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Baryogenesis

• There are many photons ...       some baryons...

... and essentially no antibaryons in the universe

• Can arise dynamically from B=0 if sufficient...
(1) departure from equilibrium and
(2) C and CP violation and
(3) B violation

[WMAP]
[SDSS]

small splitting is induced by the soft supersymmetry breaking terms [42].

Another possibility which has been recently explored [16, 17] relies on the fact that ra-

diative effects, induced by the renormalization group (RG) running from high to low

energies, can naturally lead to a sufficiently small neutrino mass splitting at the lepto-

genesis scale. In the latter case, sufficiently large CP asymmetries are generated.

In the minimal seesaw scenario with only two heavy neutrinos the resulting baryon

asymmetry in the SM turns out to be below the observed value [16]. On the other

hand, this mechanism can be successfully implemented in its minimal supersymmetric

extension (MSSM) [17].

It has been shown [18] that the above problems in the SM can be overcome in a more

realistic scenario where the effects of a third heavy neutrino are also taken into account.

In [18], leptogenesis was studied in the framework of a model where there are three right-

handed neutrinos, with masses M1 ≈ M2 " M3. We will discuss this scenario below as

a special limit of the MLFV framework.

In view of the above, it is important to analyze leptogenesis in the extended MLFV

framework, where CP violation is allowed both at high and low energies. In the MLFV

scenario, right-handed neutrinos are assumed to be exactly degenerate at a high energy

scale. In the limit of exact degeneracy, no lepton-asymmetries can be generated. How-

ever, as previously emphasized, even if exact degeneracy is assumed at a high energy

scale, renormalization group effects lead to a splitting of right-handed neutrino masses

at the scale of leptogenesis, thus offering the possibility of viable leptogenesis in the

extended MLFV framework.

5.2 BAU in the RRL and Flavour Effects

In leptogenesis scenarios the baryon asymmetry of the universe ηB arises due to non-

perturbative sphaleron interactions that turn a lepton asymmetry into a baryon asym-

metry. The predicted value of ηB has to match the results of WMAP and the BBN

analysis for the primordial deuterium abundance [43]

ηB =
nB

nγ
= (6.3 ± 0.3) × 10−10. (49)

The lepton asymmetry is generated by out-of-equilibrium decays of heavy right-handed
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Thermal leptogenesis

• CP-violating νR decay:

• Resulting net lepton numbers <Ll> partially 
converted to <B> by equilibrium sphalerons

thermal Leptogenesis

CP asymmetric out of equilibrium decay of 
heavy neutrino generates an excess in L

!L is converted via sphalerons into desired 
excess in B needed to explain "B=(6.3±0.3)10-10

!M ! #(N-> L phi)
‘radiative resonant leptogenesis’

eta B = d * 1/K " eps

two regimes flavour / no flavour

Fukugita, Yanagida (86), see lecture by S. Davidson

Lepton Flavour Effects and Resonant Leptogenesis

Outline

• Resonant Leptogenesis

(a) (b) (c)

L
Ni

Φ†

LC

Nj

Φ
LC

Ni

Φ†

Ni Nj

Φ†

LC

Φ

L

• “Lepton Flavour Effects”

– Significant effects of individual lepton flavours on the dynamics
of leptogenesis

• Resonant τ -Leptogenesis

– A minimal variant of leptogenesis with potentially observable
LFV and the collider production of N

analysis for the primordial deuterium abundance [43]

ηB =
nB

nγ
= (6.3 ± 0.3) × 10−10. (49)

The lepton asymmetry is generated by out-of-equilibrium decays of heavy right-handed

Majorana neutrinos Ni and is proportional to the CP asymmetry εl
i with

εl
i =

Γ(Ni → Ll φ) − Γ(Ni → L̄l φ̄)
∑

l

[

Γ(Ni → Ll φ) + Γ(Ni → L̄l φ̄)
] , (50)

and l denoting the lepton flavour, that arises at one-loop order due to the interference

of the tree level amplitude with vertex and self-energy corrections.

A characteristic of the MLFV framework is that only admissable BAU with the help of

leptogenesis is radiative and thereby resonant leptogenesis. The mass splittings of the

right-handed neutrinos induced by the RGE are of similar size ∆M ∼ O(Mν YνY †
ν ) as

the decay widths Γ ∼ O(Mν YνY †
ν ). This is the condition of resonant leptogenesis. The

CP asymmetry is for the lepton flavour l given by

εl
i =

1

(YνY
†
ν )ii

∑

j

%((YνY
†
ν )ij(Yν)il(Y

†
ν )lj) g(M2

i , M2
j , Γ2

j) (51)

where g(M2
i , M2

j , Γ2
j) is an abbreviation for the full result given in [21]. The total CP

asymmetries εi are obtained summing over the lepton flavours l.

The baryon to photon number ratio ηB can then be calculated solving the Boltzmann

equations for the lepton asymmetry and converting it into ηB using suitable dilution

and sphaleron conversion factors. Which Boltzmann equation to use depends on the

temperature scale at which leptogenesis takes place. We will follow a simplistic approach

ignoring all subtleties generically coming into play in the intermediate regime between

different mechanisms at work. Our main conclusions, however, will not be affected by

this omission. We will simply divide the temperature scale into a region up to which all

three lepton flavours have to be taken into account and a region above which the single

flavour approximation works.

Below some temperature6 T µ
eq & 109−11 GeV muon and tau charged lepton Yukawa inter-

actions are much faster than the expansion H rendering the µ and τ Yukawa couplings in

equilibrium. The correct treatment in this regime requires the solution of lepton flavour

6Different results for T µ
eq can be found in the literature ranging from T µ

eq & 109 GeV [44, 45] to

T µ
eq & 1011 GeV [46]. We will chose T µ

eq & 1010 GeV in our analysis. The main conclusions are, however,

not affected by this choice.
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weak CPV phase in Yν CP-conserving phase from loop

temperature

scale factor

todayTreheat
T=MR

L asymmetry generated

radiation-dominated 
epoch begins

inflation ends, 
universe reheated

converted



C, P and T
• In local quantum field theory CPT is a symmetry

e
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+
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t

“rotation” by π 
in tx plane

i.e. simultaneously  t ➔-t                              (time reversal T)
                                x ➔-x                             (parity P - up to a rotation)
                                particles ➔ antiparticles (charge conjugation C)

in particular CPT implies the existence of antiparticles with identical 
masses and lifetimes, and opposite conserved charges

(constructive proof at Lagrangian level, or more general proof in 
axiomatic field theory)



C and P violation
• C, P, T individually need not be symmetries

• chiral fermions violate C & P maximally [no C,P partners] 

• gauge-fermion theories (renormalisable, only spins 1 and 
1/2) preserve CP save for vacuum θ angle(s)

• example: SM gauge sector (neglect θQCD  for now) 

• conserves CP; large global flavour symmetry

f = QLj , uRj , dRj , LLj , eRj j = 1, 2, 3

Lgauge =

∑

f

ψ̄fγµDµψf −
∑

i,a

1

4
giF

ia
µνF iaµν

chiral fermions

Gflavor = SU(3)5 × U(1)B × U(1)A × U(1)L × U(1)E

QL → ei(b/3+a)VQL
QL, uR → ei(b/3−a)VuR

uR, dR → ei(b/3−a)VdR
dR

LL → ei(l+a)VLLL, eR → ei(l+e−a)VReR Chivukula, Georgi 1987



CP violation
• Vacuum θ angle(s) violate CP

• CP violation generic if scalars are present
SM Yukawa interactions:

CP violation of this type requires 3 generations

• flavour symmetry broken to 

LY = −ūRYUφc†QL − d̄RYDφ†DL − ēRYEφ†EL

U(1)B × U(1)e × U(1)µ × U(1)τ

YU = 1/v diag(mu, mc, mt)VCKM

YD = 1/v diag(md, ms, mb)

YE = 1/v diag(me, mµ, mτ )

hadronic electric dipole 
moments (EDMs)

L ⊃ −θ
g2

32 π2
F a

µνF̃µν a
∝ #Ea

· #Ba

P and CP odd

9 masses       3 mixing angles

1 CP-violating 
phase

Kobayashi, Maskawa 1972

close connection CP - flavour - EW symmetry breaking (Higgs) sector



Observables
• CP-violating, flavour-conserving

   neutron, electron, atomic EDM’s
   advantage: ultraclean tests of SM and we
   “know” that BSM CP violation exists
   disadvantage: CP violation could be at scales >> TeV   
   and possibly out of reach

• CP-violating, flavour-violating
   CPV in K,D, B, Bs mixing and mixing-decay interference
   direct CPV (CPV in decay)
   triple-product asymmetries
   advantage: various clean tests of SM
   disadvantage:  TeV scale need not be CPV (see above)

• CP-conserving, flavour-violating
   Rare K, (D,) B, Bs decays: BR’s, kinematic distributions
   lepton flavour violation
   advantage: TeV physics is guaranteed to affect these
   disadvantage: fewer/less clean tests of SM
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The CKM picture of flavour & CP violation is consistent with 
observations.

Within the Standard Model, all parameters (except higgs mass) 
including CKM have been determined, with good precision

B  ➔ D π, D K, ... 

B ➔ ππ,πρ,ρρ

B ➔ J/ψ KS



Flavour of the TeV scale
• Solutions to the hierarchy problem must bring in particles 

to cut off the top contribution to the weak scale (Higgs 
mass parameter).  

• The new particles’ couplings tend to break flavour (they 
do in all the major proposals for TeV physics)

• At least they will have CKM-like flavour violations 
(minimal flavour violation), so will always affect rare 
decays
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Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

3

t
H ∝ y

2
t
Λ

2
UVH



Minimal flavour violation
• in this case, CKM parameters can still be extracted 

unambiguously beyond the Standard Model

• however, this is a very restrictive scenario; typically does 
not apply to dynamical BSM models

• can be generalized (relaxed)

Buras, Gambino, Gorbahn, SJ, Silvestrini 2000

UTfit collaboration (Bona et al)

independent of details of new physics 
(particle content, masses, couplings)

 Kagan et al 2009
 ...

Universal unitarity triangle (UUT)

d’Ambrosio et al 2002



Supersymmetry associates a scalar with every SM fermion

Squark mass matrices are 6x6 with independent flavour 
structure:

similar for up squarks, charged sleptons. 3x3 LL for sneutrinos

                                               
                                            

3x3 flavour-violating               

M
2

d̃
=





m̂2

Q̃
+ m2

d + DdLL v1T̂D − µ∗md tanβ

v1T̂
†
D − µmd tanβ m̂2

d̃
+ m2

d + DdRR



≡





(M2

d̃
)LL (M2

d̃
)LR

(M2

d̃
)RL (M2

d̃
)RR





(

δ
u,d,e,ν
ij

)

AB
≡

(

M2

ũ,d̃,ẽ,ν̃

)AB

ij

m2

f̃

                                              33 flavour-violating parameters 
                                              45 CPV (some flavour-conserving) 

SUSY flavour

- and supersymmetry-breaking               



                                               
                                            

K-K, Bd-Bd, Bs-Bs mixing
 
ΔF=1 decays            

SUSY flavour - observables
S. Jäger: Supersymmetry beyond minimal flavour violation 11
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)ij
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)ij
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Fig. 3. Diagrams for meson-antimeson mixing. A, B, C, D denote chiralities of the quarks (and squarks). The blobs are flavour-
changing “mass insertions”.

There are also chargino-up-squark contributions. These
can be competitive with the gluino-squark contributions
if the charginos are lighter than the gluinos, as tends to
be the case in GUT scenarios. There are always “mini-
mally flavour-violating” contributions, which are propor-
tional to the same CKM factors as the SM contributions.
Of interest here are the additional contributions due to
nonvanishing δu parameters. Neglecting terms suppressed
by small CKM elements or small Yukawa couplings, only
C1 receives a contribution [58]

C1 = −
GF α√

2π sin2 θW

M2
W

m2
q̃

×
1

20

[

([δũ
ij)LL]2 −

2

3
(δũ

ij)LL(δũ
it)LR(δũ

jt)
∗
LR

+
1

7
[(δũ

it)LR(δũ
jt)

∗
LR]2

]

. (65)

Note that the chargino contributions involve either a LL
mass insertion or a double LR one on each squark line;
for the latter, only those involving a stop can be relevant
according to Table 3. (For B − B̄ mixing, there may be
additional operators [59].)

If tanβ is large, there are in principle also terms pro-
portional to yb that could be important. In that case, how-
ever, Higgs double-penguin diagrams are often dominant
and require a modified treatment [60,61,62,63].

3.2.1 K − K̄ mixing and constraints on δ’s

K − K̄ oscillations proved their discovery potential in
estimating the charm quark mass before its observation
[64], as well as in the discovery of (indirect) CP violation

[65], later giving information on the CP-violating phase in
the CKM matrix. The possibility of large SUSY contribu-
tion was recognized early on [66,67,68,69,70], and ∆MK

and εK still provide the strongest FCNC constraints on
the MSSM parameters. The mass difference ∆MK and
the CP-violating parameter εK follow from the effective
∆F = 2 Hamiltonian,

∆MK ∝ 2
∑

i

Bi Re Ci, (66)

εK ∝
eiπ/4

√
2∆MK

∑

i

Bi Im Ci, (67)

where Bi ≡ 〈K|Qi|K̄〉. The hadronic matrix elements Bi

contain low-energy QCD effects and require nonperturba-
tive methods such as (numerical) lattice QCD, see e.g. [71,
72,73].8 Moreover, ∆MK is afflicted by long-distance con-
tributions which are believed to be not much larger than
the SM short-distance contribution but are difficult to es-
timate. Nevertheless, in view of the strong CKM suppres-
sion of the SM contribution, even a rough estimate of the
Bi translates into strong constraints on s → d flavour vi-
olation parameters. The procedure is as follows [1]:

– Write out the expression for the observable (here, εK

or ∆MK) as linear combination of (products of) δ-
parameters, inserting estimates of the hadronic matrix
elements.

– Require that each term at most saturates the experi-
mental result.

8 Usually, the hadronic matrix elements are normalized to
their values obtained from PCAC in ”vacuum-insertion ap-
proximation”. This normalization is included in the Bi here.
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ũLt̃R

B ➔Xs γ 
B ➔Xs µ+µ-

B ➔K*γ, B ➔K*µ+µ- , B ➔Kπ 
Bs,d ➔µ+µ- 
K ➔πνν
B ➔Kνν
...

oben

unten

rechts

s

b

g

s

b

γ
s

b
Z

s

b
H

e

µ

γ

W

νi

e

µ

γ

#̃−i

χ0
k

e

µ

γ

χ̃−

i

ν̃i

b

b

s

s b

hi

hj
b s

s b

hi

hj hk

hl

b s

s b

hi
hj

hk

.

lepton flavour violation 
     µ➔eγ, τ➔eγ   τ➔µγ 
     τ➔µµµ, ...
     µ➔e conversion
     ...

oben

unten

rechts

s

b

g

s

b

γ
s

b
Z

s

b
H

b

s

γ

W

t

b

s

γ

χ−

k

t̃i

e

µ

γ

W

νi

e

γ

$̃−i

χ0



SUSY flavour puzzle
d                                                      where are their effects?

 o

- elusiveness of deviations from SM in flavour physics
  seems to make MSSM look unnatural

- pragmatic point of view: flavour physics highly sensitive to MSSM 
  parameters - and SUSY breaking mechanism in particular

(

δ
u,d,e,ν
ij

)

AB
≡

(

M2

ũ,d̃,ẽ,ν̃

)AB

ij

m2

f̃

[Gabbiani et al 96; Misiak et al 97 ]
these numbers from [SJ, 0808.2044]



Flavour - warped extra D
• v

Warped models may overcome both difficulties

Gherghetta & Pomarol;
                Huber & Shafi (00)

♦ 0-modes configuration looks similar to flat case. 

Higgs and KK states are localized on the IR. 

Π
2 Π

Φ

f�Φ�
Higgs

heavylight

Warped 5D

1st KK

Light fields have highly suppressed coupling to KK modes!

UV IR

9

[G Perez, talk at CKM 2010]

Higgs localized on  IR brane
light (heavy) fermions localized
near UV (IR) brane

hierarchical SM 
fermion masses

also, dangerous four-fermion operators on the IR brane, but 
fermions localized on the UV brane do not “feel” these much
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b q
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u, c, t
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(e)

s d

d s

SM fermions = zero modes 
(~ ground state WF of a 
particle in a box) of fields 
present in the bulk.

also infinitely many 
massive KK modes 
(~higher states of particle 
in box)

brane brane

bulk

couplings (Yukawa and other) given by wave function overlaps 



Flavour - warped ED (2)
• dominant contribution to FCNC generically from tree-level 

KK boson exchange (rather than brane contact terms)

• where are their effects?

• strongest tension generally in Kaon sector, then EW 
precision tests

λkmn

f (m)

f (n)

f ′ (m′)

f ′ (n′)
V (k)

f (m)

f (n)

f ′ (m′)

f ′ (n′)
h

Figure 1: Contributions to the effective four-fermion interactions arising from the tree-

level exchange of the gauge bosons V = γ, g, Z0, W±
and their KK excitations (left),

and of the Higgs boson (right).

3.1 Exchange of KK Photons and Gluons

We begin with a discussion of the interactions induced by the exchange of KK photons and

gluons. The graph on the left in Figure 1 shows an example of a diagram giving rise to such

contributions. The relevant sums over KK modes can be evaluated by means of (I:34). In the

case of KK photon exchange, we find that the effective Hamiltonian at low energies is given

by

H
(γ)
eff =

2πα

M2
KK

�

f,f �

Qf Qf �

�
1

2L

�
f̄γµf

� �
f̄ �γµf

��− 2
�
f̄Lγµ∆�

F fL + f̄Rγµ∆�
ffR

� �
f̄ �γµf

��

+ 2L
�
f̄Lγµ �∆F fL + f̄Rγµ �∆ffR

�
⊗

�
f̄ �

Lγµ
�∆F �f �

L + f̄ �
Rγµ

�∆f �f �
R

� �
.

(8)

Here the sum over fermions implicitly includes the sum over all KK modes. The matrices ∆�
A

have been defined in (I:122). These are infinite-dimensional matrices in the space of flavor

and KK modes. In addition, we have defined the new mixing matrices (with F = U,D and

f = u, d, and similarly in the lepton sector) [36]

��∆F

�
mn
⊗

��∆f �
�

m�n� =
2π2

L2�2

� 1

�

dt

� 1

�

dt� t2<

×
�
a(F )†

m C(Q)
m (φ) C(Q)

n (φ) a(F )
n + a(f)†

m S(f)
m (φ) S(f)

n (φ) a(f)
n

�

×
�
a(f �)†

m� C(f �)
m� (φ�

) C(f �)
n� (φ�

) a(f �)
n� + a(F �)†

m� S(Q)
m� (φ�

) S(Q)
n� (φ�

) a(F �)
n�

�
,

(9)

etc. Notice that the matrices �∆A ⊗ �∆B are not defined individually, but only as tensor

products, as indicated by the ⊗ symbol. The couplings to SM fermions are encoded in the

upper-left 3×3 blocks of each �∆A⊗ �∆B matrix. We emphasize that the result (8) is exact. In

particular, no expansion in powers of v2/M2
KK has been performed. The effective interactions

arising from KK gluon exchange have a very similar structure, except that we need to restrict

the sum over fermions in (8) to quarks and replace α Qf Qf � by αs ta ⊗ ta, where the color

matrices ta must be inserted inside the quark bi-linears.

The four-fermion operators induced by KK gluon exchange give the by far dominant (lead-

ing) contribution to the effective weak Hamiltonians describing K–K̄ (Bd,s–B̄d,s and D–D̄)

7

λkmn =

∫
dφw(φ)f (m)(φ)f (n)(φ)f (k)

V
(φ)

non-minimal flavour violations !          

Ymn ∝ f (m)(π)f (n)(π)

zero modes
 =SM particles

KK mode number

generation

KK mode coupling

SM Yukawa coupling
not aligned



Soft-wall ED model
• hard brane replaced by extended, “soft” wall

Higgs in bulk, localised toward wall
eases EW precision constraints

•
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Figure 5: The mean values of εNPK and ∆mNPK for the RS model (stars) and the SW model with c1 = 1.5
(circles), c1 = 1 (squares) and c1 = 0.5 (diamonds). The cL values are given in (52). For the SW model
configuration (A) is plotted in dark blue, (B) is plotted in light blue, (C) is plotted in cyan, (D) is plotted in
light green and (E) is plotted in dark green. While for the RS model (A) is plotted in dark red, (B) is plotted
in light red, (C) is plotted in orange, (D) in yellow and (E) in dark yellow. For both the RS model and the
SW model the mass of the first gauge KK mode will be about two times MKK. Note plotted here are the
average values. Typically one can always find tuned points, in parameter space, that satisfy the experimental
constraints for all configurations and all KK scales considered. Ω = 1015.
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stars: hard wall 
(Randall-Sundrum)

circles/
squares/

diamonds: 
soft wall

flavour still gives strongest constraints on these models

[Archer, Huber, SJ
JHEP 12(2011)101 [arXiv:1108.1433]]

B physics of these models? [Granger, Huber, SJ, w.i.p.]



