{D}_{N} P_{N} R_{N}^{\top} L_{2}^{*} & \text { CKM quark mixing matrix } \\
U_{D}=P_{N}^{*} R_{2}^{\dagger} L_{1}^{*} & \text { PMNS lepton mixing matrix }
\end{array}
$$

- Now fix a U-basis where Y_{1} and Y_{N} are diagonal. Then

$$
\begin{equation*}
\mathrm{Y}_{2}=V_{q}^{*} \mathrm{D}_{2} U_{D} \tag{L}
\end{equation*}
$$

contains all flavour violation In the $S M, U_{D}$ is unphysical in hadronic physics.

Flavour structure (2)

- work in the (U) basis
$\mathrm{Y}_{2}=V_{q}^{*} \mathrm{D}_{2} U_{D}$
$M_{D}=v_{d} Y_{2}$
rotating to mass eigenstates eliminates U_{D}
$M_{L}=v_{d} Y_{2}{ }^{\top}$
rotating to mass eigenstates eliminates V_{q}
Mu brought out of diagonal form, but only by CKM $\left(\mathrm{V}_{\mathrm{q}}\right)$ angles no physical effect of U_{D} in the SM, or unbroken SUSY theory

Observables

- There is now a mismatch of the sfermion and fermion mass bases for the right-handed down-type particles and the lefthanded leptons

$$
\mathrm{m}_{D}^{2}=U_{D} \mathrm{~m}_{\bar{d}}^{2} U_{D}^{\dagger}=\left(\begin{array}{ccc}
m_{\tilde{d}}^{2} & 0 & 0 \\
0 & m_{\tilde{d}}^{2}-\frac{1}{2} \Delta_{\tilde{d}} & -\frac{1}{2} \Delta^{i} e^{i \xi} \\
0 & -\frac{1}{2} \Delta_{\tilde{d}} \mathrm{e}^{-i \xi} & m_{\tilde{d}}^{2}-\frac{1}{2} \Delta_{\tilde{d}}
\end{array}\right) \quad \begin{gathered}
\text { complex } \\
\text { phase }
\end{gathered}
$$

- Diagonalizing the matrix introduces flavour violation into neutral current vertices

Soft flavour violation

$$
\begin{aligned}
& \overbrace{\tilde{g}_{3}^{A}}^{\sim} \overbrace{\text { may be }}^{\text {complex }}
\end{aligned}
$$

large effects in $b \rightarrow s$ transitions, CP violation correlations of hadronic \& leptonic observables
$2 \rightarrow 1$ and $3 \rightarrow 1$ transitions less clearly correlated

Phenomenology: RG evolution

- 2-loop RGE for gauge couplings and yt, analytic formulas for soft terms, matched at SUSY, SU(5) and SO(10) thresholds
- relate Planck-scale inputs to set of low-energy inputs:
at $\mathrm{M}_{\mathbf{z}} \quad m_{\tilde{u}_{1}}^{2}\left(M_{Z}\right), \quad m_{\tilde{d}_{1}}^{2}\left(M_{Z}\right), \quad a_{1}^{d}\left(M_{Z}\right) \equiv\left[a^{d}\left(M_{Z}\right)\right]_{11}$
evolve to Mgut
$m_{\widetilde{\Psi}_{1}}^{2}\left(t_{\mathrm{GUT}}\right)=m_{\tilde{u}_{1}}^{2}\left(t_{\mathrm{GUT}}\right)$,
$m_{\tilde{\Phi}_{1}}^{2}\left(t_{\mathrm{GUT}}\right)=m_{\tilde{d}_{1}}^{2}\left(t_{\mathrm{GUT}}\right)$
evolve to M_{10}
$m_{1 \overline{16}_{1}}^{2}\left(t_{\text {soo(0) }}\right)=\frac{1}{4}\left[3 m_{\bar{w}_{1}}^{2}\left(t_{\text {too(10) }}\right)+m_{\bar{w}_{1}}^{2}\left(t_{\text {so(00 }}\right)\right]$
evolve to $M_{P I}$
$m_{0}^{2}=m_{16_{1}}^{2}\left(t_{\mathrm{Pl}}\right)$
similarly for $\mathrm{a}_{1}{ }^{\mathrm{d}}$
evolve all soft terms down to Mz , calculate spectrum \& observables