Other scenarios
• fourth SM generation

  CKM matrix becomes 4x4, giving new sources of flavour 
  and CP violation

• little(st) higgs model with T parity
  (higgs light because a pseudo-goldstone boson)
  finite, calculable 1-loop contributions due to new heavy
  particles with new flavour violating couplings

• ...

non-minimal flavour violation !          
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• dddd

Unitarity Triangle revisited

γ

α

α

dm∆

Kε

Kεsm∆ & dm∆
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It is possible that the TRUE           lies here  (for example)

B0  ➔ D+ π-

B± ➔ D0 K± 

B ➔ ππ,πρ,ρρ

B ➔ J/ψ KS
Of all constraints on the unitarity triangle, only the
γ and |Vub| determinations are robust against new physics as they 
do not involve loops.

(ρ̄, η̄)



)α(γ

ubV

α

βγ

ρ
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
xc

lu
d

e
d

 a
re

a
 h

a
s 

C
L 

>
 0

.9
5

Summer 11

CKM
f i t t e r

“Tree” determinations

B0  ➔ D+ π-

B± ➔ D0 K± 

Certainly there is room for O(10%) NP in b->d transitions

Only “robust” measurements of γ and |Vub| . Note: the γ(α) constraint 
shown depends on assumptions (absence of BSM ΔI=3/2 contributions 
in B->ππ); a truly robust γ determination should not include B->ππ. 
Such determinations will be greatly improved by LHCb.

Moreover, b->s transitions are almost unrelated to (ρ,η). They
are the domain of  LHCb
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Another view

BR ∝ |Vub|2  in SM

measurements

global CKM fit
excluding these 
measurements

2.8 σ

two-Higgs doublet model (II): BR(B → τν) = BR(B → τν)SM×

∣

∣

∣

∣

1 −

M2

B
tan2 β
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H+

∣
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2

could be NP in Bd mixing; leading uncertainty is bag parameter
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LHCb observables
• mixing

   
   theory well understood
   data consistent with SM
   errors still large
   but O(1) mixing phase ruled out

• hadronic CPV
   amplitudes
   time-dependent CP violation
   triple products
   ΔACP  in D decays

• semileptonic B decays

   constraints on Wilson coefficients

• (This is a narrow subset of what I find interesting.)

Alexey A Petrov (WSU & MCTP) LHCb Theory Workshop, CERN, 2011

New Physics in Bs-mixing

5

! Relate NP contributions in Bs mixing and rare decays

! Bs mixing data:

E.Golowich, J. Hewett, S. Pakvasa, A.A.P,
and G. Yeghiyan PRD83, 114017 (2011)

SM

NP 
This characterizes the size of NP “window” still possible in Bs-mixing.
This is what should be related to rare decays (same formulas...)

Friday, November 11, 11



 final state             strong dynamics       #obs    NP enters through    

Leptonic
              

semileptonic,
radiative

charmless hadronic

Non-radiative modes also NP-sensitive via 4-fermion operators
Decay constants and form factors accessible by QCD sum rules 
and, increasingly, by lattice QCD.

QCD a big challenge particularly for nonleptonic modes

O(1)                         

O(10)                         

O(100)                         

decay constant                     

form factors

matrix element              

B➔l+ l-

B➔ K*l+ l-, K*γ

B➔ππ, πK, ϕϕ, ...

⟨π|jµ|B⟩ ∝ fBπ(q2)

⟨0|jµ|B⟩ ∝ fB

⟨ππ|Qi|B⟩

Exclusive decays at LHCb
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Hadronic decay amplitudes
• Any SM amplitude can be written 

  

A(B̄ → M1M2) = e
−iγ

TM1M2
+ PM1M2

TM1M2
= VuD|Vub|

[

C1〈Q
u
1 〉 + C2〈Q

u
2 〉 +

12
∑

i=3

Ci〈Qi〉
]

PM1M2
= VcD|Vcb|

[

C1〈Q
c
1〉 + C2〈Q

c
2〉 +

12
∑

i=3

Ci〈Qi〉
]

“tree”

“penguin”

Qi: operators in weak hamiltonian
Ci: QCD corrections from short distances (< hc/mb) & new physics
⟨Qi⟩=⟨M1 M2 | Qi | B⟩: QCD at distances > hc/mb, strong phases

tree W exchange penguins (QCD, 
magnetic, EW)

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6
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CKM factor   
(D=d or s)        

required for direct (decay rate) CP asymmetry



B➞V V

• presence of polarization trebles number of amplitudes

• angular analysis allows extraction of all 6 amplitudes

• already relative weak phases imply CP-violating “triple 
products”, ie no strong phase knowledge required

V.1 V1 → P1P ′
1, V2 → P2P ′

2

Let us consider decays in which each of the two vector mesons in B(s) → V1V2 decays into
two pseudoscalar mesons. This class of decays consists of charmless decays of B and Bs

mesons including B → φ(→ K+K−)K∗(→ Kπ) and Bs → φ(→ K+K−)φ(→ K+K−).
We denote by θ1 (θ2) the angle between the directions of motion of P1 (P2) in the V1 (V2)
rest frame and V1(V2) in the B rest frame. The angle between the planes defined by P1P ′

1

and P2P ′
2 in the B(s) rest frame will be denoted by φ as in Section II. The decay angular

distribution in these three angles is given in terms of the three transversity amplitudes
A0, A‖, A⊥ [26] (see also [25]):

dΓ

d cos θ1d cos θ2dφ
= N

(

|A0|2 cos2 θ1 cos2 θ2 +
|A‖|2

2
sin2 θ1 sin

2 θ2 cos
2 φ (20)

+
|A⊥|2

2
sin2 θ1 sin

2 θ2 sin
2 φ+

Re(A0A∗
‖)

2
√
2

sin 2θ1 sin 2θ2 cosφ

−
Im(A⊥A∗

0)

2
√
2

sin 2θ1 sin 2θ2 sinφ−
Im(A⊥A∗

‖)

2
sin2 θ1 sin

2 θ2 sin 2φ

)

.

Integrating over θ1 and θ2 and using
∫ 1

−1
cos2 θ d cos θ =

2

3
,

∫ 1

−1
sin2 θ d cos θ =

4

3
,
∫ 1

−1
sin 2θ d cos θ = 0 , (21)

one obtains the following distribution in φ:

dΓ

dφ
=

4

9
N

(

|A0|2 + 2|A⊥|2 sin2 φ+ 2|A‖|2 cos2 φ− 2Im(A⊥A
∗
‖) sin 2φ

)

. (22)

The last term in this angular distribution provides a potential T-odd asymmetry. Note that
the term involving Im(A⊥A∗

0) does not contribute to a T-odd asymmetry when integrating
over the angle θ1 or θ2.

One has now in analogy with Eqs. (2) and (3),

sinφ = (n̂V1
× n̂V2

) · p̂V1
, sin 2φ = 2(n̂V1

· n̂V2
)(n̂V1

× n̂V2
) · p̂V1

, (23)

where n̂Vi
(i = 1, 2) is a unit vector perpendicular to the Vi decay plane and p̂V1

is a unit
vector in the direction of V1 in the B(s) rest frame. A triple product (or more precisely
a T-odd) asymmetry is now defined similarly to Eq. (4) as an asymmetry between the
number of decays involving positive and negative values of sin 2φ [3]:

A(2)
T ≡

Γ(sin 2φ > 0)− Γ(sin 2φ < 0)

Γ(sin 2φ > 0) + Γ(sin 2φ < 0)

=
[
∫ π/2
0 +

∫ 3π/2
π ](dΓ/dφ)dφ− [

∫ π
π/2+

∫ 2π
3π/2](dΓ/dφ)dφ

∫ 2π
0 (dΓ/dφ)dφ

. (24)

Using (22) one obtains

A(2)
T = −

4

π

Im(A⊥A∗
‖)

|A0|2 + |A⊥|2 + |A‖|2
. (25)
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1 Introduction

In the Standard Model the flavour-changing neutral current (FCNC) decay B0
s → φφ

proceeds via a b̄ → s̄ss̄ penguin decay. The decay was first observed by the CDF col-

laboration in 2005 [1]. This mode provides an excellent probe of possible New Physics

contributions entering the FCNC decay or B0
s − B̄0

s mixing diagrams. One possible way

to study CP violation in this mode is to measure observable quantities related to triple

product asymmetries. Scalar triple products of three momentum or spin vectors are odd

under time reversal T . Triple product asymmetries can either be due to a T -violating
phase or a CP -conserving phase and final-state interactions. The former case (a true

asymmetry) implies, assuming CPT conservation, that CP is violated. A detailed review

of the phenomenology of triple product asymmetries is given in Ref [2].

B0
s

Φ

θ2θ1

K−

K+

K−

K+

φ φ

Figure 1: Decay angles defined in the helicity frame for the B0
s → φφ mode.

The decay rate as function of time, t, is given by [3]:

d4Γ

dtdΩ
∝|A0(t)|2 · f1(Ω) + |A�(t)|2 · f2(Ω) + |A⊥(t)|2 · f3(Ω)+

�(A∗
�(t)A⊥(t)) · f4(Ω) + �(A∗

0(t)A�(t)) · f5(Ω)+
�(A∗

0(t)A⊥(t)) · f6(Ω), (1)

where fi are the angular distribution functions, and Ω = (θ1, θ2,Φ) as defined in Fig. 1.

For the B0
s → φφ decay mode there are two observable triple products, U = sin 2Φ and

V = sin(±Φ) where the positive sign is taken if cos θ1 cos θ2 ≥ 0 and the negative sign

otherwise. These variables correspond to the interference terms f4 ∝ sin
2 θ1 sin

2 θ2 sin 2Φ
and f6 ∝ sin 2θ1 sin 2θ2 sinΦ in Equation 1. In the Standard Model the terms related to f4
and f6 vanish in the untagged decay rate for any value of t. A measurement of significant

asymmetries would be an unambigous signal for New Physics [2, 4].

Experimentally, extraction of the triple product asymmetries is a simple counting

exercise that does not require either flavour tagging or a time dependent analysis. The

1

(for Bs➔ϕϕ coefficients
are time-dependent due 

to oscillations)



Theory approaches I
• 1/Nc: hierarchies

- “naive factorization” for Nc -> infinity
- strong phases: T, P: O(1/N2),  colour-suppressed tree O(1)
- main drawback: can’t compute

• QCD light-cone sum rules
evaluate correlation function off shell;
OPE & lightcone expansion
- express hadronic matrix elements
  in terms of simpler objects (form factors etc.) and
  a perturbatively evaluated dispersion integral.
- works also for form factors themselves (and other objects)
- main drawback: uncertainty due to “continuum threshold”
  is difficult to quantify

(a) (b)

(c)

Figure 2: Diagrams corresponding to the emission topology in the OPE of the correlation
function (35): (a) factorizable; (b) with nonfactorizable hard gluon (six diagrams);(c) non-
factorizable soft gluon (two diagrams). The solid, double, dashed, wavy lines and the square
denote the light quarks, b quark, gluon, external currents and the weak vertex, respectively.
The shaded ovals denote the pion DA’s. The crosses indicate how gluon lines are attached
in the other possible diagrams.

(a) (b)

Figure 3: Examples of diagrams corresponding to the penguin topology: with (a) hard gluon
and (b) soft gluons.
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[from Khodjamirian et al,
hep-ph/0509049]

[Buras et al 86, Bauer et al 87]

T/a1 C/a2 P  E/b1 A/b1

1/N 1 1/N 1/N 1/N 1 [?]

Λ/mB 1 1 1 Λ/mB Λ/mB



Theory approaches II 

• heavy-quark expansion in ΛQCD/mB

- “naive factorization” for mB -> infinity
- strong phases [imaginary parts] are O(αs) or O(ΛQCD/mb)
- annihilation power suppressed altogether
- hierarchies of penguin amplitudes between final states
  containing pseudoscalars and vectors
- main drawback: O(ΛQCD/mB) power corrections don’t 
  factorize, in general, and hard to estimate

• flavour SU(3) - relate b➔s and b➔d; eliminate amplitudes 
from data. Good if redundant observables (γ in SM), less 
powerful for NP search; SU(3) breaking not controlled

= TI
b

QiB̄

M1

M2

Fig. 76. Factorization of the tree amplitudes. Left: Matrix element of a weak Hamiltonian current-current
operator Q1,2 in the effective 5-flavor QCD×QED theory. The red, wavy lines close to the vertex have
virtualities of order m2

b ; the system of green ‘cut-spring’ lines connecting to the spectator, of order Λmb.
The purple ‘spring’ lines entering the mesons indicate the soft gluon background in which the hard
subprocess takes place. Middle: Factorization into a product of a wave function and a form factor (to be
convoluted with a hard kernel HI or HII). Right: The B-type bilocal form factor (convoluted with HII)
factorizes further into wave functions. (According to the pQCD framework, this is also true for the soft
(A-type) form factor.)

AM1M2α
II
1,2 ∝ [HII ∗ φM2 ] ∗ [φB ∗ J ∗ φM1 ] (397)

of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.

252

b

QiB̄

M1

M2

Fig. 76. Factorization of the tree amplitudes. Left: Matrix element of a weak Hamiltonian current-current
operator Q1,2 in the effective 5-flavor QCD×QED theory. The red, wavy lines close to the vertex have
virtualities of order m2

b ; the system of green ‘cut-spring’ lines connecting to the spectator, of order Λmb.
The purple ‘spring’ lines entering the mesons indicate the soft gluon background in which the hard
subprocess takes place. Middle: Factorization into a product of a wave function and a form factor (to be
convoluted with a hard kernel HI or HII). Right: The B-type bilocal form factor (convoluted with HII)
factorizes further into wave functions. (According to the pQCD framework, this is also true for the soft
(A-type) form factor.)

AM1M2α
II
1,2 ∝ [HII ∗ φM2 ] ∗ [φB ∗ J ∗ φM1 ] (397)

of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.
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+ O(ΛQCD/mb)+ TII

TI, TII computable in perturbation theory in strong coupling

[QCDF / SCET;
 pQCD approach]

[Keum, Li, Sanda, ...]

[Zeppenfeld 81; Gronau et al 94; Fleischer, ...]

[Beneke, Buchalla, Neubert, Sachrajda (BBNS); Bauer et al]



QCD factorization: hadronic B-decays

〈M1M2|Oi|B〉 =

fBM1

+ (0)fM2

∫

du T I
i(u)φM2

(u) +fBfM1
fM2

∫

du dv dω T II
i (u, v, ω)φB+

(ω)φM1
(v)φM2

(u)

fBM1

+ (0)fM2

∫

du T I
i(u)φM2

(u)+fBfM1
fM2

∫

du dv dω T II
i (u, v, ω) φB+

(ω)φM1
(v)φM2

(u)

Soft-collinear factorization: T II(u, v, ω) =

∫

dv′HII(u, v′)J(v′, ω)

T I = 1 + T I(1)αs(mb) + . . .

HII = 1 + HII(1)αs(mb) + . . .

J = J (1)αs(
√

Λmb) + J (2)αs(
√

Λmb)
2

+ . . .











perturbative

T I, T II: all process dependence. Only source of (small) strong phases

Factorization: plots, figures, equations – p.16

 “naive 
factorization”

 BBNS 99-01  Bell 07, 09 (trees), 
Beneke et al 09 (trees)

BBNS 99-01

Hill, Becher, Lee, Neubert 2004; Beneke, Yang 2005; Kirilin 2005

Beneke, SJ 2005 (trees), 2006 (penguins); Kivel 2006; Pilipp 2007 (trees); 
Jain, Rothstein, Stewart 2007 (penguins)

BBNS 99-01

T
II

i ∼ Hi ! J

soft overlap (form factor) hard spectator scattering

perturbative, includes strong phases
non-perturbative QCD

〈M1M2|Qi|B̄〉 =

T
I

i ∼ 1 + ti αs + O(α2

s)

∼
(

1 + hi αs + O(α2
s)

) (

j(0)αs + j(1)α2
s + O(α3

s)
)

+ O(ΛQCD/mb)



Power corrections
• some power-suppressed contributions factorize (later slide); 

most do not

• varying relevance [size of Wilson/CKM factor multiplying them]

• BBNS proposed & used a (crude) “cut-off-plus-fudge-factor” 
model to estimate power corrections, including O(1) 
undetermined soft strong phases on them.

    

• Some authors have attempted to fit power corrections to data 
[at expense of predictivity]

• In the ‘pQCD’ approach power corrections are (mostly) 
deemed calculable, but the “perturbative” expressions do not 
appear [to me] to be dominated by perturbative scales

Feldmann & Hurth; Ciuchini et al

by

b1 =
CF

N2
c

C1A
i
1 , bp

3 =
CF

N2
c

[
C3A

i
1 + C5(A

i
3 + Af

3) + NcC6A
f
3

]
,

b2 =
CF

N2
c

C2A
i
1 , bp

4 =
CF

N2
c

[
C4A

i
1 + C6A

i
2

]
,

bp
3,EW =

CF

N2
c

[
C9A

i
1 + C7(A

i
3 + Af

3) + NcC8A
f
3

]
,

bp
4,EW =

CF

N2
c

[
C10A

i
1 + C8A

i
2

]
,

(55)

omitting again the argument M1M2. These coefficients correspond to current–current
annihilation (b1, b2), penguin annihilation (b3, b4), and electroweak penguin annihilation
(bEW

3 , bEW
4 ), where within each pair the two coefficients correspond to different flavor

structures as defined in (18).
The weak annihilation kernels exhibit endpoint divergences, which we treat in the

same manner as the power corrections to the hard spectator scattering. The divergent
subtractions are interpreted as

∫ 1

0

dy

y
→ XM1

A ,

∫ 1

0

dy
ln y

y
→ −

1

2
(XM1

A )2 , (56)

and similarly for M2 with y → x̄. The treatment of weak annihilation is model-dependent
in the QCD factorization approach, and the explicit results of this subsection are useful
mainly to keep track of overall factors from Wilson coefficients and color. We treat
XM

A as an unknown complex number of order ln(mb/ΛQCD) and make the simplifying
assumption that this number is independent of the identity of the meson M and the
weak decay vertex. (The first assumption will be relaxed in a specific scenario, where
we allow different XA for the three cases PP , PV , and V P .) Since the treatment of
annihilation is model-dependent anyway, we further simplify our results by evaluating
the convolution integrals with asymptotic distribution amplitudes Φ(x) = Φ‖(x) = 6xx̄,
Φp(x) = 1, and Φv(x) = 3(x − x̄). We then find the simple expressions

Ai
1 ≈ Ai

2 ≈ 2παs

[
9

(
XA − 4 +

π2

3

)
+ rM1

χ rM2
χ X2

A

]
,

Ai
3 ≈ 6παs (rM1

χ − rM2
χ )

(
X2

A − 2XA +
π2

3

)
,

Af
3 ≈ 6παs (rM1

χ + rM2
χ ) (2X2

A − XA) ,

(57)
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A few additional comments are in order. The values for the decay constants of
pseudoscalar mesons and longitudinally polarized vector mesons can be determined with
good accuracy from experimental data on the leptonic decays π− → µν̄µ, K− → µν̄µ, the
semileptonic decay τ → ρ− ντ , and the electromagnetic decays V → e+e− with V = ρ0,
ω, or φ. We have updated the values obtained in [4] by using the most recent results
for the various decay rates. We will neglect the small uncertainties on these parameters
in our numerical analysis. The values we take for the decay constants of the B and
Bs mesons are in the ball park of many theoretical calculations using QCD sum rules
and lattice gauge theory. The values for the heavy-to-light form factors are close to the
results of light-cone QCD sum rules where available [37, 38, 39]. In other cases we base
our values on a crude estimate of SU(3) flavor symmetry breaking effects. The B → η(′)

form factors receive an unknown two-gluon contribution. We therefore parameterize the
form factor as [18]

F B→η(′)

0 = F B→π
0

f q
η(′)

fπ
+ F2

√
2f q

η(′) + f s
η(′)

√
3fπ

. (62)

(For Bs decay replace F B→π
0 f q

η(′) by F B→K
0 f s

η(′) .) Information on F2 can in principle

be obtained from semileptonic B → η lν decay at q2 = 0. At present, however, the
parameter F2 is completely undetermined, and for lack of better knowledge we adopt
the value F2 = 0, for which F B→η

0 = 0.23 and F B→η′

0 = 0.19. The modes with η′ in the
final state are rather sensitive to this choice. This introduces an additional theoretical
uncertainty not taken into account in the error ranges given below (see [18] for the
dependence of the B → K(∗)η(′) modes on the choice of F2). The values for the transverse
decay constants and Gegenbauer moments of vector mesons are rounded numbers taken
from [38], however we have inflated the small errors quoted there.3

The quark masses are running masses in the MS scheme. Note that the value of
the charm-quark mass is given at µ = mb. The ratio sc = (mc/mb)2 needed for the
calculation of the penguin contributions is scale independent. The values of the light
quark masses are such that rK

χ = rπ
χ. Finally, the value of the QCD scale parameter

corresponds to αs(MZ) = 0.118 for the two-loop running coupling in the MS scheme.
The corresponding results for the Wilson coefficients Ci are tabulated in [10].

As discussed in detail in [10], there are large theoretical uncertainties related to
the modeling of power corrections corresponding to weak annihilation effects and the
chirally-enhanced power corrections to hard spectator scattering. As in our earlier work
we parameterize these effects in terms of the divergent integrals XH (hard spectator
scattering) and XA (weak annihilation) introduced in (50) and (56). We model these
quantities by using the parameterization

XA =
(
1 + )A eiϕA

)
ln

mB

Λh
; )A ≤ 1 , Λh = 0.5 GeV , (63)

3To facilitate the comparison with the results of [10, 18], where they overlap, we note the following
changes of input parameters relative to those papers: ms was (110±25)MeV in [10] and (100±25)MeV
in [18]; |Vub/Vcb| was 0.085±0.017, fB was (180±40)MeV, and FB→K

0 was 0.9fK/fπFB→π
0 in [10]; αK̄

1

was 0.3 ± 0.3, τ(B−) was 1.65ps, and τ(Bd) was 1.56 ps in [10, 18].
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phenomenological summary
•Corrections to naive factorization

small for T and PEW, stable
perturbation series  ; small
uncertainties

•Corrections O(1) for C (and PEWc),
stable perturbation series
large uncertainties (hadronic inputs;
large incalculable power correction
for final states with pseudoscalars)

• (physical) penguin amplitudes moderately affected by power-
suppressed incalculable penguin annihilation (&charm penguin) 
terms. Spoils precise predictions for direct CP asymmetries

•certain SU(3)-type relations satisfied in good approximation

[Beneke, SJ 05, 06]   
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Figure 5: The tree amplitudes α1(ππ) and α2(ππ) represented in the complex plane.
The dark (black) diamonds show the LO, NLO, and partial NNLO approximations.
The latter includes the new 1-loop correction to spectator scattering and is shown with
error bars. The dark square represents the parameter set ‘G’, which provides a good
description of the experimental data on branching fractions as discussed in Section 5.3.
The grey (blue) triangles show the variation of the tree amplitudes, when λB takes the
values 0.2 GeV to 0.5 GeV in steps of 75 MeV, such that the triangles in the direction of
the point ‘G’ correspond to smaller values of λB. From each triangle emanates a set of
grey (red) points that correspond to varying aπ

2 from −0.1 to 0.3 in steps of 0.1 for the
given value of λB. Here points lying towards ‘G’ correspond to larger aπ

2 .

imaginary part is generated only at NLO, it is best compared to the imaginary part of
the vertex correction V . This shows that the spectator-scattering correction at order α2

s

is almost as large as the vertex correction at order αs, but comes with an opposite sign
such that the phases tend to cancel.

With the perturbative approach thus validated through the size of the 1-loop correc-
tion, it is evident from the Figure that the dominant uncertainties are due to hadronic
input parameters. The uncertainties in fB, λB and fBπ

+ (0) do not exclude that rsp is
a factor of 2 larger than its default value 0.412. In fact, it appears that the data on
B → ππ branching fractions require such an enhancement [3]. Until some of these pa-
rameters are better determined (from theory, from other data, from fits to non-leptonic
data) there remains a large uncertainty in the colour-suppressed tree amplitude α2. The
colour-allowed tree amplitude, however, is predicted to be close to 1 with an uncertainty
of 10% even with present parameter inaccuracies.
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TC

parameter set “G” (fit hadronic 
parameters to B➔ππ BR’s):
       C/T ~ 0.69 + 0.17 i
large magnitude, small phase



Penguin anatomy: 1/mb

b

QiB̄

M1

M2

Fig. 76. Factorization of the tree amplitudes. Left: Matrix element of a weak Hamiltonian current-current
operator Q1,2 in the effective 5-flavor QCD×QED theory. The red, wavy lines close to the vertex have
virtualities of order m2

b ; the system of green ‘cut-spring’ lines connecting to the spectator, of order Λmb.
The purple ‘spring’ lines entering the mesons indicate the soft gluon background in which the hard
subprocess takes place. Middle: Factorization into a product of a wave function and a form factor (to be
convoluted with a hard kernel HI or HII). Right: The B-type bilocal form factor (convoluted with HII)
factorizes further into wave functions. (According to the pQCD framework, this is also true for the soft
(A-type) form factor.)

AM1M2α
II
1,2 ∝ [HII ∗ φM2 ] ∗ [φB ∗ J ∗ φM1 ] (397)

of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.
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the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.
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of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.
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Figure 1: Emission, annihilation and emission-annihilation topologies of Wick contractions in the

matrix elements of operators Qi.
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α
c

4 a4 += r
M2

χ a6

β3

L L L R
like quark chiralities opposite quark chiralities

O(1/mb) but factorizes !

Figure 1: Graphical representation of the factorization formula (2). Only one
of the two form-factor terms is shown for simplicity.

The light-cone expansion implies that only leading-twist distribution amplitudes are
needed in the heavy-quark limit. There exist however a number of subleading quark–
antiquark distribution amplitudes of twist 3, which have large normalization factors for
pseudoscalar mesons, e.g. for the pion

rπ
χ(µ) =

2m2
π

mb(µ) (mu + md)(µ)
∼

ΛQCD

mb
. (3)

For realistic b-quark masses these “chirally-enhanced” terms are not much suppressed
numerically. We therefore include in our analysis all quark–antiquark twist-3 ampli-
tudes. (The quark–antiquark–gluon amplitude at twist-3 does not have an anomalously
large normalization.) In order to perform the same analysis for all final states we also
include the quark–antiquark twist-3 amplitudes for vector mesons, even though there is
no particular enhancement in this case, rχ being replaced by 2mV /mb times a ratio of
two decay constants (see below), with mV the vector-meson mass.

The inclusion of chirally-enhanced terms is important to account for the large branch-
ing fractions of penguin-dominated decay modes with pseudoscalar final-state mesons,
such as B → πK [10], but it also causes a number of conceptual problems. Factorization
is not expected to hold at subleading order in ΛQCD/mb and, somewhat unfortunately,
is indeed violated by some of the chirally-enhanced terms [8]. In contrast to the leading-
twist distribution amplitudes, the twist-3 two-particle amplitudes do not vanish at the
endpoints but rather approach constants. The kernels T I

ij in the first term of the fac-
torization formula also approach constants at the endpoints (modulo logarithms), and
hence there is no difficulty with this term. These kernels include the important scalar
penguin amplitude mentioned in the introduction, conventionally denoted by a6. How-
ever, the second term in the factorization formula, which accounts for the interactions
with the spectator quark, contains integrals that are dominated by the endpoint regions
if the distribution amplitudes do not vanish at the endpoint. These integrals formally
diverge logarithmically in a perturbative framework. This implies a non-factorizable soft
interaction with the spectator quark, while M1 is formed in a highly asymmetric con-
figuration, in which one quark carries almost all the momentum of the meson. Similar
factorization-breaking effects occur in weak annihilation contributions, which are also

5

However: but ~ 1 numerically
“chiral enhancement”

penguin annihilation [in QCDF terminology]: 
O(1/mb), does not factorize

no chiral enhancement present for vector M2  -> much smaller penguin amplitudes

large and complex in pQCD approach
small in light-cone sum rules [Khodjamirian et al 2005]

[Keum, Li, Sanda 2000]

modeled by naively factorized expression with IR cutoff by BBNS

(“scalar penguin”)



Annihilation β3

• The colour-leading piece to the annihilation contribution       
to the QCD penguin amplitude has a naively factorizing 
structure

                                    (where Q6 has been “Fierzed” to
                                    colour singlet x singlet form)

This is proportional to the “scalar form factor”. A QCD sum 
rule calculation gives a small and approximately real result.

• In contrast, the pQCD approach finds a large and complex
value albeit with large uncertainties.

• This is also the case for the BBNS annihilation model.

[Keum, Li, Sanda 2000]
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β3

Q6

[Khodjamirian Mannel, Melcher, Melic, hep-ph/0509049]
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B

b
q3

q2

M1

Qi

M2

DEAi(q3, q2, q1; B, M1, M2) CEAi(q3, q2, q1; B, M1, M2)

B

b

q3
M1

Qi

q1

q1

q2

M2

q3

q2

q1

DAi(q3, q2, q1; B, M1, M2)

B Qi q2

M2

Qi

M1

M1

M2

B

q1

q3

CAi(q3, q2, q1; B, M1, M2)

b

b

b

B

q3 M1

q2

q1

CE i(q3, q2, q1; B, M1, M2)

M2

Qi
B

b q2

q3

M2

M1

q1

Qi

DE i(q3, q2, q1; B, M1, M2)

Figure 1: Emission, annihilation and emission-annihilation topologies of Wick contractions in the

matrix elements of operators Qi.

8

small for M2 vector

pattern (hierachies & 
numbers) agree quite well 
with 1/mb expectations 
(also for ρK, ρK*)

wrong imaginary part for
πK unless annihilation is
fairly large (well known
problem)

[Beneke, Neubert 2003;  Beneke, SJ 2007]

PM1M2
∼ α̂c

4(M1M2) = a4(M1M2) ± rM2

χ a6(M1M2) + βp
3
(M1M2)
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Figure 6: Comparing the PP, PV and VP penguin amplitude to data. The figures show
α̂c

4(πK̄(∗))/(α1(ππ) + α2(ππ)) compared to data, and the theory prediction for same
quantity in the ρK system. See text for explanations.

31

PM1M2
/(Cππ + Tππ) ∼ α̂c

4(M1M2)/(α1(ππ) + α2(ππ))

annihilation
(modeled a 
la BBNS)

factorizable 
power correction

chirally enhanced
for M2 pseudoscalar

can be fit to BR, ACP (π+K-)  and BR(π+π-) using one SU(3) relation

BBNS model 
of annihilation



                                                                                  

small corrections (and small 
errors) to “naive” expectation

similar conclusion in BPRS 
approach

pQCD see

Beneke 2005 (NLO QCDF)

[Williamson, Zupan 2006]

Li, Mishima 2006

Comparison to data: SCP



B̄

Af = 〈f |B〉

Āf = 〈f |B̄〉

B f CP eigenstate                          f

time-dependent CP asymmetry        

mixing       
decay       

BR(B0(t) → f) − BR(B̄0(t) → f)

BR(B0(t) → f) + BR(B̄0(t) → f)
= −Sf sin(∆mBt) + Cf cos(∆mBt)
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QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6

Sf ≈ sin(2β) + 2 cos(2β) sin γ Re
Tf + Pu

f

P c
f

+S
N.P.
f

?

e
−2iβ

b

s u

u

ηCP(f)·

sin(2βeff )
︷ ︸︸ ︷

−

need only real part of small amplitude (weak strong-phase dependence)                          

Theory: SCP



Ratio Value/Range Value G

Pππ

Tππ
−0.122+0.033

−0.063 + (−0.024+0.047
−0.048)i −0.162 + 0.022i

Pρρ

Tρρ
−0.036+0.006

−0.009 + (−0.009+0.007
−0.007)i −0.037 − 0.009i

Pπρ

Tπρ
−0.037+0.015

−0.028 + (−0.005+0.024
−0.024)i −0.070 + 0.006i

Pρπ

Tρπ
0.042+0.039

−0.023 + (0.004+0.030
−0.030)i 0.051 − 0.024i

Cππ

Tππ
0.363+0.277

−0.156 + (0.029+0.166
−0.103)i 0.691 + 0.165i

Cρρ

Tρρ
0.198+0.233

−0.150 + (−0.009+0.145
−0.097)i 0.344 + 0.042i

Cπρ

Tπρ
0.250+0.229

−0.143 + (−0.012+0.127
−0.090)i 0.467 + 0.071i

Cρπ

Tρπ
0.134+0.199

−0.156 + (−0.024+0.152
−0.117)i 0.283 + 0.138i

Tρπ

Tπρ
0.869+0.275

−0.207 + (0.014+0.058
−0.057)i 0.945 − 0.004i

Table 3: Amplitude ratios for the ππ, ρρ and πρ final states. In the case of ρρ the
ratios of longitudinal polarization amplitudes are given. The third column gives the
preferred-parameter-set G value.

relations hold for final states π∓ρ±, ρ+ρ−, π+K(∗)−, etc. Here we present numerical
values for a number of these ratios.

In such phenomenological studies it is convenient to define the colour-allowed tree
amplitude T , the colour-suppressed tree amplitude C, and the penguin amplitude P as
the hadronic amplitudes multiplying the different CKM structures in the decay ampli-
tude. In this convention, the name of an amplitude derives from its leading contribution,
such that T ∼ α1, C ∼ α2, and P ∼ αc

4, but sub-leading terms can make an important
difference. For the following discussion of B → ππ, ρρ, πρ decays, we define T, C, P
through

A
B

0
→π+ρ−

∝ V ∗
udVubTπρ + V ∗

cdVcbPπρ,

A
B

0
→π−ρ+ ∝ V ∗

udVubTρπ + V ∗
cdVcbPρπ,

−2A
B

0
→π0ρ0 ∝ V ∗

udVub[Cπρ + Cρπ] + V ∗
cdVcb[. . .]. (103)

These definitions are related to the αp
i (and annihilation) amplitudes by comparing the
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Comparison to data: annihilation
• Annihilation power suppressed, small branching fractions 

predicted (but with large uncertainties)

• LHCb has published data on Bs->pi pi and B0->K K

consistent with CDF

The Bs BF is in excess of estimates, whereas the B0 decay 
fits nicely. Both decays are SU(3)-related.

However, BF is quadratic in annihilation (other processes 
are affected at linear order), need (only) about factor 2-3 
enhancement of an annihilation contribution

• more an issue for SU(3) than for factorisation (which implies 
SU(3) relations) per se.  Could this be NP ? 

Systematic uncertainty N(B0→K+K−)
N(B0

s→K+K−)
N(B0

s→π+π−)
N(B0→π+π−)

PID calibration 0.0005 0.0003
Final state radiation 0.0092 0.0013

Signal model 0.0011 0.0029
Combinatorial background model 0.0012 0.0004

Cross-feed background model (shift) 0.0008 0.0002
Cross-feed background model (smearing) 0.0002 0.0001

Total 0.0094 0.0032

Table 11: Summary of systematic uncertainties on the ratios of event yields N(B0 →
K+K−)/N(B0

s → K+K−) and N(B0
s → π+π−)/N(B0 → π+π−). The total system-

atic uncertainties given in the last row are obtained by summing in quadrature all the
contributions.

and
ACP (B0

s → πK) = 0.27± 0.08± 0.02. (30)

Our result for ACP (B0 → Kπ) constitutes the best measurement in the world, and is
in good agreement with the current world average provided by HFAG [22]: ACP (B0 →
K+π−) = −0.098+0.012

−0.011. Our result for ACP (B0
s → πK) is the first evidence of CP

violation in the B0
s → πK decay, and is in agreement with the only measurement currently

available, performed by CDF [4, 5]: ACP (B0
s → π+K−) = 0.39± 0.15± 0.08.

7.2 BR(B0 → K+K−) and BR(B0
s → π+π−)

From Eqs. (22) and (23), using the relevant yields from Tab. 8, the values given in Eqs.
(24), (25), (26), (27) and (28), and the total systematic uncertainties of Tab. 11, we
obtain:

BR(B0 → K+K−) = (0.13+0.06
−0.05 ± 0.07)× 10−6 (31)

and
BR(B0

s → π+π−) = (0.98+0.23
−0.19 ± 0.11)× 10−6. (32)

In particular, we estimate a statistical significance of 5.3σ for the B0
s → π+π− signal,

which is then observed for the first time. Our values are in agreement with the recent
CDF results [24]: BR(B0 → K+K−) = (0.23±0.10±0.10)×10−6 and BR(B0

s → π+π−) =
(0.57± 0.15± 0.10)× 10−6.
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0.07 x 10-6
0.155 x 10-6

QCDF [Beneke, Neubert 2003 “S4”]

[LHCb-CONF-2011-042]



Polarisation & NP
• Triple-product asymmetries in B->ϕK*

• HFAG data for the entire set of polarization amplitudes 
exists; Triple products at most 5-10% in either case

• A SM calculation in QCD factorization (based on the heavy-
quark expansion) is consistent with the HFAG data

• Also “fake” triple-product asymmetries which require strong 
phases - small in QCDF, small in obs.

[Datta, Duraisamy, London; 
Gronau, Rosner 2011]

[Gronau, Rosner 2011]

amplitudes is dominated by a magnitude, |Aλ|, a single CP-conserving phase, δλ, and a
single CP-violating phase, φλ (which amounts to assuming no direct CP violation),

Aλ = |Aλ|eiδλeiφλ , Āλ = |Aλ|eiδλe−iφλ (λ = 0, ‖,⊥) , (34)

implies
Im(A⊥A

∗
0 − Ā⊥Ā

∗
0) = 2|A⊥||A0| cos(δ⊥ − δ0) sin(φ⊥ − φ0) . (35)

This “true” CP violating quantity is nonzero also when the CP-conserving phase difference
δ⊥ − δ0 vanishes, provided that the CP-violating phase difference φ⊥ − φ0 between the two
transversity amplitudes A⊥ and A0 is nonzero. In contrast, a quantity occurring in the
difference of rates for B(s) and B̄(s),

Im(A⊥A
∗
0 + Ā⊥Ā

∗
0) = 2|A⊥||A0| sin(δ⊥ − δ0) cos(φ⊥ − φ0) , (36)

is not CP-violating as it is nonzero also when CP-violating phases vanish. Such a quantity
will sometimes be referred to as a “fake” asymmetry.

It is interesting to note that the CP-violating quantities Im(A⊥A∗
0−Ā⊥Ā∗

0) and Im(A⊥A∗
‖−

Ā⊥Ā∗
‖) occur in triple product asymmetries for CP-averaged decay rates. We denote partial

decay rates for B(s) → f and B̄(s) → f̄ by Γ(B(s) → f) and Γ̄(B̄(s) → f̄), respectively.
The charge-averaged decay rate is [Γ(B(s) → f) + Γ̄(B̄(s) → f̄)]/2, and a triple product
asymmetry defined for this rate is given by:

A(2)chg−avg
T ≡

[Γ(sin 2φ > 0) + Γ̄(sin 2φ̄ > 0)]− [Γ(sin 2φ < 0) + Γ̄(sin 2φ̄ < 0)]

[Γ(sin 2φ > 0) + Γ̄(sin 2φ̄ > 0)] + [Γ(sin 2φ < 0) + Γ̄(sin 2φ̄ < 0)]

= −
4

π

Im(A⊥A∗
‖ − Ā⊥Ā∗

‖)

(|A0|2 + |A⊥|2 + |A‖|2) + (|Ā0|2 + |Ā⊥|2 + |Ā‖|2)
. (37)

As noted above the numerator is genuinely CP-violating. A second charge-averaged asym-
metry, defined with respect to the variables S ≡ sign(cos θ1 cos θ2) sinφ for B(s) and S̄ ≡
sign(cos θ̄1 cos θ̄2) sin φ̄ for B̄(s), is proportional to Im(A⊥A∗

0 − Ā⊥Ā∗
0):

A(1)chg−avg
T ≡

[Γ(S > 0) + Γ̄(S̄ > 0)]− [Γ(S < 0) + Γ̄(S̄ < 0)]

[Γ(S > 0) + Γ̄(S̄ > 0)] + [Γ(S < 0) + Γ̄(S̄ < 0)]

= −
2
√
2

π

Im(A⊥A∗
0 − Ā⊥Ā∗

0)

(|A0|2 + |A⊥|2 + |A‖|2) + (|Ā0|2 + |Ā⊥|2 + |Ā‖|2)
. (38)

Similarly, one may define charge-averaged asymmetries for decays in which one vector
meson decays to a pseudoscalar pair while the other meson decays into a lepton pair. For
these decays one finds

A(2)$,chg−avg
T =

2

π

Im(A$
⊥A

$∗
‖ − Ā$

⊥Ā
$∗
‖ )

(|A$
0|2 + |A$

⊥|2 + |A$
‖|2) + (|Ā$

0|2 + |Ā$
⊥|2 + |Ā$

‖|2)
,

A(1)$,chg−avg
T =

√
2

π

Im(A$
⊥A

$∗
0 − Ā$

⊥Ā
$∗
0 )

(|A$
0|2 + |A$

⊥|2 + |A$
‖|2) + (|Ā$

0|2 + |Ā$
⊥|2 + |Ā$

‖|2)
. (39)
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0) and Im(A⊥A∗
‖−
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π
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⊥Ā
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[Valencia 1989, ...]

[Beneke, Rohrer, Yang 2006]



Polarisation observables 
• “Factorization predicts fL≈1, in disagreement with data.” Really?

• comprehensive phenomenological analysis of polarisation 
observables in (QCD) factorization exists

 

• transverse polarisation fractions can be large, naive factorisation 
is not reliable; f⊥ & f|| depend on incalculable power corrections 
so 1-fL  not a good probe of new physics.