Example

$$
\begin{aligned}
& M_{\tilde{q}}=1500 \mathrm{GeV}, m_{\tilde{g}_{3}}=500 \mathrm{GeV}, a_{1}^{d}\left(M_{Z}\right) / M_{\tilde{q}}=1.5, \arg (\mu)=0 \text { and } \tan \beta=6 \\
& a_{0}=1273 \mathrm{GeV}, \quad m_{0}=1430 \mathrm{GeV}, \quad m_{\tilde{g}}=184 \mathrm{GeV} \\
& \hat{\tilde{A}}_{u}\left(M_{\mathrm{GUT}}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 46
\end{array}\right) \mathrm{GeV}, \quad \hat{\tilde{A}}_{d}\left(M_{\mathrm{GUT}}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0.3 & -3.5
\end{array}\right) \mathrm{GeV} \\
& \hat{\tilde{A}} \text {. } \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \text { non-universal at Mgut! }
\end{array}\right. \\
& \tilde{\mathrm{A}}_{\nu}\left(M_{\mathrm{GUT}}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-0.0013 & 0.0023 & 43.4
\end{array}\right) \mathrm{GeV}, \\
& m_{\tilde{\Phi}}\left(M_{\text {GUT }}\right)=\operatorname{diag}(1426,1426,1074) \mathrm{GeV} \text {, } \\
& m_{\tilde{\Psi}}\left(M_{\text {GUT }}\right)=\operatorname{diag}(1444,1444,1077) \mathrm{GeV}, \quad \text { MSSM RGE } \\
& m_{\tilde{N}}\left(M_{\text {GUT }}\right)=\operatorname{diag}(1459,1459,1078) \mathrm{GeV} \text {, } \\
& m_{H_{u}}\left(M_{\mathrm{GUT}}\right)=1126 \mathrm{GeV}, \quad m_{H_{d}}\left(M_{\mathrm{GUT}}\right)=1446 \mathrm{GeV}, \\
& m_{\tilde{g}}\left(M_{\mathrm{GUT}}\right)=211 \mathrm{GeV} \text {. } \\
& m_{\tilde{g}_{1}}=83 \mathrm{GeV}, \quad m_{\tilde{g}_{2}}=165 \mathrm{GeV} \text {, } \\
& m_{\tilde{\chi}_{i}^{0}}=(640,632,159, \underline{81}) \mathrm{GeV} \\
& m_{\tilde{\chi}_{i}^{ \pm}}=(640,159) \mathrm{GeV} \text { LSP } \\
& M_{\tilde{l}_{i}}=(1427,1427,1074,1462,1462,1095) \mathrm{GeV} \\
& M_{\tilde{u}_{i}}=(1519,1519, \mathbf{9 3 4}, 1501,1501,485) \mathrm{GeV} \\
& M_{\tilde{d}_{i}}=(1519,1519, \mathbf{9 0 8}, 1498,1498, \mathbf{1 1 6 4}) \mathrm{GeV} \text {. }
\end{aligned}
$$

Mass splittings

Figure 3: Relative mass splitting $\Delta_{\tilde{d}}^{\text {rel }}=1-m_{\tilde{d}_{3}}^{2} / m_{\tilde{d}_{2}}^{2}$ among the bilinear soft terms for the righthanded squarks of the second and third generations with $\tan \beta=3$ (left) and 6 (right) in the $M_{\tilde{q}}\left(M_{Z}\right)-a_{1}^{d}\left(M_{Z}\right) / M_{\tilde{q}}\left(M_{Z}\right)$ plane for $m_{\tilde{g}_{3}}=500 \mathrm{GeV}$ and $\operatorname{sgn}(\mu)=+1$.

Figure 4: Correlation of FCNC processes as a function of $M_{\tilde{q}}\left(M_{Z}\right)$ and $a_{1}^{d}\left(M_{Z}\right) / M_{\tilde{q}}\left(M_{Z}\right)$ for $m_{\tilde{g}_{3}}\left(M_{Z}\right)=500 \mathrm{GeV}$ and $\operatorname{sgn} \mu=+1$ with $\tan \beta=3$ (left) and $\tan \beta=6$ (right). $\mathcal{B}(b \rightarrow s \gamma)\left[10^{-4}\right]$ solid lines with white labels; $\mathcal{B}(\tau \rightarrow \mu \gamma)\left[10^{-8}\right]$ dashed lines with gray labels. Black region: $m_{\tilde{f}}^{2}<0$ or unstable $|0\rangle$; dark blue region: excluded due to $B_{s}-\bar{B}_{s}$; medium blue region: consistent with $B_{s}-\bar{B}_{s}$ but excluded due to $b \rightarrow s \gamma$; light blue region: consistent with $B_{s}-\bar{B}_{s}$ and $b \rightarrow s \gamma$ but inconsistent with $\tau \rightarrow \mu \gamma$; green region: compatible with all three FCNC constraints.