• QCDF does give negligible relative weak phases in the SM (this 
is because it preserves dominance of penguin amplitudes)

Observable Theory Experiment

default constrained XA α̂c−
4 from data

BrAv /10−6 φK∗− 10.1+0.5
−0.5

+12.2
−7.1 10.1+0.5

−0.5
+7.2
−4.8 10.4+0.5

−0.5
+5.2
−3.9 9.7 ± 1.5

φK̄∗0 9.3+0.5
−0.5

+11.4
−6.5 9.3+0.5

−0.5
+6.7
−4.5 9.6+0.5

−0.5
+4.7
−3.6 9.5 ± 0.8

ACP/% φK∗− 0+0
−0

+2
−1 0+0

−0
+0
−0 0+0

−0
+3
−2 5 ± 11

φK̄∗0 1+0
−0

+1
−0 1+0

−0
+0
−0 1+0

−0
+2
−1 −1 ± 6

fL/% φK∗− 45+0
−0

+58
−36 45+0

−0
+35
−31 44+0

−0
+23
−23 50 ± 7

φK̄∗0 44+0
−0

+59
−36 44+0

−0
+35
−31 43+0

−0
+23
−23 49 ± 3

A0
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∆φ‖/
◦ φK∗− 0+0

−0
+0
−1 0+0

−0
+0
−0 0+0

−0
+0
−0 n/a

φK̄∗0 0+0
−0

+0
−0 0+0

−0
+0
−0 0+0

−0
+0
−1 6 ± 8

(φ‖ − φ⊥)/◦ φK∗− 0+0
−0

+1
−1 0+0

−0
+1
−1 0+0

−0
+1
−1 −12 ± 24

φK̄∗0 0+0
−0

+1
−1 0+0

−0
+1
−1 0+0

−0
+1
−1 1 ± 11
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Table 7: Comparison of theoretical results for observables from the full angular analysis of
B− → φK∗− and B̄0 → φK̄∗0 with experimental results from [26, 27, 29].

theory does not require the amplitude ratio to be small. While it does not make accurate
predictions, it is natural that penguin-dominated decays exhibit large transverse polarisation.
This is confirmed by comparing the first column of numbers in Table 7 with the measurements
in the fourth column. We find very good agreement of our results with data but with very large
uncertainties. We also note that all observables related to the positive-helicity amplitude (the
difference of ‖ and ⊥ observables) are predicted to be very small. So are the CP asymmetries,

since the doubly CKM-suppressed amplitude proportional to λ(s)
u does not exceed a few percent.

Unless experiments find unexpectedly large values for any of these observables, the interesting
ones are the branching fraction, fL and the phase φ‖.

We now explore a strategy where the variation of input parameters or the transverse penguin
amplitude α̂p−

4 is constrained by data in order to improve the predictions for other observables
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B− → φK∗− and B̄0 → φK̄∗0 with experimental results from [26, 27, 29].

theory does not require the amplitude ratio to be small. While it does not make accurate
predictions, it is natural that penguin-dominated decays exhibit large transverse polarisation.
This is confirmed by comparing the first column of numbers in Table 7 with the measurements
in the fourth column. We find very good agreement of our results with data but with very large
uncertainties. We also note that all observables related to the positive-helicity amplitude (the
difference of ‖ and ⊥ observables) are predicted to be very small. So are the CP asymmetries,

since the doubly CKM-suppressed amplitude proportional to λ(s)
u does not exceed a few percent.

Unless experiments find unexpectedly large values for any of these observables, the interesting
ones are the branching fraction, fL and the phase φ‖.

We now explore a strategy where the variation of input parameters or the transverse penguin
amplitude α̂p−

4 is constrained by data in order to improve the predictions for other observables
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Table 7: Comparison of theoretical results for observables from the full angular analysis of
B− → φK∗− and B̄0 → φK̄∗0 with experimental results from [26, 27, 29].

theory does not require the amplitude ratio to be small. While it does not make accurate
predictions, it is natural that penguin-dominated decays exhibit large transverse polarisation.
This is confirmed by comparing the first column of numbers in Table 7 with the measurements
in the fourth column. We find very good agreement of our results with data but with very large
uncertainties. We also note that all observables related to the positive-helicity amplitude (the
difference of ‖ and ⊥ observables) are predicted to be very small. So are the CP asymmetries,

since the doubly CKM-suppressed amplitude proportional to λ(s)
u does not exceed a few percent.

Unless experiments find unexpectedly large values for any of these observables, the interesting
ones are the branching fraction, fL and the phase φ‖.

We now explore a strategy where the variation of input parameters or the transverse penguin
amplitude α̂p−

4 is constrained by data in order to improve the predictions for other observables

21

φ‖/
◦ A0

CP / percent ∆φ‖/
◦

default α̂c−
4 f. d. default α̂c−

4 f. d. default α̂c−
4 f. d.

B− → K∗−φ −41+0
−0

+84
−53 −40+0

−0
+21
−21 −1+0

−0
+2
−1 −1+0

−0
+2
−2 0+0

−0
+0
−1 0+0

−0
+1
−1

B̄0 → K̄∗0φ −42+0
−0

+87
−54 −42+0

−0
+21
−21 0+0

−0
+1
−1 0+0

−0
+1
−2 0+0

−0
+0
−0 0+0

−0
+1
−1

B− → K∗−ω −33+5
−6

+113
−72 −31+5

−6
+18
−20 28+17

−10
+56
−57 26+17

−10
+45
−40 −32+8

−9
+73
−34 −31+8

−9
+26
−30

B̄0 → K̄∗0ω −43+3
−3

+106
−73 −41+3

−3
+35
−38 15+5

−4
+61
−51 14+5

−4
+52
−50 −11+3

−4
+23
−32 −12+3

−4
+20
−29

B− → K̄∗0ρ− −37+0
−0

+92
−59 −35+0

−0
+18
−19 −1+0

−0
+1
−1 0+0

−0
+1
−1 0+0

−0
+0
−2 0+0

−0
+1
−1

B− → K∗−ρ0 −39+4
−5

+146
−88 −37+4

−5
+21
−20 7+2

−2
+12
−13 6+2

−2
+8
−8 −14+3

−4
+29
−60 −13+3

−4
+15
−15

B̄0 → K∗−ρ+ −36+4
−5

+111
−68 −34+4

−5
+16
−16 18+6

−5
+12
−29 17+6

−5
+13
−12 −19+5

−5
+74
−18 −18+5

−5
+8
−8

B̄0 → K̄∗0ρ0 −41+4
−4

+63
−44 −39+4

−4
+18
−21 −30+11

−11
+60
−48 −30+10

−11
+57
−49 17+5

−5
+22
−24 17+5

−5
+22
−24

B̄s → K∗−K∗+ −34+3
−4

+113
−70 −29+3

−4
+17
−23 11+3

−3
+7
−17 8+2

−2
+13
−7 −17+4

−5
+105
−19 −14+3

−4
+10
−10

B̄s → K∗0K̄∗0 −34+0
−0

+110
−62 −29+0

−0
+19
−26 0+0

−0
+0
−0 0+0

−0
+1
−1 0+0

−0
+10
−3 0+0

−0
+2
−1

B̄s → φφ −39+0
−0

+86
−57 −37+0

−0
+21
−24 0+0

−0
+1
−0 0+0

−0
+1
−2 0+0

−0
+0
−1 0+0

−0
+1
−1

B− → K∗0K∗− −39+2
−3

+96
−57 −38+2

−3
+18
−21 9+3

−2
+12
−24 8+2

−2
+24
−21 −5+1

−1
+28
−7 −5+1

−1
+12
−26

B̄0 → K∗0K̄∗0 −32+0
−0

+82
−51 −31+0

−0
+18
−27 0+0

−0
+2
−4 −0+0

−0
+23
−16 3+1

−1
+14
−6 3+1

−1
+17
−26

B̄s → K∗0φ −49+2
−1

+110
−62 −46+2

−2
+26
−24 −9+2

−3
+16
−20 −9+2

−3
+58
−31 3+1

−1
+16
−6 7+2

−2
+21
−30

Table 11: Theoretical results for other polarisation observables in penguin-dominated B → V V
decays.

which changes the real part from −0.010+0.002
−0.002 to the value +0.015+0.004

−0.003 given in Table 2.
Since the term proportional to the Wilson coefficient of the electromagnetic dipole operator,
Ceff

7γ , is the largest contribution to the negative-helicity electroweak penguin amplitude, the

interference patterns (43) are sensitive to possible anomalous contributions to Ceff
7γ , including

its phase.
In Table 12 we compare selected observables for the two final states involving αp,h

3,EW, when
the extra term in (44) is excluded, to the default (included) and data. We note that already
in the “excluded” results, the longitudinal polarisation fractions of the ρK∗ final states are
predicted to differ such that fL(K∗−ρ0) > fL(K̄∗0ρ−) > fL(K̄∗0ρ0). This follows from the
large longitudinal electroweak penguin contribution. The transverse electromagnetic dipole
effect amplifies the hierarchy among the three fL predictions. The current experimental data
confirm the first inequality, but the second is not seen.

Similar to what has been done for the πK system in [25, 58, 59, 60, 61, 62], one can con-
struct decay rate ratios that highlight the electroweak penguin contribution. However, in
contrast to πK, one cannot expand in small amplitude ratios; the suppression of the V V
QCD penguin amplitude makes these ratios too large. In [20] a few amplitude ratios related
to the transverse polarisation decay rates have been discussed, and their dependence on the
electromagnetic dipole operator has been emphasized. The default input of the present anal-
ysis is similar to [20]. The amplitude ratio pEW

h = PEW
h /Ph used in [20] is approximately

equal to 3αc,h
3,EW/(2α̂c,h

4 ). We now calculate Re(pEW
− ) = −0.25+0.18

−1.12 [+0.15+1.03
−0.16] compared to

27

φ‖/
◦ A0

CP / percent ∆φ‖/
◦

default α̂c−
4 f. d. default α̂c−

4 f. d. default α̂c−
4 f. d.
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−0

+84
−53 −40+0

−0
+21
−21 −1+0
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−0
+0
−1 0+0

−0
+1
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−0

+87
−54 −42+0

−0
+21
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−0 0+0
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Table 11: Theoretical results for other polarisation observables in penguin-dominated B → V V
decays.

which changes the real part from −0.010+0.002
−0.002 to the value +0.015+0.004

−0.003 given in Table 2.
Since the term proportional to the Wilson coefficient of the electromagnetic dipole operator,
Ceff

7γ , is the largest contribution to the negative-helicity electroweak penguin amplitude, the

interference patterns (43) are sensitive to possible anomalous contributions to Ceff
7γ , including

its phase.
In Table 12 we compare selected observables for the two final states involving αp,h

3,EW, when
the extra term in (44) is excluded, to the default (included) and data. We note that already
in the “excluded” results, the longitudinal polarisation fractions of the ρK∗ final states are
predicted to differ such that fL(K∗−ρ0) > fL(K̄∗0ρ−) > fL(K̄∗0ρ0). This follows from the
large longitudinal electroweak penguin contribution. The transverse electromagnetic dipole
effect amplifies the hierarchy among the three fL predictions. The current experimental data
confirm the first inequality, but the second is not seen.

Similar to what has been done for the πK system in [25, 58, 59, 60, 61, 62], one can con-
struct decay rate ratios that highlight the electroweak penguin contribution. However, in
contrast to πK, one cannot expand in small amplitude ratios; the suppression of the V V
QCD penguin amplitude makes these ratios too large. In [20] a few amplitude ratios related
to the transverse polarisation decay rates have been discussed, and their dependence on the
electromagnetic dipole operator has been emphasized. The default input of the present anal-
ysis is similar to [20]. The amplitude ratio pEW

h = PEW
h /Ph used in [20] is approximately

equal to 3αc,h
3,EW/(2α̂c,h
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−0.16] compared to
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B− → K∗−ω −33+5
−6

+113
−72 −31+5

−6
+18
−20 28+17

−10
+56
−57 26+17

−10
+45
−40 −32+8

−9
+73
−34 −31+8

−9
+26
−30

B̄0 → K̄∗0ω −43+3
−3

+106
−73 −41+3

−3
+35
−38 15+5

−4
+61
−51 14+5

−4
+52
−50 −11+3

−4
+23
−32 −12+3

−4
+20
−29

B− → K̄∗0ρ− −37+0
−0

+92
−59 −35+0

−0
+18
−19 −1+0

−0
+1
−1 0+0

−0
+1
−1 0+0

−0
+0
−2 0+0

−0
+1
−1

B− → K∗−ρ0 −39+4
−5

+146
−88 −37+4

−5
+21
−20 7+2

−2
+12
−13 6+2

−2
+8
−8 −14+3

−4
+29
−60 −13+3

−4
+15
−15

B̄0 → K∗−ρ+ −36+4
−5

+111
−68 −34+4

−5
+16
−16 18+6

−5
+12
−29 17+6

−5
+13
−12 −19+5

−5
+74
−18 −18+5

−5
+8
−8

B̄0 → K̄∗0ρ0 −41+4
−4

+63
−44 −39+4

−4
+18
−21 −30+11

−11
+60
−48 −30+10

−11
+57
−49 17+5

−5
+22
−24 17+5

−5
+22
−24

B̄s → K∗−K∗+ −34+3
−4

+113
−70 −29+3

−4
+17
−23 11+3

−3
+7
−17 8+2

−2
+13
−7 −17+4

−5
+105
−19 −14+3

−4
+10
−10

B̄s → K∗0K̄∗0 −34+0
−0

+110
−62 −29+0

−0
+19
−26 0+0

−0
+0
−0 0+0

−0
+1
−1 0+0

−0
+10
−3 0+0

−0
+2
−1

B̄s → φφ −39+0
−0

+86
−57 −37+0

−0
+21
−24 0+0

−0
+1
−0 0+0

−0
+1
−2 0+0

−0
+0
−1 0+0

−0
+1
−1

B− → K∗0K∗− −39+2
−3

+96
−57 −38+2

−3
+18
−21 9+3

−2
+12
−24 8+2

−2
+24
−21 −5+1

−1
+28
−7 −5+1

−1
+12
−26

B̄0 → K∗0K̄∗0 −32+0
−0

+82
−51 −31+0

−0
+18
−27 0+0

−0
+2
−4 −0+0

−0
+23
−16 3+1

−1
+14
−6 3+1

−1
+17
−26

B̄s → K∗0φ −49+2
−1

+110
−62 −46+2

−2
+26
−24 −9+2

−3
+16
−20 −9+2

−3
+58
−31 3+1

−1
+16
−6 7+2

−2
+21
−30

Table 11: Theoretical results for other polarisation observables in penguin-dominated B → V V
decays.

which changes the real part from −0.010+0.002
−0.002 to the value +0.015+0.004

−0.003 given in Table 2.
Since the term proportional to the Wilson coefficient of the electromagnetic dipole operator,
Ceff

7γ , is the largest contribution to the negative-helicity electroweak penguin amplitude, the

interference patterns (43) are sensitive to possible anomalous contributions to Ceff
7γ , including

its phase.
In Table 12 we compare selected observables for the two final states involving αp,h

3,EW, when
the extra term in (44) is excluded, to the default (included) and data. We note that already
in the “excluded” results, the longitudinal polarisation fractions of the ρK∗ final states are
predicted to differ such that fL(K∗−ρ0) > fL(K̄∗0ρ−) > fL(K̄∗0ρ0). This follows from the
large longitudinal electroweak penguin contribution. The transverse electromagnetic dipole
effect amplifies the hierarchy among the three fL predictions. The current experimental data
confirm the first inequality, but the second is not seen.

Similar to what has been done for the πK system in [25, 58, 59, 60, 61, 62], one can con-
struct decay rate ratios that highlight the electroweak penguin contribution. However, in
contrast to πK, one cannot expand in small amplitude ratios; the suppression of the V V
QCD penguin amplitude makes these ratios too large. In [20] a few amplitude ratios related
to the transverse polarisation decay rates have been discussed, and their dependence on the
electromagnetic dipole operator has been emphasized. The default input of the present anal-
ysis is similar to [20]. The amplitude ratio pEW

h = PEW
h /Ph used in [20] is approximately

equal to 3αc,h
3,EW/(2α̂c,h

4 ). We now calculate Re(pEW
− ) = −0.25+0.18

−1.12 [+0.15+1.03
−0.16] compared to

27

[Beneke, Rohrer, Yang 2006]

CP-asymmetric 
phase difference 

(mostly weak 
phase difference)

CP-averaged phase 
difference (mostly 

strong phase 
difference) 

Observable Theory Experiment

default constrained XA α̂c−
4 from data

BrAv /10−6 φK∗− 10.1+0.5
−0.5

+12.2
−7.1 10.1+0.5

−0.5
+7.2
−4.8 10.4+0.5

−0.5
+5.2
−3.9 9.7 ± 1.5

φK̄∗0 9.3+0.5
−0.5

+11.4
−6.5 9.3+0.5

−0.5
+6.7
−4.5 9.6+0.5

−0.5
+4.7
−3.6 9.5 ± 0.8

ACP/% φK∗− 0+0
−0

+2
−1 0+0

−0
+0
−0 0+0

−0
+3
−2 5 ± 11

φK̄∗0 1+0
−0

+1
−0 1+0

−0
+0
−0 1+0

−0
+2
−1 −1 ± 6

fL/% φK∗− 45+0
−0

+58
−36 45+0

−0
+35
−31 44+0

−0
+23
−23 50 ± 7

φK̄∗0 44+0
−0

+59
−36 44+0

−0
+35
−31 43+0

−0
+23
−23 49 ± 3

A0
CP/% φK∗− −1+0

−0
+2
−1 −1+0

−0
+1
−1 −1+0

−0
+2
−2 n/a

φK̄∗0 0+0
−0

+1
−1 0+0

−0
+1
−0 0+0

−0
+1
−2 2 ± 7

(f‖ − f⊥)/% φK∗− 0+0
−0

+2
−2 0+0

−0
+2
−2 0+0

−0
+2
−2 12 ± 17

φK̄∗0 0+0
−0

+2
−2 0+0

−0
+2
−2 0+0

−0
+2
−2 1 ± 7

(A‖
CP − A⊥

CP)/% φK∗− 0+0
−0

+0
−0 0+0

−0
+0
−0 0+0

−0
+0
−0 n/a

φK̄∗0 0+0
−0

+0
−0 0+0

−0
+0
−0 0+0

−0
+0
−0 18 ± 28

φ‖/
◦ φK∗− −41+0

−0
+84
−53 −41+0

−0
+35
−30 −40+0

−0
+21
−21 −60 ± 16

φK̄∗0 −42+0
−0

+87
−54 −42+0

−0
+35
−30 −42+0

−0
+21
−21 −44 ± 8

∆φ‖/
◦ φK∗− 0+0

−0
+0
−1 0+0

−0
+0
−0 0+0

−0
+0
−0 n/a

φK̄∗0 0+0
−0

+0
−0 0+0

−0
+0
−0 0+0

−0
+0
−1 6 ± 8

(φ‖ − φ⊥)/◦ φK∗− 0+0
−0

+1
−1 0+0

−0
+1
−1 0+0

−0
+1
−1 −12 ± 24

φK̄∗0 0+0
−0

+1
−1 0+0

−0
+1
−1 0+0

−0
+1
−1 1 ± 11

(∆φ‖ − ∆φ⊥)/◦ φK∗− 0+0
−0

+0
−0 0+0

−0
+0
−0 0+0

−0
+0
−0 n/a

φK̄∗0 0+0
−0

+0
−0 0+0

−0
+0
−0 0+0

−0
+0
−0 3 ± 11

Table 7: Comparison of theoretical results for observables from the full angular analysis of
B− → φK∗− and B̄0 → φK̄∗0 with experimental results from [26, 27, 29].

theory does not require the amplitude ratio to be small. While it does not make accurate
predictions, it is natural that penguin-dominated decays exhibit large transverse polarisation.
This is confirmed by comparing the first column of numbers in Table 7 with the measurements
in the fourth column. We find very good agreement of our results with data but with very large
uncertainties. We also note that all observables related to the positive-helicity amplitude (the
difference of ‖ and ⊥ observables) are predicted to be very small. So are the CP asymmetries,

since the doubly CKM-suppressed amplitude proportional to λ(s)
u does not exceed a few percent.

Unless experiments find unexpectedly large values for any of these observables, the interesting
ones are the branching fraction, fL and the phase φ‖.

We now explore a strategy where the variation of input parameters or the transverse penguin
amplitude α̂p−

4 is constrained by data in order to improve the predictions for other observables

21
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-46 ± 10

4 ± 12

-42  ± 8

6 ± 7

φ‖/
◦ A0

CP / percent ∆φ‖/
◦

default α̂c−
4 f. d. default α̂c−

4 f. d. default α̂c−
4 f. d.

B− → K∗−φ −41+0
−0

+84
−53 −40+0

−0
+21
−21 −1+0

−0
+2
−1 −1+0

−0
+2
−2 0+0

−0
+0
−1 0+0

−0
+1
−1

B̄0 → K̄∗0φ −42+0
−0

+87
−54 −42+0

−0
+21
−21 0+0

−0
+1
−1 0+0

−0
+1
−2 0+0

−0
+0
−0 0+0

−0
+1
−1

B− → K∗−ω −33+5
−6

+113
−72 −31+5

−6
+18
−20 28+17

−10
+56
−57 26+17

−10
+45
−40 −32+8

−9
+73
−34 −31+8

−9
+26
−30

B̄0 → K̄∗0ω −43+3
−3

+106
−73 −41+3

−3
+35
−38 15+5

−4
+61
−51 14+5

−4
+52
−50 −11+3

−4
+23
−32 −12+3

−4
+20
−29

B− → K̄∗0ρ− −37+0
−0

+92
−59 −35+0

−0
+18
−19 −1+0

−0
+1
−1 0+0

−0
+1
−1 0+0

−0
+0
−2 0+0

−0
+1
−1

B− → K∗−ρ0 −39+4
−5

+146
−88 −37+4

−5
+21
−20 7+2

−2
+12
−13 6+2

−2
+8
−8 −14+3

−4
+29
−60 −13+3

−4
+15
−15

B̄0 → K∗−ρ+ −36+4
−5

+111
−68 −34+4

−5
+16
−16 18+6

−5
+12
−29 17+6

−5
+13
−12 −19+5

−5
+74
−18 −18+5

−5
+8
−8

B̄0 → K̄∗0ρ0 −41+4
−4

+63
−44 −39+4

−4
+18
−21 −30+11

−11
+60
−48 −30+10

−11
+57
−49 17+5

−5
+22
−24 17+5

−5
+22
−24

B̄s → K∗−K∗+ −34+3
−4

+113
−70 −29+3

−4
+17
−23 11+3

−3
+7
−17 8+2

−2
+13
−7 −17+4

−5
+105
−19 −14+3

−4
+10
−10

B̄s → K∗0K̄∗0 −34+0
−0

+110
−62 −29+0

−0
+19
−26 0+0

−0
+0
−0 0+0

−0
+1
−1 0+0

−0
+10
−3 0+0

−0
+2
−1

B̄s → φφ −39+0
−0

+86
−57 −37+0

−0
+21
−24 0+0

−0
+1
−0 0+0

−0
+1
−2 0+0

−0
+0
−1 0+0

−0
+1
−1

B− → K∗0K∗− −39+2
−3

+96
−57 −38+2

−3
+18
−21 9+3

−2
+12
−24 8+2

−2
+24
−21 −5+1

−1
+28
−7 −5+1

−1
+12
−26

B̄0 → K∗0K̄∗0 −32+0
−0

+82
−51 −31+0

−0
+18
−27 0+0

−0
+2
−4 −0+0

−0
+23
−16 3+1

−1
+14
−6 3+1

−1
+17
−26

B̄s → K∗0φ −49+2
−1

+110
−62 −46+2

−2
+26
−24 −9+2

−3
+16
−20 −9+2

−3
+58
−31 3+1

−1
+16
−6 7+2

−2
+21
−30

Table 11: Theoretical results for other polarisation observables in penguin-dominated B → V V
decays.

which changes the real part from −0.010+0.002
−0.002 to the value +0.015+0.004

−0.003 given in Table 2.
Since the term proportional to the Wilson coefficient of the electromagnetic dipole operator,
Ceff

7γ , is the largest contribution to the negative-helicity electroweak penguin amplitude, the

interference patterns (43) are sensitive to possible anomalous contributions to Ceff
7γ , including

its phase.
In Table 12 we compare selected observables for the two final states involving αp,h

3,EW, when
the extra term in (44) is excluded, to the default (included) and data. We note that already
in the “excluded” results, the longitudinal polarisation fractions of the ρK∗ final states are
predicted to differ such that fL(K∗−ρ0) > fL(K̄∗0ρ−) > fL(K̄∗0ρ0). This follows from the
large longitudinal electroweak penguin contribution. The transverse electromagnetic dipole
effect amplifies the hierarchy among the three fL predictions. The current experimental data
confirm the first inequality, but the second is not seen.

Similar to what has been done for the πK system in [25, 58, 59, 60, 61, 62], one can con-
struct decay rate ratios that highlight the electroweak penguin contribution. However, in
contrast to πK, one cannot expand in small amplitude ratios; the suppression of the V V
QCD penguin amplitude makes these ratios too large. In [20] a few amplitude ratios related
to the transverse polarisation decay rates have been discussed, and their dependence on the
electromagnetic dipole operator has been emphasized. The default input of the present anal-
ysis is similar to [20]. The amplitude ratio pEW

h = PEW
h /Ph used in [20] is approximately

equal to 3αc,h
3,EW/(2α̂c,h

4 ). We now calculate Re(pEW
− ) = −0.25+0.18

−1.12 [+0.15+1.03
−0.16] compared to

27

φ‖/
◦ A0

CP / percent ∆φ‖/
◦

default α̂c−
4 f. d. default α̂c−

4 f. d. default α̂c−
4 f. d.

B− → K∗−φ −41+0
−0

+84
−53 −40+0

−0
+21
−21 −1+0

−0
+2
−1 −1+0

−0
+2
−2 0+0

−0
+0
−1 0+0

−0
+1
−1

B̄0 → K̄∗0φ −42+0
−0

+87
−54 −42+0

−0
+21
−21 0+0

−0
+1
−1 0+0

−0
+1
−2 0+0

−0
+0
−0 0+0

−0
+1
−1

B− → K∗−ω −33+5
−6

+113
−72 −31+5

−6
+18
−20 28+17

−10
+56
−57 26+17

−10
+45
−40 −32+8

−9
+73
−34 −31+8

−9
+26
−30

B̄0 → K̄∗0ω −43+3
−3

+106
−73 −41+3

−3
+35
−38 15+5

−4
+61
−51 14+5

−4
+52
−50 −11+3

−4
+23
−32 −12+3

−4
+20
−29

B− → K̄∗0ρ− −37+0
−0

+92
−59 −35+0

−0
+18
−19 −1+0

−0
+1
−1 0+0

−0
+1
−1 0+0

−0
+0
−2 0+0

−0
+1
−1

B− → K∗−ρ0 −39+4
−5

+146
−88 −37+4

−5
+21
−20 7+2

−2
+12
−13 6+2

−2
+8
−8 −14+3

−4
+29
−60 −13+3

−4
+15
−15

B̄0 → K∗−ρ+ −36+4
−5

+111
−68 −34+4

−5
+16
−16 18+6

−5
+12
−29 17+6

−5
+13
−12 −19+5

−5
+74
−18 −18+5

−5
+8
−8

B̄0 → K̄∗0ρ0 −41+4
−4

+63
−44 −39+4

−4
+18
−21 −30+11

−11
+60
−48 −30+10

−11
+57
−49 17+5

−5
+22
−24 17+5

−5
+22
−24

B̄s → K∗−K∗+ −34+3
−4

+113
−70 −29+3

−4
+17
−23 11+3

−3
+7
−17 8+2

−2
+13
−7 −17+4

−5
+105
−19 −14+3

−4
+10
−10

B̄s → K∗0K̄∗0 −34+0
−0

+110
−62 −29+0

−0
+19
−26 0+0

−0
+0
−0 0+0

−0
+1
−1 0+0

−0
+10
−3 0+0

−0
+2
−1

B̄s → φφ −39+0
−0

+86
−57 −37+0

−0
+21
−24 0+0

−0
+1
−0 0+0

−0
+1
−2 0+0

−0
+0
−1 0+0

−0
+1
−1

B− → K∗0K∗− −39+2
−3

+96
−57 −38+2

−3
+18
−21 9+3

−2
+12
−24 8+2

−2
+24
−21 −5+1

−1
+28
−7 −5+1

−1
+12
−26

B̄0 → K∗0K̄∗0 −32+0
−0

+82
−51 −31+0

−0
+18
−27 0+0

−0
+2
−4 −0+0

−0
+23
−16 3+1

−1
+14
−6 3+1

−1
+17
−26

B̄s → K∗0φ −49+2
−1

+110
−62 −46+2

−2
+26
−24 −9+2

−3
+16
−20 −9+2

−3
+58
−31 3+1

−1
+16
−6 7+2

−2
+21
−30

Table 11: Theoretical results for other polarisation observables in penguin-dominated B → V V
decays.

which changes the real part from −0.010+0.002
−0.002 to the value +0.015+0.004

−0.003 given in Table 2.
Since the term proportional to the Wilson coefficient of the electromagnetic dipole operator,
Ceff

7γ , is the largest contribution to the negative-helicity electroweak penguin amplitude, the

interference patterns (43) are sensitive to possible anomalous contributions to Ceff
7γ , including

its phase.
In Table 12 we compare selected observables for the two final states involving αp,h

3,EW, when
the extra term in (44) is excluded, to the default (included) and data. We note that already
in the “excluded” results, the longitudinal polarisation fractions of the ρK∗ final states are
predicted to differ such that fL(K∗−ρ0) > fL(K̄∗0ρ−) > fL(K̄∗0ρ0). This follows from the
large longitudinal electroweak penguin contribution. The transverse electromagnetic dipole
effect amplifies the hierarchy among the three fL predictions. The current experimental data
confirm the first inequality, but the second is not seen.

Similar to what has been done for the πK system in [25, 58, 59, 60, 61, 62], one can con-
struct decay rate ratios that highlight the electroweak penguin contribution. However, in
contrast to πK, one cannot expand in small amplitude ratios; the suppression of the V V
QCD penguin amplitude makes these ratios too large. In [20] a few amplitude ratios related
to the transverse polarisation decay rates have been discussed, and their dependence on the
electromagnetic dipole operator has been emphasized. The default input of the present anal-
ysis is similar to [20]. The amplitude ratio pEW

h = PEW
h /Ph used in [20] is approximately

equal to 3αc,h
3,EW/(2α̂c,h

4 ). We now calculate Re(pEW
− ) = −0.25+0.18

−1.12 [+0.15+1.03
−0.16] compared to

27



Polarisation & NP
• Triple-product asymmetries in Bs->ϕϕ

- similar pair of TP asymmetries
- time-dependence -> mixing-decay interference
- one can define two combinations AU , AV sensitive to
       

• CDF

• LHCb

• No quantitative theoretical calculation exists at the moment 
but qualitatively it is clear that the SM predicts both TP 
asymmetries to be small (strong penguin dominance)

[Gronau, Rosner 2011]

We are interested in interference terms A∗
i (t)Ak(t) and Ā∗

i (t)Āk(t). Using Eqs. (43) and
(47) one obtains

A∗
i (t)Ak(t) = [g∗+A

∗
i + (q/p)∗g∗−Ā

∗
i ][g+Ak + (q/p)g−Āk]

= A∗
iAk[|g+|2 + (q/p)(Āk/Ak)g

∗
+g−] + Ā∗

i Āk[|g−|2 + (p/q)(Ak/Āk)g+g
∗
−]

=
e−Γt

2

[

A∗
iAk

(

cosh(∆Γt/2) + cos(∆mt) + ηke
−2iφk [− sinh(∆Γt/2) + i sin(∆mt)]

)

+Ā∗
i Āk

(

cosh(∆Γt/2)− cos(∆mt) + ηke
2iφk [− sinh(∆Γt/2)− i sin(∆mt)]

)]

.

(49)

Inserting A∗
iAk = |Ai||Ak|ei(δk−δi)ei(φk−φi), Ā∗

i Āk = ηiηk|Ai||Ak|ei(δk−δi)e−i(φk−φi), implies for
i = 0, ‖, k =⊥,

A∗
i (t)A⊥(t) = e−Γt|Ai||A⊥|ei(δ⊥−δi) [i sin(φ⊥ − φi) cosh(∆Γt/2) + cos(φ⊥ − φi) cos(∆mt)

− i sin(φ⊥ + φi) sinh(∆Γt/2)− i cos(φ⊥ + φi) sin(∆mt)] , (50)

leading to

Im[A∗
i (t)A⊥(t)]

= e−Γt|Ai||A⊥| (cos(δ⊥ − δi)[sin(φ⊥ − φi) cosh(∆Γt/2)− sin(φ⊥ + φi) sinh(∆Γt/2)

− cos(φ⊥ + φi) sin(∆mt)] + sin(δ⊥ − δi) cos(φ⊥ − φi) cos(∆mt)) . (51)

Similarly one has

Im[Ā∗
i (t)Ā⊥(t)]

= e−Γt|Ai||A⊥| (cos(δ⊥ − δi) [sin(φ⊥ − φi) cosh(∆Γt/2)− sin(φ⊥ + φi) sinh(∆Γt/2)

+ cos(φ⊥ + φi) sin(∆mt)]− sin(δ⊥ − δi) cos(φ⊥ − φi) cos(∆mt)) . (52)

Thus

Im[A⊥(t)A
∗
i (t) + Ā⊥(t)Ā

∗
i (t)] = 2|A⊥||Ai|e−Γt cos(δ⊥ − δi)

[sin(φ⊥ − φi) cosh(∆Γt/2)− sin(φ⊥ + φi) sinh(∆Γt/2)] . (53)

This time-dependent result agrees with (44) at t = 0. It demonstrates for arbitrary time a
behavior of a genuine CP violating quantity which does not vanish for nonzero weak phases
and requires no strong phases.

The two “true” CP violating time-integrated triple product asymmetries (i = 0, ‖) for
untagged decays are proportional to

Γ
∫ ∞

0
Im[A⊥(t)A

∗
i (t) + Ā⊥(t)Ā

∗
i (t)]dt = 2|A⊥||Ai| cos(δ⊥ − δi)

(

sin(φ⊥ − φi)− sin(φ⊥ + φi)(∆Γ/2Γ) +O[(∆Γ/2Γ)2]
)

. (54)

We conclude that sizable CP violating TP asymmetries do not require direct CP violation.
They do require however that the weak phases dominating Ai (i = 0, ‖) and A⊥ differ from
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asymmetry, AU , is defined as:

AU =
N+ −N−

N+ +N−
, (2)

where N+ (N−) is the number of events with U > 0 (U < 0). Similarly AV is defined as,

AV =
M+ −M−

M+ +M−
, (3)

where M+ (M−) is the number of events with V > 0 (V < 0).

The CDF collaboration have recently reported first measurements of these quantities

based on a sample of 295 events [5]:

AU = −0.007± 0.064(stat)± 0.018(syst)

AV = −0.120± 0.064(stat)± 0.016(syst). (4)

2 Detector and data sample

The LHCb detector is a forward spectrometer [6] providing charged particle reconstruc-

tion in the pseudorapidity range 1.9 < η < 4.9. The detector elements are placed along

the beam line of the LHC starting with the Vertex Locator, a silicon strip device that

surrounds the proton-proton interaction region. This is used to reconstruct both interac-

tion vertices and the decay vertices of long-lived hadrons, and to measure their locations

with high precision. It also contributes to the measurement of track momenta, along with

a large area silicon strip detector located upstream of a dipole magnet with a bending

power of about 4 Tm and a combination of silicon strip detectors and straw drift-tubes

placed downstream. Two Ring Imaging Cherenkov detectors (RICHes) are used to iden-

tify charged hadrons. Further downstream, an Electromagnetic Calorimeter is used for

photon and electron identification, followed by a Hadron Calorimeter and a Muon system

consisting of alternating layers of iron and chambers (MWPC and triple-GEM) that dis-

tinguishes muons from hadrons. The calorimeters and muon system are used to provide

first-level hardware triggering.

The first trigger level allows the selection of events with B hadronic decays using the

transverse energy of hadrons measured in the calorimeter system. The event information

is subsequently sent to a software trigger, implemented in a dedicated processor farm,

which performs a further selection of events for later offline analysis.

The dataset used for this analysis consists of 340 pb
−1

of pp collision data collected at

a centre-of-mass energy of
√
s = 7 TeV with the LHCb detector between March and July

2011. During this period all detector components were fully operational and in a stable

condition.

3 Event selection

The event selection criteria were recursively optimized using a data-driven approach based

on the use of sWeights [7] to separate signal (S) and background (B) with the aim of maxi-

2

the combinatorial background from the φ mass distribution. The resulting distribution
is shown in Fig. 5. A fit to a relativistic P wave Breit-Wigner is superimposed. It can
be seen that with the current level of statistics this gives a good description of the data.
As a test, a fit was performed allowing for a flat component to model a possible S wave
contribution. The fraction of the latter returned by the fit is (1 ± 1 %) which supports
the hypothesis that the S wave contribution it is small.

Including the systematic uncertainties the asymmetries calculated from the mass fit
results are :

AU = −0.064± 0.057 (stat.)± 0.014 (syst.) (5)

AV = −0.070± 0.057 (stat.)± 0.014 (syst.), (6)

where both K+K− pairs have masses within ±12 MeV/c2 of the nominal value of the φ
mass.

Source AU AV Chosen uncertainty
Acceptance 0.0100 0.0020 0.010

Mass model for Signal and Background 0.0040 0.0004 0.004
Impact parameter cuts 0.0030 0.0100 0.010

Total systematic uncertainty 0.014

Table 2: Summary of the systematic uncertainty on the triple product asymmetry
measurement. The total systematic uncertainty is the quadratic sum of the largest of the
individual components.

6 Summary

The triple product asymmetries in the B0
s → φφ decay mode are measured to be:

AU = −0.064± 0.057 (stat.)± 0.014 (syst.) (7)

AV = −0.070± 0.057 (stat.)± 0.014 (syst.), (8)

where both K+K− pairs have masses within ±12 MeV/c2 of the nominal value of the
φ mass. These results are in good agreement with the values reported by the CDF
collaboration [5]. Since the results are dominated by statistical uncertainties they will
improve when the full dataset collected during the 2011 running period is analysed.
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Polarisation & NP
• 1/mb expansion predicts a hierarchy

in B decay (+/- interchanged in B decays);
however, the suppression of the negative-helicity amplitude 
is numerically spoiled by annihilation contributions

• A nonvanishing positive-helicity amplitude could be a sign of 
NP and could even be turned into quantitative information 
on “right-handed currents”

• The (presumable) smallness of the negative-helicity 
amplitude suppresses one of the two triple-product 
asymmetries, making it a probe of right-handed currents

Figure 4: Transverse-to-longitudinal amplitude ratios for B̄0 → K̄∗φ. The contours indicate
the dependence of the negative-helicity theory prediction on annihilation (left) and
spectator scattering (right) parameters, with all other input fixed at central val-
ues. Additionally, the values implied by current measurements [26, 27, 29] for both
helicities are shown.

6. Penguin-dominated decays

The 14 decay modes that we study in this section are characterised by the dominant role of the
colour-allowed QCD penguin amplitude α̂p

4 ≡ αp
4 + βp

3 , which includes a penguin-annihilation
term. Of these the 11 ∆S = 1 modes have branching fractions up to 105, and some of them
have already been studied extensively experimentally including polarisation.

Due to their common dominant amplitude the theoretical errors in this class of decays are
common to all representatives. As explained in Section 3.2, the negative-helicity penguin
amplitude α̂p−

4 is particularly uncertain due to a potentially large penguin weak annihilation
contribution [6]. In addition, non-factorisation of spectator scattering also affects the transverse
amplitude of final states containing ω or φ mesons, mostly through the flavour-singlet penguin
amplitude αp−

3 . An important issue of the subsequent analysis will be whether theoretical
calculations are compatible with the observation of large transverse polarisation, and whether
uncertainties can be controlled to the point that useful predictions can be made.

6.1. The B → φK∗ system and the transverse penguin amplitude

We begin with a discussion of the B → φK∗ modes. A complete angular analysis is available for
B → φK∗0 [26, 29], which allows us to extract the complex amplitude ratios Ā±/Ā0 from data.
This is shown in Figure 4, which compares this result to the theoretical calculation of Ā−/Ā0.
(The experimental result for Ā+/Ā0 is in very good agreement with the expectation that the
plus-helicity amplitude should be strongly suppressed.) The left plot in the figure shows the
theoretical range from a variation of the uncertainties in weak annihilation alone (parameter
XA), the right plot displays the same information for spectator scattering (parameter XH).
Since all values for inside the contour are theoretically allowed for Ā−/Ā0, it is evident that

20

3. B → V V amplitudes

The decay amplitudes follow from the matrix elements 〈V1V2|Heff|B̄〉 of the effective Hamilto-
nian (conventions as in [31])

Heff =
GF√

2

∑

p=u,c

λ(D)
p






C1Q

p
1 + C2Q

p
2 +

∑

i=3,...10,7γ,8g

CiQ
p
i






+ h. c. (9)

with D ∈ {d, s} and λ(D)
p = VpbV ∗

pD. A quark model [1] or naive factorisation analysis indicates
a hierarchy of helicity amplitudes

Ā0 : Ā− : Ā+ = 1 :
ΛQCD

mb
:

(
ΛQCD

mb

)2

(10)

for B̄ meson decays. (For B decays exchange − ↔ +.) This is a consequence of the left-
handedness of the weak interaction and the fact that high-energy QCD interactions conserve
helicity.

In naive factorisation one considers only the four-quark operators in Heff and approximates
their matrix elements by the matrix elements of two currents [32]. The helicity amplitudes
Ah

B̄→V1V2
are proportional to

Ah
V1V2

≡
GF√

2
〈V h

1 |(q̄sb)V −A|B̄qs
〉〈V h

2 |(q̄q′)V |0〉 (11)

in this approximation. Evaluating this expression (conventions for the form factors as in [33])
we obtain

A0
V1V2

=
iGF√

2
m2

BfV2
AB→V1

0 (0), A±
V1V2

=
iGF√

2
mBm2fV2

FB→V1

± (0) (12)

with the definitions

FB→V1

± (q2) ≡ (1 +
m1

mB
)AB→V1

1 (q2) ∓ (1 −
m1

mB
)V B→V1(q2). (13)

The transverse amplitudes A±
V1V2

are suppressed by a factor m2/mB relative to A0
V1V2

. In

addition, the axial-vector and vector contributions to FB→V1

+ (0) cancel in the heavy-quark
limit, due to an exact form factor relation [33, 34]. Thus F−/A0 ∼ 1, F+/A0 ∼ O(ΛQCD/mB),
and (10) follows.

The dominance of the longitudinal amplitude indicated by (10) leads to the well-known
expectation that fL should be close to unity. Experimental data for penguin-dominated B
decays is in conflict with this expectation thus motivating theoretical studies beyond the naive-
factorisation approximation.