Higgs mass \& CPV in B_{s} mixing

higgs mass
excludes whole green region at $\tan \beta=3$
max possible B_{s} mixing phase (degrees)

higgs mass bound can be satisfied for $\tan \beta=6$ (or greater)

A very brief history of flavour

1934 Fermi proposes Hamiltonian for beta decay

$$
H_{W}=-G_{F}\left(\bar{p} \gamma^{\mu} n\right)\left(\bar{e} \gamma_{\mu} \nu\right)
$$

1956-57 Lee\&Yang propose parity violation to explain " θ paradox".
Wu et al show parity is violated in β decay Goldhaber et al show that the neutrinos produced in ${ }^{152} \mathrm{Eu}$ K-capture always have negative helicity

1957 Gell-Mann \& Feynman, Marshak \& Sudarshan

$$
H_{W}=-G_{F}\left(\bar{\nu}_{\mu} \gamma^{\mu} P_{L} \mu\right)\left(\bar{e} \gamma_{\mu} P_{L} \nu_{e}\right)-G\left(\bar{p} \gamma^{\mu} P_{L} n\right)\left(\bar{e} \gamma_{\mu} P_{L} \nu_{e}\right)+\ldots
$$

V-A current-current structure of weak interactions.
Conservation of vector current proposed
Experiments give $G=0.96 \mathrm{G}_{\mathrm{F}}$ (for the vector parts)

1960-63 To achieve a universal coupling, Gell-Mann\&Levy and Cabibbo propose that a certain superposition of neutron and \wedge particle enters the weak current.
Flavour physics begins!
1964 Gell-Mann gives hadronic weak current in the quark model
$H_{W}=-G_{F} J^{\mu} J_{\mu}^{\dagger}$
$J^{\mu}=\bar{u} \gamma^{\mu} P_{L}\left(\cos \theta_{c} d+\sin \theta_{c} s\right)+\bar{\nu}_{e} \gamma^{\mu} P_{L} e+\bar{\nu}_{\mu} \gamma^{\mu} P_{L} \mu$
1964 CP violation discovered in Kaon decays (Cronin\&Fitch)
1960-1968 J_{μ} part of triplet of weak gauge currents. Neutral current interactions predicted and, later, observed at CERN.

However, the predicted flavour-changing neutral current (FCNC) processes such as $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$are not observed!

1970 To explain the absence of $K_{L} \rightarrow \mu^{+} \mu^{-}$, Glashow, Iliopoulos \& Maiani (GIM) couple a "charmed quark" to the formerly "sterile" linear combination
$-\sin \theta_{c} d_{L}+\cos \theta_{c} s_{L}$
The doublet structure eliminates the Zsd coupling!
1971 Weak interactions are renormalizable ('t Hooft)
1972 Kobayashi \& Maskawa show that CP violation requires extra particles, for example a third doublet. CKM matrix

1974 Gaillard \& Lee estimate loop contributions to the $\mathrm{K}_{\mathrm{L}}-\mathrm{K}_{\mathrm{s}}$ mass difference
Bound $\mathrm{m}_{\mathrm{c}}<5 \mathrm{GeV}$

1974 Charm quark discovered

1977 т lepton and bottom quark discovered
1983 W and Z bosons produced
1987 ARGUS measures $B_{d}-B_{d}$ mass difference First indication of a heavy top

The diagram depends quadratically on m_{t}

1995 top quark discovered at CDF \& D0
\(\left.$$
\begin{array}{|lc|cc|c||c|}\hline\binom{u_{L}}{d_{L}} & u_{R} \\
d_{R} & \binom{c_{L}}{s_{L}} & c_{R} & \left(\begin{array}{c}t_{L} \\
s_{R}\end{array}\right. & \left.\begin{array}{c}t_{R} \\
b_{L}\end{array}\right) & Q=+2 / 3 \\
b_{R} & Q=-1 / 3 \\
\hline\binom{\nu_{e L}}{e_{L}} & - & \binom{\nu_{\mu_{L}}}{\mu_{L}} & - & \left(\begin{array}{c}\nu_{\tau_{L}} \\
\mu_{R}\end{array}
$$\right. \& -

\tau_{L}\end{array}\right) \quad\)| τ_{R} |
| :--- |

2012-

SUSY, new strong interactions, extra dimensions, ...

Summary: what can we learn?