3.1. The QCD factorisation approach for B → V V

We use the QCD factorisation approach [23, 24] to compute the matrix elements 〈V1V2|Qi|B̄〉
of the effective Hamiltonian. In this framework they can be expressed (at leading power
in an expansion of the amplitude in ΛQCD/mB) in terms of form factors, meson light-cone

4

[Kagan 2004]

[Beneke, Rohrer,Yang 2006]

[Kagan 2004]

[Korner, Goldstein 1979]



EWP effect in B->V V

• If NP involves a right-handed dipole operator Q7’ this can 
give a sizable A+

• would be present in Bs  -> ϕϕ

• full polarisation analysis would be interesting
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Enhanced electroweak penguin amplitude in B → V V decays

M. Beneke1, J. Rohrer1 and D. Yang2
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2Department of Physics, Nagoya University, Nagoya 464-8602, Japan

(Dated: December 19, 2005)

We discuss a novel electromagnetic penguin contribution to the transverse helicity amplitudes in B
decays to two vector mesons, which is enhanced by two powers of mB/Λ relative to the standard
penguin amplitudes. This leads to unique polarization signatures in penguin-dominated decay modes
such as B → ρK∗ similar to polarization effects in the radiative decay B → K∗γ, and offers new
opportunities to probe the magnitude and chirality of flavour-changing neutral current couplings to
photons.

PACS numbers: 13.20.He,12.60.-i

INTRODUCTION

Decays of B mesons into two charmless mesons provide
an abundant source of information on flavour- and CP-
violating phenomena in the weak interactions of quarks.
In particular, decays to two vector mesons (B → V V )
can shed light on the helicity structure of these interac-
tions through polarization studies. While predicted to
be fundamentally V-A in the Standard Model (SM), a
deviation from this expectation cannot currently be ex-
cluded. The first observations of B → V V decays show
no anomalies in the helicity structure, but point to a
reduced amount of longitudinal polarization in penguin-
dominated decays [1]. This has led to theoretical studies
that reconsider strong interactions effects in B → V V
decays [2–4], or invoke new fundamental interactions [5].

Any particular B → V V decay is characterized by the
three helicity amplitudes A0 (longitudinal), A−, and A+.
A quark model or naive factorization analysis [6] leads
to the expectation that for B̄, i.e. b-quark, decay the
helicity amplitudes are in proportions

A0 : A− : A+ = 1 :
Λ

mb
:

(

Λ

mb

)2

(1)

with Λ ≈ 0.5 GeV the strong interaction scale and mb ≈
5 GeV the bottom quark mass. This expectation has
been parametrically (not necessarily numerically) con-
firmed [2] in the framework of QCD factorization, which
provides a theoretical basis for the heavy-quark expan-
sion of B decays to charmless mesons [7]. The hierarchy
(1) of helicity amplitudes follows from the V-A structure
of the standard weak interactions.

In this Letter we point out and discuss an effect which
has been neglected in all previous studies of B → V V ,
but which substantially alters the prediction for polar-
ization observables. The effect is connected with electro-
magnetic penguin transitions, and appears only for neu-
tral vector mesons. It leads to the unique feature that
the transverse electroweak penguin amplitude is domi-
nated by the electromagnetic dipole operator providing
a signature similar to polarization in radiative decays

B → K∗γ [8], but which is easier to access experimen-
tally.

The effect in question is related to the two diagrams
shown in Figure 1. When the vector meson V2 is trans-
versely polarized, there exists a large contribution to the
decay amplitude due to the small virtuality m2

V2
of the

intermediate photon propagator. This is in contrast to
the case of longitudinal polarization, where the photon
propagator is canceled, and the amplitude is local on the
scale mb [9]. The large transverse amplitude is best de-
scribed by a short-distance transition b → Dγ (D = d, s),
followed by the transition of the low-virtuality photon
(q2 # m2

b) to the neutral vector meson. We shall per-
form a factorization analysis of the amplitude below.

The calculation of the diagrams in Figure 1 is straight-
forward. The weak interactions are given in terms of the
standard effective Hamiltonian [10]. We use the conven-
tions of [11], but generalize the electromagnetic dipole
operators to include both chiralities

Heff =
GF√

2

∑

p=u,c

λ(D)
p

∑

a=−,+

Ca
7γQa

7γ + . . . , (2)

Q∓
7γ = −

em̄b

8π2
D̄σµν(1 ± γ5)F

µνb, (3)

where λ(D)
p = VpbV ∗

pD. The ellipses denote other opera-

tors (see [11]). In the SM C+
7γ is suppressed by a factor

mD/mb, hence Q+
7γ is usually neglected. The remain-

ing term is then simply denoted by C7γQ7γ . However, in
generic extensions of the SM, there is no reason to expect

V2q q̄

O∓
7γ

b D

V2q q̄

b D

u, c

FIG. 1: Leading contributions to ∆αp∓
3,EW

(V1V2) defined in
the text.

low-virtuality photon, makes A- formally 
leading (but αEM suppressed), 

important contribution in the SM

[Beneke, Rohrer,Yang 2005]



• LHCb has measured [essentially] the difference
   ΔACP = ACP(D0 ➔K+K-) - ACP(D0 ➔π+π-)    

• SU(3) symmetry predicts equal and opposite relative sign 
between the two asymmetries, i.e. no cancellation expected

• but GIM cancellations suggest, in the SM, strong suppression 
of the penguin amplitude (|P/T| ~10-3) 

• to explain in SM would need about an order of magnitude 
enhancement of the penguin amplitude. Current theoretical 
control much worse than for B decays; recent discussion in

CPV in D decays

[LHCb-CONF-2011-061]

Result

Significance: 3.5 σ

15

∆ACP = [−0.82± 0.21(stat.)± 0.11(sys.)]%

Where to look for direct CPV
•Remember: need (at least) two contributing amplitudes 

with different strong and weak phases to get CPV.

•Singly-Cabibbo-suppressed modes with gluonic penguin 
diagrams very promising
• Several classes of NP can contribute
• ... but also non-negligible SM contribution

5

Search for CPV in D0→ K+K-(!0),!+!"(!0)  
SCS = Single Cabibbo Suppressed 

47!

•  CP violation in these modes is predicted to be !             in SM. !

•  SCS decays are uniquely sensitive to new physics in                   processes.!

F. Buccella et al., Phys. Rev. D51, 3478 (1995)  
S. Bianco et al., Riv. Nuovo Cim. 26N7, 1(2003) 
Y. Grossman et al., Phys. Rev. D75, 036008 (2007)                      

Evidence of CP violation with present experimental sensitivity would be sign of New Physics!

•  Time-integrated CP asymmetry get contributions from the 3 different CP 
violation sources: decay, mixing, interference between mixing and decay. 

from time-dependent mixing/CPV analyses!

Today: difference between ACP(D0 → K+ K!),  ACP(D0 → π+ π!)
•Expectation from U-spin: Adir(KK) = !Adir(ππ)...
•Conclusion could be softened by large U-spin violation in power 

corrections [Kagan] Grossman, Kagan & Nir, PRD 75, 036008 (2007)

∝ VubV
∗

cb = O(λ5)∝ VusV
∗

cs
= O(λ)

[Brod, Kagan, Zupan 1111.5000]



Semileptonic decay

• kinematics described by dilepton invariant mass q2 and 
three angles

• Systematic theoretical description based on heavy-quark 
expansion (Λ/mb) for q2 << m2(J/ψ)  (SCET)
also for q2 >> m2(J/ψ) (OPE)
Theoretical uncertainties on form factors, power corrections
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Bd➔K*µ+µ-

• Most well-known observable: forward-backward asymmetry

• Many more observables to consider
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Figure 9: Left and centre plot: CP asymmetries A7 and A8 in the SM (blue band) and three
FBMSSM scenarios as described in the text. Right plot: correlation between the integrated asym-
metries 〈A7〉 and 〈A8〉 in the FBMSSM. Blue circle: SM, green diamond: FBMSSMI, red square:
FBMSSMII , orange triangle: FBMSSMIII.
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Figure 10: The observables S4, S5 and Ss
6 in the SM (blue band) and the three FBMSSM scenarios

FBMSSMI,II,III.

asymmetry 〈A7〉. One observes that large effects in 〈A7〉 are correlated with large shifts in
the zeros towards lower values.

In order to identify signs in the CP asymmetries which are favoured in this model one
must include additional observables in the analysis. To this end we also investigate the direct
CP asymmetry in the b → sγ decay ACP(b → sγ), the electric dipole moments of the electron
and the neutron de and dn and the mixing induced CP asymmetry SφKS

. We recall that
in [62] striking correlations between these observables have been found. In particular, the
desire to explain the anomaly observed in SφKS

through the presence of flavour conserving
but CP-violating phases implied a positive ACP(b → sγ), by an order of magnitude larger
than its SM tiny value and de, dn at least as large as 10−28 e cm.

The left plot of Fig. 12 shows the correlation between 〈A7〉 and SφKS
. We find that a value

of SφKS
$ 0.44, as indicated by the present data [85], implies a positive value for 〈A7〉 in the

range [0.05, 0.2] and then also a negative value for 〈A8〉 in the range [−0.11,−0.03]. In addition
to the two scenarios discussed above, we have chosen also a third scenario, FBMSSMIII,
indicated as orange triangle in the plots of Figs. 9, 11 and 12, that gives SφKS

close to the
experimental value. This scenario is shown in Figs. 9 and 10 as the orange bands and we find
that while one still can get almost maximal effects in 〈A7〉 and 〈A8〉 the effects in S4, S5 and
Ss

6 are much less pronounced.

38

Altmannshofer et al 
0811.1214v3
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Figure 7: The forward-backward asymmetry in a) B+ → ρ+"+"−, b) B− → ρ−"+"−,
and c) the CP-averaged B → ρ0"+"− decay. The solid (dashed) line shows the next-to-
leading (leading) order result. The band represents the theoretical error due to hadronic
uncertainties.

The next-to-leading order prediction of the forward-backward asymmetry for the
B → K∗"+"− decay has been discussed in detail in our previous paper [3]. For the

b → s transitions the term C(u)
9,⊥(q2) is negligible, because the corresponding Rut is very

small. Hence there is no difference between B and B̄ decay, and the asymmetry zero is
determined by the zero of the real part of C(t)

9,⊥(q2). In [3] we found that the next-to-
leading order correction shifts the zero by 30%, but once this correction is included, a
precise measurement of the location of the zero translates into a determination of the
Wilson coefficient C9 with an accuracy of about 10%. Our updated result for the position
of the forward-backward asymmetry zero reads

q2
0 [K

∗0] = 4.36+0.33
−0.31 GeV2, q2

0[K
∗+] = 4.15+0.27

−0.27 GeV2. (38)

The small difference compared to [3] is due to the different treatment of form factors
and the inclusion of isospin breaking power corrections in the present analysis.

In case of B → ρ "+"− decays there exists an important new contribution from
C(u)

9,⊥(q2). As a consequence, the decays of B or B̄, neutral or charged B mesons to
ρ "+"− may show significantly different forward-backward asymmetries. When α is near
90◦ as expected in the Standard Model, we may approximate eiα " i sin α, and therefore
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Figure 9: Forward-backward asymmetry dAFB(B− → K∗−!+!−)/dq2 at next-
to-leading order (solid center line) and leading order (dashed). The band re-
flects all theoretical uncertainties from parameters and scale dependence com-
bined.

for q2 ∼ Λ2
QCD, but perturbative for q2 ∼ mbΛQCD. Furthermore, the non-perturbative

contribution is formally power-suppressed when the lepton invariant mass spectrum is
integrated from 0 to some q2 of order mbΛQCD.

5.2 Forward-backward asymmetry

The QCD factorization approach proposed here leads to an almost model-independent
theoretical prediction for the forward-backward asymmetry [30]. It has been noted in
[31] that the location of the forward-backward asymmetry zero is nearly independent of
particular form factor models. An explanation of this fact was given in [32], where it
has been noted that the form factor ratios on which the asymmetry zero depends are
predicted free of hadronic uncertainties in the combined heavy quark and large energy
limit. In [4] the effect of the (factorizable) radiative corrections to the form factor ratios
has been studied and has been found to shift the position of the asymmetry zero about
5% towards larger values. We are now in the position to discuss the effect of both,
factorizable and non-factorizable radiative corrections to next-to-leading order in the
strong coupling constant on the location of the asymmetry-zero, and hence to complete
our earlier analysis.

We define the forward-backward (FB) asymmetry (normalized to the differential de-
cay rate dΓ(B− → K∗−!+!−)/dq2) by

dAFB

dq2
≡

1

dΓ/dq2

(

∫ 1

0
d(cos θ)

d2Γ

dq2d cos θ
−

∫ 0

−1
d(cos θ)

d2Γ

dq2d cos θ

)

(72)

Our result for the FB asymmetry is shown in Figure 9 to LO and NLO accuracy. From
(64) it is obvious that dAFB/dq2 ∝ Re (C9,⊥(q2)), and therefore the FB asymmetry van-
ishes if Re (C9,⊥(q2

0)) = 0. At leading order this translates into the relation

C9 + Re(Y (q2
0)) = −

2MBmb

q2
0

Ceff
7 , (73)
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zero crossing to 
0.3 GeV2 in SM

 Krueger, Matias; ...

B Ñ K ˚ �`�´ DATA USED IN FIT

data in q2-bins for: xBry, xAFBy, xFLy

r1.0, 6.0s, r14.18, 16.0s, r16.0, 19.2s GeV2

angular analysis in θ� and θK ˚ : each q2-bin

1

Γ

dΓ

dcos θK ˚
“ 3

2
FL cos2 θK ˚ ` 3

4
p1 ´ FLq sin2θK ˚ ,

1

Γ

dΓ

dcos θ�
“ 3

4
FL sin2θ� ` 3

8
p1 ´ FLqp1 ` cos2θ�q ` AFB cos θ�

Bobeth/Hiller/van Dyk/Wacker CERN November 11, 2011 7 / 23



Constraints on NP
Bobeth et al 1111.2558

see also Descotes-Genon et al 2011, 
Altmannshofer, Paradisi, Straub 2011

GLOBAL FIT OF C9 AND C10 – COMPLEX
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FIT OF C9 AND C10 – REAL = NO CP VIOLATION
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SUSY (again)
• SUSY virtues

  solves naturalness problem
  

  gauge coupling unification

  dark matter, strings, ...

• many ‘soft’ parameters in absence of a theory of SUSY 
breaking violate flavour: flavour puzzle

• flavour probes the SUSY breaking; GUT relations

H

f

(a)

S

H

(b)

Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

3

∝ y
2
t
Λ

2
UV

(

δ
u,d,e,ν
ij

)

AB
≡

(

M2

ũ,d̃,ẽ,ν̃

)AB

ij

m2

f̃
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                                              45 CPV (some flavour-conserving) 
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Fig. 2. (a) Second order evolution of the three coupling con- 
stants in the minimal  SUSY model. MsusY has been fitted by re- 
quiring crossing of the couplings in a single point. The two lower 
plots show t h e z  z distribution for the SUSY scale MsusY (b) and 
for the unification scale MGo x (c) taking into account their 
correlation. 

The widths of the Z 2 distributions are dominated 
by the error of c~3 (Mz). We have repeated the fits for 
different values of c% (Mz) and the results are shown 
in figs. 3a and 3b. One observes that Msusv is a steep 
function of cq: for c%(Mz) between 0.10 and 0.12, 
Msvsv varies between 30 TeV and 10 GeV. The 
68% CL range of c~3 values, obtained by averaging 
DELPHI results (see eq. (26)),  is also indicated. 

Until now the assumption was made that the slopes 
change from SM values to SUSY values exactly at 
Msvsv. This abrupt change is unphysical, not only 
because the particles are virtual, but also because dif- 
ferent SUSY particles are likely to have different 
masses. To model the actual behavior we have 
smeared this change over 1-3 orders of magnitude 
symmetrically around Msusv by taking the average of 
the SM and SUSY slopes in this interval. This smear- 
ing lowers the fitted value of Msusv and has little in- 

- -  without smeoring j 

£ . . . .  + . M  . . . .  . . . .  t ~10 + 
- - . ,  ___ ° ::: ! 

+ j 
103 

0,1 0.105 0.11 0.115 0 1 2  

(.D . 
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Fig. 3. The Msus¥ (a) and Mou T (b) energy scales are shown as 
function o f ~  3 (Mz). The uncertainties in MOUT and Msusv from 
the errors in cq(Mz)  and c%(Mz) are small. The full line as- 
sumes that all SUSY particles have the mass of  the SUSY scale. 
The dashed, dotted and dash-dotted lines indicate the results if 
the SUSY particle spectrum is smeared over the range indicated 
in the figure. 

fluence on M~vT, as shown by the dashed and dotted 
lines in figs. 3a and 3b. 

The values of MGVT and MsvsY are correlated. By 
taking this correlation into account, one finds 

M s l J s y  = 10 3"0+10 GeV , (28) 

~ifGU T = 1016"0+03 GeV, (29) 

o~6~j T =25.7_+ 1.7. (30) 

Because of the threshold behaviour, the mass of the 
heavy gauge bosons (Mx) is typically 0.3 MGUT [25 ]. 
If the proton decay is dominated by X-boson ex- 
change, the proton lifetime for Mx = 3 ! i 0 ~ 5 GeV can 
be estimated as 

1 M 4 1033.2+ 1.2 yr,  (31) 
Z'P r ° t ° n  ~ c~tjv2 M~ - 

where Mp is the proton mass. However, the estimate 
of eq. (31) is not unique because in many SUSY 
models faster decay processes can contribute [29 ]. 
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Fig. 1. (a) First order evolution of the three coupling constants 
in the minimal standard model (world average values in 1987 
from ref, [ 11 ). The small figure is a blow-up of the crossing area). 
(b) As above but using Mz and oq (Mz) from DELPH 1 data. The 
three coupling constants disagree with a single unification point 
by more than 7 standard deviations. 

unif ied theories,  was only two s tandard  devia t ions  in 
1987. 

In this paper  we extend that  analysis with recent 
more precise LEP data. We do this along lines s imilar  
to the ones recently adopted  by Ellis et al. [2 ] and 
Langacker [3] .  We use publ ished da ta  from the 
D E L P H I  Col laborat ion,  of  which we are members ,  
but  s imilar  results could be der ived from the data  of  
o ther  LEP experiments .  

The paper  has been organized as follows: In sec- 
t ions 2 and 3 the coupling constants  are def ined and 
their  new de te rmina t ions  are described.  In section 4 
the evolut ions of  the coupling constants  to high ener- 
gies in the min imal  s tandard  model  (SM)  and in the 
min imal  supersymmetr ic  s tandard  model  (SUSY)  
are compared.  A summary  is given in section 5. 

2. Definition of the coupling constants 

In the unif ied SU (2 )L@U(  1 ) theory,  the follow- 
ing well known relat ions hold between the coupling 
constants  and the gauge boson masses: 

e = v / 4 n a = g s i n  0w = g '  cos 0w, (1)  

M w  = ~vg" , (2) 

Mz = ~ v ~  2 +g2,  (3) 

f rom which it follows that 

e2 g,2 1 M2w (4)  
s in20w- g2 - g,2 + g2 - M 2 • 

Here g and g' are the coupling constants of  the groups 
SU(2)L  and U(  1 ), respectively, c~ is the fine struc- 
ture constant ,  0,~ is the electroweak mixing angle and 
v is the vacuum expectat ion value o f  the Higgs field. 
I f  the model  contains Higgs representations other than 
doublets,  the theory has an addi t ional  degree of  free- 
dom,  usually paramet r ized  by the p-parameter .  

In the SM based on the group SU ( 3 ) c ® S U  (2)  L® 
U ( 1 ) the usual defini t ions of  the coupling constants 
are  

5 ' /2 /4~- -  50~/3C0S20M~ , ( 5 ) 

OL2 = g 2 / 4 n  = a/s in~-O~s , ( 6 )  

a 3 = g 2 / 4 g ,  (7)  

where gs is the SU ( 3 )c coupling constant,  The factor 
5 5 in the defini t ion of  a~ has been included for the 
proper  normal iza t ion  at the unif icat ion point  [4 ]. 

The coupling constants,  if  def ined as effective val- 
ues including loop correct ions in the gauge boson 
propagators ,  become energy dependent  (" run-  
n ing") .  A running coupling constant  requires the 
specification of  a renormal iza t ion scheme (RS) .  We 
will use the usual modif ied  min imal  subtract ion 
scheme (MS)  [5] .  The energy dependence  is com- 
pletely de te rmined  by the particle content  and their  
couplings inside the loop diagrams of  the gauge bo- 
sons, as expressed by the renormal iza t ion  group 
equations,  The first order  renormal iza t ion  group 
equations are 

0 ~t ~ -  cq (# )  = bic~2(#) + .... i = 1 , 2 , 3 ,  (8)  
ogt 

where ~t is the energy at which the couplings are eval- 
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CMSSM / mSUGRA
• standard approach: “CMSSM” (“mSUGRA”)

- universal scalar mass, gaugino mass, A-terms (Aij=a Yij) 
  at the GUT scale, sign(µ)
- 3 parameters & 1 sign, RG evolution down to TeV scale

• flavour puzzle absent [CMSSM still needs to be justified]

• Straightforward interpretation of experimental constraints

ATLAS-CONF-2011-064
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Figure 2: Expected and observed limits of the combined 0-and 1-lepton channels derived with the power
constrained limit (PCL) and the CLs method. The red dashed line corresponds to the expected median
PCL at 95% C.L., and the red solid line to the observed PCL at 95% C.L. The green dotted line cor-
responds to the expected median exclusion contour at 95% C.L. derived with the CLs method, and the
green dashed-dotted line corresponds to the observed exclusion contour at 95% C.L. derived with the
CLs method. Tevatron and LEP limits on mq̃ and mg̃ are marked for searches in the specific context of
MSUGRA/CMSSM, with tan β = 3, A0 = 0 and µ > 0, and are also shown for illustration.
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Grand unification
• SM fields

• SM in highly reducible representations of the gauge group
   SM gen = (3,2)1/6 + (3,1)-2/3 + (3,1)1/3 + (1,2)-1/2 + (1,1)1

• however,
   SM gen              = [10 + 5]SU(5)
   SM gen + νRc     = 16SO(10)

• if either group is gauged, no gauge invariant distinction of 
baryons and leptons - baryon & lepton number violation

what about flavour?