- The case for flavour is strong (if there is anything at TeV or not too far above).
- For hadronic decays at LHCb, strong QCD dynamics is the main theory obstacle, but less so in some observables than in others
- observables not depending on strong phases preferred [calculable phases O(as) ~ incalculable ones O(L/mb)]
- feedback from experiment important (to fit/constrain some amplitudes, develop theory). Look at sine coefficients, TP's, and of course CP-conserving data specifically "wrong polarisations" can probe RH currents
- Illustrated the power to probe fundamental scales within a SUSY GUT model

BACKUP

"msugra GUTs"

Assume that SUSY breaking is flavour blind and universal (like msugra) at or near the Planck scale

$$
\begin{aligned}
& \mathscr{L}_{\text {soft }}=-\widetilde{16}_{i}^{*} \mathrm{~m}_{16}^{2 i j} \widetilde{16}_{j}-m_{10_{H}}^{2} 10_{H}^{*} 10_{H}-m_{10_{H}^{\prime}}^{2} 10_{H^{\prime}}^{*} 10_{H^{\prime}} \\
& -m_{16_{H}}^{2} \overline{16}_{H}^{*} \overline{16}_{H}-m_{16_{H}}^{2} 16_{H}^{*} 16_{H}-m_{45_{H}}^{2} 45_{H}^{*} 45_{H} \\
& -\left(\frac{1}{2} \tilde{16}_{i} \mathrm{~A}_{1}^{i j} \widetilde{16}_{j} 10_{H}+\tilde{16}_{i} \mathrm{~A}_{2}^{i j} \tilde{16}_{j} \frac{45_{H} 10_{H^{\prime}}}{2 M_{\mathrm{Pl}}}+\tilde{16}_{i} \mathrm{~A}_{N}^{i j} \tilde{16}_{j} \frac{\overline{\operatorname{t}}_{H} \overline{1}_{H}}{2 M_{\mathrm{Pl}}}+\text { h.c. }\right) \\
& \mathrm{m}_{\overline{16}_{i}}^{2}=m_{0}^{2} \mathbb{1}, \quad m_{10_{H}}^{2}=m_{10_{H}^{\prime}}^{2}=m_{16_{H}}^{2}=m_{16_{H}}^{2}=m_{45_{H}}^{2}=m_{0}^{2} \\
& \mathrm{~A}_{1}=a_{0} \mathrm{Y}_{1}, \quad \mathrm{~A}_{2}=a_{0} \mathrm{Y}_{2}, \quad \mathrm{~A}_{N}=a_{0} \mathrm{Y}_{N},
\end{aligned}
$$

radiative corrections lead to a nonuniversal sfermion mass matrix at the GUT scale, diagonal in the U-basis
[Hall, Kostelecky, Raby 86; Barbieri, Hall, Strumia 95]

$$
\begin{aligned}
& m_{\tilde{1 \sigma_{3}}}^{2}=m_{0}^{2}-\Delta \\
& m_{\tilde{1}_{1}}^{2} \approx m_{\tilde{1}_{2}}^{2}=m_{0}^{2}+\delta
\end{aligned}
$$

Higgs mass constraint

- like in mSUGRA, the weak scale gives one relation between μ and the soft SUSY breaking parameters
- like always in the MSSM, the Higgs 'likes' to be light tree level
(very) small values of $\tan \beta$ disfavoured
- one \& two loops

- larger $\tan \beta$ reduces y_{t} and size of flavour effects
- could be relaxed by allowing the Higgs multiplets to have different Planck-scale masses from the sfermions (similarly to the 'non-universal Higgs model' (NUHM))

Theoretical description

partly short distance

$\because \leqslant$
Form factor
$\mathrm{T}_{1,2,3} \times \mathrm{C}_{7}$
(lattice, QCD sum rules) Wilson coefficient (may receive NP corrections)
partly long distance

$$
q=\operatorname{charm} / \mathrm{u} / \mathrm{d} / \mathrm{s}
$$ not calculable in terms of form factors

LOnO-OiSt?

no known way to treat charm resonance region to the necessary precision (would need $\ll 1 \%$ to see short-distance contribution)
"solution": cut out $6 \mathrm{GeV}^{2}<\mathrm{q}^{2}<14 \mathrm{GeV}^{2}$
above (high-q ${ }^{2}$) charm loops calculable in OPE
Grinstein et al; Beylich et al 2011
at low q^{2}, long-distance charm effects also suppressed, but photon can now be emitted from spectator withouth power suppression

long-distance "resonance" effects as in top figure ($q=u, d, s$) CKM and power suppressed