The standard model
A relativistic quantum theory of twelve flavors of spin-1/2 

fermion, each with different mass

Quarks feel the strong interactions. They and the charged 

leptons also interact with the electromagnetic field.

Weak interactions are chiral

Standard Model

All matter is composed of twelve “flavors” of spin-1/2 fermion,

including three neutrinos, each with different mass.
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Flavour of SUSY GUTs
• small, hierarchical mixing in the quark sector

• large mixings in the lepton sector

Mixing matrices

Flavor mixing in the charged current occurs both in the
quark and in the lepton sector.
In the quark sector, mixing is small . . .

. . . but in the lepton sector, it is large:

, ( CL)
Hadronic and leptonic flavor violation in a SUSY GUT – p.5/35

Mixing matrices

Flavor mixing in the charged current occurs both in the
quark and in the lepton sector.
In the quark sector, mixing is small . . .

. . . but in the lepton sector, it is large:

, ( CL)
Hadronic and leptonic flavor violation in a SUSY GUT – p.5/35

SUSY radiative corrections can “transfer” leptonic 
mixing angles to the hadronic sector
                  Barbieri&Hall 1994, Barbieri,Hall,Strumia 1995

Mixing matrices

Flavor mixing in the charged current occurs both in the
quark and in the lepton sector.
In the quark sector, mixing is small . . .

. . . but in the lepton sector, it is large:

, ( CL)
Hadronic and leptonic flavor violation in a SUSY GUT – p.5/35



CMM Model
• SO(10) gauge theory with superpotential

• assumptions:
- Y1 and YN simultaneously diagonalisable
- breaking via SU(5)

- MSSM Higgs doublets in different copies of 10 of SO(10)
  

Nonrenormalizable Y2 term gives naturally small tan(β)

• keep universal (“CMSSM-like”) SUSY breaking, at MPlanck

2 Framework 5

The three generations of standard model matter fields are unified into three spinorial represen-

tations, together with three right-handed neutrinos,

16i = (Q, uc, dc, L, ec, νc)i , i = 1, 2, 3 . (3)

Here Q and L denote the quark and lepton doublet superfields and uc, dc, ec, and νc the corre-

sponding singlet fields of the up and down antiquark as well as the positron and the antineutrino,

respectively.

The Yukawa superpotential reads

WY =
1

2
16i Y

ij
1 16j 10H + 16i Y

ij
2 16j

45H 10′H
2MPl

+ 16i Y
ij
N 16j

16H16H
2MPl

. (4)

Let us discuss the individual terms in detail. The MSSM Higgs doublets Hu and Hd are contained

in 10H and 10′H , respectively. Only the up-type Higgs doublet Hu in 10H , acquires a weak-scale

vev such that the first term gives masses to the up quarks and neutrinos only. The masses for

the down quarks and charged fermions are then generated through the vev of the down-type Higgs

doublet of a second Higgs field Hd in 10′H . (A second Higgs field is generally needed in order to

have a non-trivial CKM matrix.) They are obtained from the second term in Eq. (4) which is of

mass-dimension five. In fact, this operator stands for various, nonequivalent effective operators with

both the SU(5)-singlet and the SU(5)-adjoint vevs of the adjoint Higgs field such that the coupling

matrix Y2 can only be understood symbolically. The operator can be constructed in various ways,

for example by integrating out SO(10) fields at the Planck scale. The corresponding couplings can

be symmetric or antisymmetric [35, 36], resulting in an asymmetric effective coupling matrix Y2,

as opposed to the symmetric matrices Y1 and YN . This asymmetric matrix allows for significantly

different rotation matrices for the left and right-handed fields. For more details see Appendix A.

The dimension-five coupling also triggers a natural hierarchy between the up and down-type quarks,

corresponding to small values of tanβ, where tanβ is the ratio of the vacuum expectation values

(vevs), tanβ = 〈Hu〉 / 〈Hd〉. Finally, the third term in Eq. (4), again a higher-dimensional operator,

generates Majorana masses for the right-handed neutrinos.

The Yukawa matrices are diagonalized as

Y1 = L1D1 L
"
1 ,

Y2 = L2D2R
†
2 ,

YN = RN DN PN R"
N ,

(5)

where Li and Ri are unitary matrices, PN is a phase matrix, and D1,2,N are diagonal with positive

entries. In order to work out the physically observable mixing parameters, we choose the first

coupling to be diagonal, i.e., we transform the matter field as 16 → L∗
1 16 such that

WY =
1

2
16"D116 10H + 16"L†

1L2D2R
†
2L

∗
1 16

45H 10′H
2MPl

+ 16"L†
1RNDNPNR"

NL∗
1 16

16H16H
2MPl

. (6)

Since the up-quarks have diagonal couplings, either of the Y2 mixing matrices, L†
1L2 or R†

2L
∗
1, must

MU, MνDirac MD, ML

SO(10) spinor
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by 3.8σ in winter 2005 [23] and the interest in the CMM idea faded. Today’s situation, however,

is again favorable for the CMM model: CDF and DØ find the Bs−Bs mixing oscillation frequency

in agreement with the SM [24], which still leaves the possibility of roughly 50% corrections from

new physics because of large hadronic uncertainties. The same experiments, however, find hints for

a new CP-violating phase in Bs−Bs mixing [25–30], which might imply a complex correction to

the Bs−Bs mixing amplitude of roughly half the size of the SM contribution. While the popular

MFV scenarios of the MSSM cannot provide this correction, even if flavor-diagonal parameters

(such as At) are taken complex [31], this situation is covered by the range found for the CMM

model in Ref. [22]. On the other hand the significance of the experimental anomalies in b → s

penguin amplitudes is steadily shrinking and current data do not challenge the SM much [32, 33].

The observed pattern of possible new O(1) effects in Bs−Bs mixing and small corrections to b → s

penguin amplitudes below the current experimental sensitivity is natural in the CMM model, as we

discuss below.

The paper is organized as follows: In the next section we specify the theoretical framework

of the CMM model focusing on its peculiarities in the flavor sector. In section 3 we describe the

RGE analysis for the determination of the soft breaking parameters at the weak scale, followed

by a presentation of observables that have been used to constrain the model in section 4. Finally,

before concluding, we present our results in section 5 and compare our study with other analyses

in section 6.

2 Framework

In this section we describe the CMM model and fill in some details which were not specified in

Ref. [12]. SO(10) is successively broken to SU(3)C ×U(1)em as

SO(10)
〈16H〉,〈16H〉,〈45H〉
−−−−−−−−−−−−→ SU(5)

〈45H〉−−−→ GSM ≡ SU(3)C × SU(2)L ×U(1)Y
〈10H〉, 〈10′H〉
−−−−−−−−→ SU(3)C ×U(1)em . (2)

The first breaking occurs at MSO(10) ∼ 1017 GeV, while the SU(5)-symmetry is broken at the MSSM

unification scale, MGUT. Actually, both the SU(5) singlet S and adjoint Σ24 of 45H have non-

vanishing vevs: While the vev of the SU(5) adjoint, 〈Σ24 (45H)〉 ≡ σ, breaks SU(5) to the standard

model group, the singlet component acquires a vev, when SO(10) is broken, 〈S (45H)〉 ≡ v0. This

latter vev will become important for the Yukawa couplings discussed below. The pair of spinors,

16H+16H , breaks the U(1)B−L subgroup of SO(10), reducing the rank of the group from five to four.

With this setup, we restrict ourselves to small Higgs multiplets, where the threshold corrections at

the various breaking scales are small and which allows for a perturbative SO(10) gauge coupling at

the Planck scale MPl.3

3A complete model requires a suitable Higgs superpotential, both to achieve the pattern of VEVs assumed here

and to give GUT-scale masses to all components in 10H , 10′H , 45H but for the two MSSM doublets (see below). The

Higgs potential was not specified in [12], and we do not address this problem here. Rather, our focus in this paper is

on the consequences of the breaking pattern and flavour structure on low-energy phenomenology. We feel our findings,

in turn, motivate further work on the symmetry breaking dynamics, possibly along the lines of [34], who discuss a

somewhat similar Higgs sector.

Symmetry breaking

Two steps:
1. : , get VEVs
2. MSSM (e.g. via )
Multiplets decompose as follows:

MSSM Higgs doublets , lie in and without
mixing: important in interpreting the superpotential!

Hadronic and leptonic flavor violation in a SUSY GUT – p.8/35



Flavour structure

• Now fix a U-basis where Y1 and YN  are diagonal. Then

contains all flavour violation
In the SM, UD is unphysical in hadronic physics.

2 Framework 5

The three generations of standard model matter fields are unified into three spinorial represen-

tations, together with three right-handed neutrinos,

16i = (Q, uc, dc, L, ec, νc)i , i = 1, 2, 3 . (3)

Here Q and L denote the quark and lepton doublet superfields and uc, dc, ec, and νc the corre-

sponding singlet fields of the up and down antiquark as well as the positron and the antineutrino,
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matrix Y2 can only be understood symbolically. The operator can be constructed in various ways,

for example by integrating out SO(10) fields at the Planck scale. The corresponding couplings can
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as opposed to the symmetric matrices Y1 and YN . This asymmetric matrix allows for significantly

different rotation matrices for the left and right-handed fields. For more details see Appendix A.

The dimension-five coupling also triggers a natural hierarchy between the up and down-type quarks,

corresponding to small values of tanβ, where tanβ is the ratio of the vacuum expectation values

(vevs), tanβ = 〈Hu〉 / 〈Hd〉. Finally, the third term in Eq. (4), again a higher-dimensional operator,

generates Majorana masses for the right-handed neutrinos.

The Yukawa matrices are diagonalized as
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1 ,
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N ,
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describe the quark mixing. We will work in the SU(5) basis, in which the Yukawa couplings read

WY =

[
1

4
Ψ!

D1Ψ+N!
D1Φ

]
H +

√
2Ψ!L†

1L2D
′
2R

†
2L

∗
1ΦH ′

+
MN

2
N!L†

1RNDNPNR!
NL∗

1N , (7)

D
′
2 = D2

v0
MPl

, MN =

〈
16H

〉 〈
16H

〉

MPl

Here, we denote the SU(5) matter fields by Ψi = (Qi, uci , e
c
i ), Φi = (dci , Li) and Ni = νci and the

SU(5) Higgs fields by H = (Hu, ∗) and H ′ = (∗, Hd). The color-triplets in H and H ′ which acquire

masses of order MGUT are denoted by ∗. The vev v0 is defined after Eq. (2). Now we identify the

quark mixing matrix as

Vq = L!
1 L

∗
2 . (8)

(Vq coincides with the SM quark mixing matrix VCKM up to phases.) We can always choose a basis

where one of the three Yukawa matrices is diagonal. In the CMM model, however, one assumes

that Y1 and YN are simultaneously diagonalizable, i.e.

L†
1RN = . (9)

This assumption is motivated by the observed values for the fermion masses and mixings and

might be a result of family symmetries. First, we note that the up-quarks are more strongly

hierarchical than the down quarks, charged leptons, and neutrinos. As a result, the eigenvalues

of YN must almost have a double hierarchy, compared to Y1. Then, given the Yukawa couplings

in an arbitrary basis, we expect smaller off-diagonal entries in L1 than in L2 because hierarchical

masses generically correspond to small mixing. Moreover, the light neutrino mass matrix implies

that, barring cancellations, the rotations in L1 should rather be smaller than those in VCKM [37].

Hence, even if the relation (9) does not hold exactly, the off-diagonal entries in L†
1RN will be much

smaller than the entries in VCKM and they cannot spoil the large effects generated by the lepton

mixing matrix, UPMNS.

Our assumption that Y1 and YN are simultaneously diagonalizable permits an arbitrary phase

matrix on the right-hand side of Eq. (9). However, this phase matrix can be absorbed into PN

introduced earlier in Eq. (5) (where this matrix could have been absorbed into RN ). Now, with Y1

and YN being simultaneously diagonal, the flavor structure is (apart from supersymmetry breaking

terms, which we will discuss below) fully contained in the remaining coupling, Y2, and Eq. (6)

simply reads

WY =
1

2
16!D116 10H + 16!V ∗

q D2R
†
2L

∗
1 16

45H 10′H
2MPl

+ 16!DNPN 16
16H16H
2MPl

. (10)

It is clear that this coupling has to account for both the quark and lepton mixing. Hence, Y2 cannot

be symmetric.

As mentioned above, the higher-dimensional operator can be generated in various ways, gener-

ically resulting in the asymmetric effective coupling matrix Y2. The dominant contributions come
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1RNDNPNR!
NL∗

1N , (7)

D
′
2 = D2

v0
MPl

, MN =

〈
16H

〉 〈
16H

〉

MPl

Here, we denote the SU(5) matter fields by Ψi = (Qi, uci , e
c
i ), Φi = (dci , Li) and Ni = νci and the

SU(5) Higgs fields by H = (Hu, ∗) and H ′ = (∗, Hd). The color-triplets in H and H ′ which acquire

masses of order MGUT are denoted by ∗. The vev v0 is defined after Eq. (2). Now we identify the

quark mixing matrix as

Vq = L!
1 L

∗
2 . (8)

(Vq coincides with the SM quark mixing matrix VCKM up to phases.) We can always choose a basis

where one of the three Yukawa matrices is diagonal. In the CMM model, however, one assumes

that Y1 and YN are simultaneously diagonalizable, i.e.

L†
1RN = . (9)

This assumption is motivated by the observed values for the fermion masses and mixings and

might be a result of family symmetries. First, we note that the up-quarks are more strongly

hierarchical than the down quarks, charged leptons, and neutrinos. As a result, the eigenvalues

of YN must almost have a double hierarchy, compared to Y1. Then, given the Yukawa couplings

in an arbitrary basis, we expect smaller off-diagonal entries in L1 than in L2 because hierarchical

masses generically correspond to small mixing. Moreover, the light neutrino mass matrix implies

that, barring cancellations, the rotations in L1 should rather be smaller than those in VCKM [37].

Hence, even if the relation (9) does not hold exactly, the off-diagonal entries in L†
1RN will be much

smaller than the entries in VCKM and they cannot spoil the large effects generated by the lepton

mixing matrix, UPMNS.

Our assumption that Y1 and YN are simultaneously diagonalizable permits an arbitrary phase

matrix on the right-hand side of Eq. (9). However, this phase matrix can be absorbed into PN

introduced earlier in Eq. (5) (where this matrix could have been absorbed into RN ). Now, with Y1

and YN being simultaneously diagonal, the flavor structure is (apart from supersymmetry breaking

terms, which we will discuss below) fully contained in the remaining coupling, Y2, and Eq. (6)

simply reads

WY =
1

2
16!D116 10H + 16!V ∗

q D2R
†
2L

∗
1 16

45H 10′H
2MPl

+ 16!DNPN 16
16H16H
2MPl

. (10)

It is clear that this coupling has to account for both the quark and lepton mixing. Hence, Y2 cannot

be symmetric.

As mentioned above, the higher-dimensional operator can be generated in various ways, gener-

ically resulting in the asymmetric effective coupling matrix Y2. The dominant contributions come

(Y1 and YN  simultaneously 
diagonalisable)
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from the singlet vev, v0 ∼ MSO(10), which is an order of magnitude higher than σ ∼ MGUT. In this

case, the contributions are approximately the same for down quarks and charged leptons; a more

detailed discussion is given in Appendix A. Then we can identify the lepton mixing matrix as

UD = P ∗
NR†

2L
∗
1 . (11)

Again, UD coincides with the lepton mixing matrix U∗
PMNS up to phases. In this paper, the Majorana

phases contained in PN are irrelevant and can therefore be neglected. We can then express the

Yukawa coupling of the down quarks and charged leptons as

Y2 = V ∗
q D2 UD . (12)

The relation (12) holds in the CMM model as long as we concentrate on the heaviest generation,

namely the bottom quarks and the tau lepton. The masses of the lighter generations do not unify, so

the higher-dimensional operators must partially contribute differently to down quarks and charged

leptons (see Appendix A). Now one might wonder whether these corrections significantly modify the

relation (12); however, the approximate bottom-tau unification and the good agreement between

the SM predictions and the experimental data for Bd−Bd mixing, ∆MK and εK severely constrain

these potential modification, as discussed in Ref. [38]. A corresponding analysis in the lepton sector

(in a wider SU(5) framework) exploiting µ → eγ can be found in Ref. [39]. We can therefore safely

neglect corrections to Eq. (12).

In terms of MSSM fields, the couplings simply read

WY = QiD
ij
1 ucj Hu +Qi

(
V ∗
q D

′
2 UD

)ij
dcj Hd

+ LiD
ij
1 νcj Hu + Li

(
U#
D D

′
2 V

†
q

)ij
ecj Hd +

1

2
νci D

ij
N νcj . (13)

Here QiD
ij
1 ucj Hu is short-hand for εmnQαm

i D
ij
1 ucαj H

n
u with the SU(3)C and SU(2)L indices α =

1, 2, 3 and m,n = 1, 2, respectively, and similarly for the other couplings. Eq. (13) holds for exact

SO(10) symmetry; below MSO(10) the Yukawa couplings Dij
1 in the first and third terms will be

different, as well as those in the second and fourth term.

Both Vq and UD are unitary matrices, which generically have nine parameters each, namely

three mixing angles and six phases. In the SM, we can eliminate five of the six phases in VCKM

by making phase rotations of the quark fields. Due to the Majorana nature of the neutrinos, we

are left with three phases in UPMNS. In the CMM model, however, we cannot rotate the quark

and lepton fields separately without violating the implicit GUT constraint. Once we eliminate all

but one phase in Vq, we are left with the full set of phases in UD. To see the additional phases

explicitly, let us write down the mixing matrix for the tri-bimaximal solution, corresponding to

θ12 = arcsin
(
1/
√
3
)
% 35◦, θ13 = 0◦, and θ23 = 45◦,

UTBM
D = ΘLU

TMB∗
PMNSΘR =





√
2
3 e

−ia1 1√
3
e−ia2 0

− 1√
6
e−ia4 1√

3
e−i(−a1+a2+a4) 1√

2
e−i(−a1+a3+a4)

1√
6
e−ia5 − 1√

3
e−i(−a1+a2+a5) 1√

2
e−i(−a1+a3+a5).



 . (14)

CKM quark mixing matrix

PMNS lepton mixing matrix
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MD, ML



Flavour structure (2)
• work in the (U) basis

MD = vd Y2
   rotating to mass eigenstates eliminates UD

ML  = vd Y2T

     rotating to mass eigenstates eliminates Vq

MU brought out of diagonal form, but only by CKM (Vq) angles
no physical effect of UD in the SM, or unbroken SUSY theory
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H

f

(a)

S

H

(b)

Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

3

y
2

t

However, the large top Yukawa coupling
in Y1 fixes the U-basis as the universal
mass eigenbasis for the sfermions

1̃63

1̃0H



Observables
• There is now a mismatch of the sfermion and fermion mass 

bases for the right-handed down-type particles and the left-
handed leptons

• Diagonalizing the matrix introduces flavour violation into 
neutral current vertices
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d̃iα

djβ

g̃a

i
√
2T a

αβ(UD)jiPR

(a)

d̃iα

djβ

χ̃0
k

i
(
Y D
j (UD)jiZ

3k
N PL −

√
2e

3 cos θW
(UD)jiZ

1k∗
N PR

)
δαβ for i #= j

(b)

Figure 1: Quark-squark-gluino and quark-squark-neutralino vertices for i, j = 2, 3. Here djβ is the

Dirac field of the down-quark mass eigenstate of the j-th generation. d̃iα is the i-th-generation

right-handed down-squark mass eigenstate (coinciding with the interaction eigenstate in the basis

with Y1 = D1).

In leading order, the soft mass matrix for the right-handed down squarks, m2
d̃
, keeps its diagonal

form but the third generation gets significant corrections from the large top Yukawa coupling, which

are parametrized by the real parameter ∆d̃,

m
2
d̃
(MZ) = diag

(
m2

d̃
, m2

d̃
, m2

d̃
−∆d̃

)
. (20)

Here and in the following, the small Yukawa couplings of the first two generations are set to zero in

the renormalization group equations. Now choosing the super-CKM basis5 where the down quarks

are mass eigenstates, this matrix is no longer diagonal,

m
2
D = UDm

2
d̃
U †
D =




m2

d̃
0 0

0 m2
d̃
− 1

2∆d̃ −1
2∆d̃e

iξ

0 −1
2∆d̃e

−iξ m2
d̃
− 1

2∆d̃



 , ξ ≡ a5 − a4, (21)

allowing flavor-changing quark-squark-gluino and quark-squark-neutralino vertices (Fig. 1). Simi-

larly, we get for the sleptons m2
L = UDm

2
l̃
U †
D. The CP phase6 ξ is of utmost importance for the

phenomenology of b → s transitions. It is worthwhile to compare the situation at hand with the

usual MSSM with generic flavor structure: In the latter model all off-diagonal elements of the

squark mass matrices are ad-hoc complex parameters, constrained only by the hermiticity of the

squark mass matrices. In the CMM model, the phase factor eiξ originates from the Yukawa matrix

Y2 in Eq. (12) and enters Eq. (21) through a rotation of right-handed superfields.

Similarly, relation (18b) holds at the Planck scale. Running the MSSM trilinear terms Ad and

Ae down to the electroweak scale, off-diagonal entries appear in the super-CKM basis due to the

large mixing matrix UD. These entries yield additional flavor violating effects. The running of the

parameters in the various regions will be discussed in the following section. In our notation, we

denote trilinear breaking terms that are defined in the super-CKM basis by a hat (e.g. Âd).

Let us finally discuss two important aspects of the analysis which originate from the model’s

group structure. One, when the SU(5) singlet component of the spinorial Higgs field, 16H , acquires

5For the soft-terms and rotation matrices we will always use the convention of [40]
6In [38] the phase ξ corresponds to φBs

in absence of Yukawa corrections to the first two generations. Note

that in [38] a different convention for the soft terms of d̃c, ũc, ẽc is used: d̃cm2

d̃
d̃c

∗
and not d̃c

∗
m

2

d̃
d̃c such that

m
2

d̃
=

(
m

2

d̃

)∗
[38].

complex 
phase



Soft flavour violation
Vertices in the CMM model

l−i ν̃Lj

χ̃−
k

−i
(

e
sin θW

Z1i
+ PL + yl−i

Z2i
−

∗
PR

)

Uij

l−i l̃−Lj

χ̃0
k

i

(

[

e√
2cos θW

Z1k
N + e√

2sin θW
Z2k

N

]

PL+ yl−i
Z3k

N
∗
PR

)

Uij

dib d̃Rjc

g̃A
3

i
√

2g3T A
cb PR Uij

UD = U physical in sfermion sector. Expect contributions to FCNC pro-
cesses at one loop.

Hadronic versus leptonic flavor and CP violation in SUSY SO(10) – p.7/14

may be 
complex

large effects in b ➔s transitions, CP violation
correlations of hadronic & leptonic observables

2 ➔1 and 3 ➔1 transitions less clearly correlated
                               but see Trine et al 2009, Girrbach et al 2010



Phenomenology: RG evolution
• 2-loop RGE for gauge couplings and yt, analytic formulas 

for soft terms, matched at SUSY, SU(5) and SO(10) 
thresholds

• relate Planck-scale inputs to set of low-energy inputs:

at MZ

evolve to MGUT

evolve to M10

evolve to MPl

evolve all soft terms down to MZ, calculate spectrum & 
observables
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3.4 Supersymmetry Breaking Parameters

The soft masses and A-terms at the scaleMZ are fixed by the universal terms a0, m2
0, andD through

the renormalization group equations (RGE). Instead of guessing their values atMPl, we will consider

three parameters at MZ which are allowed by theoretical and experimental constraints. These are

the soft masses of the first generation of right-handed up and down squarks and the (11)-element

of the trilinear coupling of the down squarks,

m2
ũ1
(MZ) , m2

d̃1
(MZ) , ad1(MZ) ≡

[
ad(MZ)

]

11
. (48)

We work in the weak basis with diagonal Y1 and the trilinear term ad1 is defined with the correspond-

ing Yukawa coupling factored out, in analogy to a0 in Eq. (18b). With these initial conditions we

can evolve the soft terms up to MGUT, where the MSSM fields are unified into the SU(5) multiplets

Φ and Ψ with

m2
Ψ̃1

(tGUT) = m2
ũ1

(tGUT) , m2
Φ̃1

(tGUT) = m2
d̃1
(tGUT) . (49)

After running from MGUT to MSO(10) we can calculate D by means of Eqs. (22),

D =
1

4

[
m2

Ψ̃1

(
tSO(10)

)
−m2

Φ̃1

(
tSO(10)

)]
, (50)

and determine

m2
1̃61

(
tSO(10)

)
=

1

4

[
3m2

Ψ̃1

(
tSO(10)

)
+m2

Φ̃1

(
tSO(10)

)]
. (51)

Then the universal scalar soft mass at the Planck scale is found:

m2
0 = m2

1̃61
(tPl) (52)

The determination of the universal gaugino mass mg̃ is much simpler: At leading order the ratio

κ ≡ mg̃i(t)/α̃i(t) is RG invariant, independent of i and equal to its SU(5) and SO(10) GUT values,

κ = mg̃(t)/α̃(t) [47]. We determine κ from the gluino mass and the QCD coupling:

mg̃i(t) = κ α̃i(t) , (53)

where

κ ≡
mg̃3(MZ)

α̃3(MZ)
. (54)

The RGE needed to determine the Planck scale parameters are

MSSM:
d

dt
ad1 = −

(
32

3
α̃2
3 + 6α̃2

2 +
14

15
α̃2
1

)
κ

SU(5):
d

dt
ad1 = −

168

5
α̃2κ

SO(10):
d

dt
ad1 = −95α̃2κ ⇒ a0 = aD1 (tPlanck) (55)
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where

κ ≡
mg̃3(MZ)

α̃3(MZ)
. (54)

The RGE needed to determine the Planck scale parameters are

MSSM:
d

dt
ad1 = −

(
32

3
α̃2
3 + 6α̃2

2 +
14

15
α̃2
1

)
κ

SU(5):
d

dt
ad1 = −

168

5
α̃2κ

SO(10):
d

dt
ad1 = −95α̃2κ ⇒ a0 = aD1 (tPlanck) (55)
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The soft masses and A-terms at the scaleMZ are fixed by the universal terms a0, m2
0, andD through

the renormalization group equations (RGE). Instead of guessing their values atMPl, we will consider

three parameters at MZ which are allowed by theoretical and experimental constraints. These are

the soft masses of the first generation of right-handed up and down squarks and the (11)-element

of the trilinear coupling of the down squarks,

m2
ũ1
(MZ) , m2

d̃1
(MZ) , ad1(MZ) ≡

[
ad(MZ)

]

11
. (48)

We work in the weak basis with diagonal Y1 and the trilinear term ad1 is defined with the correspond-

ing Yukawa coupling factored out, in analogy to a0 in Eq. (18b). With these initial conditions we

can evolve the soft terms up to MGUT, where the MSSM fields are unified into the SU(5) multiplets

Φ and Ψ with

m2
Ψ̃1

(tGUT) = m2
ũ1

(tGUT) , m2
Φ̃1

(tGUT) = m2
d̃1
(tGUT) . (49)

After running from MGUT to MSO(10) we can calculate D by means of Eqs. (22),

D =
1

4

[
m2

Ψ̃1

(
tSO(10)

)
−m2

Φ̃1

(
tSO(10)

)]
, (50)

and determine

m2
1̃61

(
tSO(10)

)
=

1

4

[
3m2

Ψ̃1

(
tSO(10)

)
+m2

Φ̃1

(
tSO(10)

)]
. (51)
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0 = m2

1̃61
(tPl) (52)
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similarly for a1d
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d

dt
m2

d̃1
= −

32

3
κ2α̃3

3 −
8

15
κ2α̃3

1 +
2

5

SGUT

α̃GUT
α̃2
1

+4|ỹb|2|(UD)31|2
[
m2

d̃1
+m2

q̃3 +m2
Hd

]
+ 4(U †

D
ˆ̃
A
†
d
ˆ̃
AdUD)11 ,

d

dt
m2

d̃3
= −

32

3
κ2α̃3

3 −
8

15
κ2α̃3

1 +
2

5

SGUT

α̃GUT
α̃2
1

+4|ỹb|2|(UD)33|2
[
m2

d̃3
+m2

q̃3 +m2
Hd

]
+ 4(U †

D
ˆ̃
A
†
d
ˆ̃
AdUD)33 ,

d

dt
m2

l̃1
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 −
3

5

SGUT

α̃GUT
α̃2
1

+2|ỹτ |2|U31|2
[
m2

l̃1
+m2

Hd
+m2

l̃3

]
+ 2(U † ˆ̃

Ae
ˆ̃
A
†
eU)11 ,

d

dt
m2

l̃3
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 −
3

5

SGUT

α̃GUT
α̃2
1

2|ỹτ |2|U33|2
[
2m2

l̃3
+m2

Hd

]
+ 2(U † ˆ̃

Ae
ˆ̃
A
†
eU)33 ,

d

dt
m2

ẽ1 = −
24

5
κ2α̃3

1 +
6

5

SGUT

α̃GUT
α̃2
1 ,

d

dt
m2

ẽ3 = −
24

5
κ2α̃3

1 +
6

5

SGUT

α̃GUT
α̃2
1

+4|ỹτ |2
[
m2

ẽ3 +m2
Hd

+ (Um2
l̃
U †)33

]
+ 4(|(ˆ̃Ae)23|2 + |Ãτ |2) ,

d

dt
m2

Hu
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 +
3

5

SGUT

α̃GUT
α̃2
1

+6|ỹt|2
[
m2

Hu
+m2

q̃3 +m2
ũ3

]
+ 6|Ãt|2+ ,

d

dt
m2

Hd
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 −
3

5

SGUT

α̃GUT
α̃2
1

+6|ỹb|2
[
m2

Hd
+m2

q̃3 + (UDm
2
d̃
U †
D)33

]
+ 2|ỹτ |2

[
m2

Hd
+m2

l̃3
+ (Um2

l̃
U †)33

]

+6(|Ãb|2 + |(ˆ̃Ad)32|2) + 2(|Ãτ |2 + |(ˆ̃Ae)23|2) . (66)

3.7 Parameters at MGUT

The philosophy of the CMM model is somewhat different from that of the CMSSM. Although both

need only a few input parameters and are in a sense minimal flavor violating, the CMSSM assumes

flavor universality at the GUT scale with quark and lepton flavor structures being unrelated. By

contrast, the CMM model invokes universality (see Eq. (18)) at a more natural scale, namely MPl.

All flavor violation stems from an non-renormalizable term related to Yd due to the assumption

that the Majorana mass matrix and the up Yukawa coupling are simultaneously diagonalizable.

Furthermore, the CMM model is minimal in the sense that it is only constructed with Higgs

representations that are needed for symmetry breaking anyway.

Contrary to the CMSSM, at the GUT scale universality is already broken in the CMM model

due to the runningMPl → MSO(10) → MGUT. We illustrate the difference with the input parameters

Mq̃ = 1500 GeV, mg̃3 = 500 GeV, ad1(MZ)/Mq̃ = 1.5, arg(µ) = 0 and tanβ = 6. With our running

22

procedure the universal parameters at the Planck scale have the values:

a0 = 1273 GeV, m0 = 1430 GeV, mg̃ = 184 GeV. (67)

Using the super-CKM basis (as denoted by the hat) for the trilinear terms and the up basis for

masses, we already arrive at the following non-universal parameters at the GUT scale:

ˆ̃
Au(MGUT) =




0 0 0

0 0 0

0 0 46



 GeV, ˆ̃
Ad(MGUT) =




0 0 0

0 0 0

0 0.3 −3.5



 GeV, (68a)

ˆ̃
Aν(MGUT) =




0 0 0

0 0 0

−0.0013 0.0023 43.4



 GeV, (68b)

mΦ̃(MGUT) = diag (1426, 1426, 1074) GeV, (68c)

mΨ̃(MGUT) = diag (1444, 1444, 1077) GeV, (68d)

mÑ (MGUT) = diag (1459, 1459, 1078) GeV, (68e)

mHu(MGUT) = 1126 GeV, mHd(MGUT) = 1446 GeV, (68f)

mg̃(MGUT) = 211 GeV. (68g)

With ỹt(MGUT) = 0.046 and ỹb(MGUT) = −0.0026 we can now no longer write A = a0Y, especially

Ad has already developed an off-diagonal entry inducing s̃R → b̃L-transitions. Moreover, the third

generation masses already separate significantly from those of the first two generations at the GUT

scale.

The idea of universal soft breaking terms at MPl and flavor-violation from yt-driven RG running

above MGUT has been studied by many authors, both in SU(5) and SO(10) scenarios [10,12–14,18,

22, 51–54]. A detailed comparison of our results with the literature will be given in Sec. 6.

4 Observables

In this Section, we briefly summarize the observables that are used to constrain the CMM model

parameter space.

4.1 Bs − Bs Mixing

Bs−Bs oscillations are governed by the Schrödinger equation

i
d

dt

(
|Bs(t)〉∣∣B̄s(t)

〉
)

=

(
M

s −
i

2
Γ
s

)(
|Bs(t)〉∣∣B̄s(t)

〉
)

(69)

with the mass matrix Ms and the decay matrix Γs. The physical eigenstates |BH,L〉 with the masses

MH,L and the decay rates ΓH,L are obtained by diagonalizing Ms− iΓs/2. The physical observables
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Figure 3: Relative mass splitting ∆rel
d̃

= 1 −m2
d̃3
/m2

d̃2
among the bilinear soft terms for the right-

handed squarks of the second and third generations with tanβ = 3 (left) and 6 (right) in the

Mq̃(MZ)− ad1(MZ)/Mq̃(MZ) plane for mg̃3 = 500 GeV and sgn(µ) = +1.

Sparticle spectrum and FCNC observables for a specific parameter point

Exemplarily, we present the output for one CMM model parameter point. We choose the same

inputs as in Sec. 3.7 where the parameters at the GUT scale have been discussed:

Mq̃ = 1500 GeV, mg̃3 = 500 GeV, ad1/Mq̃ = 1.5, arg(µ) = 0, tanβ = 6. (130)

The sparticle spectrum at the electroweak scale is given as (mass eigenvalues):

mg̃1 = 83 GeV, mg̃2 = 165 GeV, (131)

mχ̃0
i
= (640, 632, 159, 81) GeV (132)

mχ̃±
i
= (640, 159) GeV (133)

Ml̃i
= (1427, 1427, 1074, 1462, 1462, 1095) GeV (134)

Mũi = (1519, 1519, 934, 1501, 1501, 485) GeV (135)

Md̃i
= (1519, 1519, 908, 1498, 1498, 1164) GeV. (136)

The lightest neutralino is identified as the LSP (underlined number). The first three entries in Mf̃i
,

f̃ = l̃, ũ, d̃ correspond to sfermions with a larger left-handed component and the last three with a

larger right-handed component, where the third generation masses are printed in bold face. The

typical mass splitting is quite evident. The mixing angle between the two stop eigenstates with

485 GeV and 934 GeV is θt̃ = 11◦ and left-right mixing in the down sector is negligible, owing

to the small value of tanβ. While M2
d̃4

= M2
d̃5

= m2
d̃1

= m2
d̃2
, the flavor composition of the two

LSP

MSSM RGE

upward 
evolution
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f̃ = l̃, ũ, d̃ correspond to sfermions with a larger left-handed component and the last three with a

larger right-handed component, where the third generation masses are printed in bold face. The

typical mass splitting is quite evident. The mixing angle between the two stop eigenstates with

485 GeV and 934 GeV is θt̃ = 11◦ and left-right mixing in the down sector is negligible, owing

to the small value of tanβ. While M2
d̃4

= M2
d̃5

= m2
d̃1

= m2
d̃2
, the flavor composition of the two



• kkkkkk

5 Results 35

3.15

3.15

3.15
3.3

3.55
0.7

1.5

2.7

4.5

3
3

500 1000 1500 2000 2500 3000 3500
!2

!1

0

1

2

3

ad
1

Mq̃

Mq̃[GeV]

mg̃3
= 500 GeV, sgn(µ) = +1, tan β = 3

3

3.15

3.3
3.55

3.8
0.71.5

2.7
4.5

2.76

500 1000 1500 2000 2500 3000 3500
!2

!1

0

1

2

3

ad
1

Mq̃

Mq̃[GeV]

mg̃3
= 500 GeV, sgn(µ) = +1, tan β = 6

Figure 4: Correlation of FCNC processes as a function of Mq̃(MZ) and ad
1(MZ)/Mq̃(MZ) for

mg̃3
(MZ) = 500 GeV and sgn µ = +1 with tan β = 3 (left) and tan β = 6 (right). B(b → sγ)[10−4]

solid lines with white labels; B(τ → µγ)[10−8] dashed lines with gray labels. Black region: m2
f̃

< 0

or unstable |0〉; dark blue region: excluded due to Bs − Bs; medium blue region: consistent with

Bs − Bs but excluded due to b → sγ; light blue region: consistent with Bs − Bs and b → sγ but

inconsistent with τ → µγ; green region: compatible with all three FCNC constraints.

What is really challenging for the CMM model is an observable not directly related to flavor

physics: the mass of the lightest neutral, CP-even Higgs boson. As already mentioned at the end

of Sec. 4, in order to make the corrections to the tree level Higgs mass large enough, the sfermions

of the third generation should not be too light because they enter together with the top mass

logarithmically in the radiative corrections (see Eq. (122)). This is triggered by the choice of tan β.

In Fig. 5 one can see the same parameter space as in Fig. 4 but with the predicted mass of the

lightest Higgs boson mass added (solid line with white labels). On the left hand side for tanβ = 3

the whole green region is excluded due to Mh0 < 114.4 GeV. For negative µ the mass even tends

to smaller values. Only for rather heavy masses, e.g. mg̃3
= 2500 GeV and Mq̃ ! 6500 GeV the

experimental bound can be satisfied. However, in this region of parameter space the constraints

from flavor violating processes become irrelevant. On the right hand side of Fig. 5 for tan β = 6 the

situation changes such than even for light gluino masses there exist allowed regions in the CMM

parameter space. Thus, we can summarize this correlation between flavor violation and Higgs mass

in the CMM-model:

small tan β ⇔ large flavor effects ⇔ (too) light h0

larger tan β ⇔ smaller flavor effects ⇔ sufficiently heavy h0

In light of the recent result from DØ of the like-sign dimuon charge asymmetry and the measured

CP violation in Bs → J/ψφ, it is worth studying how large the CP phase φs can actually be in
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Figure 5: Same as in Fig. 4, but without labels and lines for b → sγ and τ → µγ. We show the

lightest Higgs mass in GeV (solid line with white labels) and the phase φs in degrees (gray labels)

for tan β = 3 (left) and 6 (right). φs depends on the CP phase ξ of the model; the values quoted in

the gray labels are the values of φs with maximal possible |φs|.

the CMM model. It is related to the free phase ξ defined in Eq. (21) which occurs in the Wilson

coefficient (see Eq. (77)) of the Bs −Bs system. In Fig. 5 we also compute the maximal (negative)

phase φs in the CMM model under the condition that ∆Ms lies within its 3σ-range and the hadronic

matrix element within its error bar.

From Fig. 4 we see that τ → µγ alone puts a lower bound on Mq̃, so that the squark masses of

the first two generations lie essentially above 1 TeV. One also realizes that the bound on B(τ → µγ)

is more constraining than the measured value of B(b → sγ). Fig. 3 shows that the dominantly right-

handed sbottom is about half as heavy as the down-type squarks of the first two generations. The

sample parameter point discussed in Eqs. (130–136) further shows that we can expect a dominantly

right-handed stop with mass around 500 GeV. The sleptons are heavy and seemingly out of the

discovery range of the LHC. On the other hand, the light gaugino-like chargino and neutralinos

should permit nice signatures in the “golden” trilepton search channels. Fig. 5 reveals that the

lower bound on the lightest neutral Higgs boson mass excludes the whole plotted region if tan β = 3.

In the tan β = 6 case this bound has a much milder effect, essentially leading to a preference of the

upper half of the plotted region, where ad
1 > 0. Remarkably, almost all of the allowed region permits

large effects in Bs−Bs mixing, with CP phases well in the range needed to explain the Tevatron

data and quoted in Eq. (87). That is, Bs−Bs mixing is much more sensitive to the new physics

effects than the rare decays entering our analysis. The light gauginos are, of course, a consequence

of our choice of Mg̃ = 500GeV in our numerical studies. We may ask how the patterns of Figs. 3–5

change, if Mg̃ is increased. In particular, one might expect that that the FCNC constraints become

max possible Bs mixing 
phase (degrees)

higgs mass     

excludes whole green region 
at tanβ = 3

higgs mass bound can be satisfied 
for tanβ = 6 (or greater)



A very brief history of flavour
1934   Fermi proposes Hamiltonian for beta decay

1956-57   Lee&Yang propose parity violation to explain “θ-τ
           paradox”.
           Wu et al show parity is violated in β decay
           Goldhaber et al show that the neutrinos produced in
           152Eu K-capture always have negative helicity

1957   Gell-Mann & Feynman, Marshak & Sudarshan

            V-A current-current structure of weak interactions.
            Conservation of vector current proposed
            Experiments give G = 0.96 GF (for the vector parts)

HW = −GF (p̄γµn)(ēγµν)

−G(p̄γµPLn)(ēγµPLνe) + . . .HW = −GF (ν̄µγµPLµ)(ēγµPLνe)



1960-63  To achieve a universal coupling, Gell-Mann&Levy
          and Cabibbo propose that a certain superposition of
          neutron and Λ particle enters the weak current.
          Flavour physics begins!

1964  Gell-Mann gives hadronic weak current
          in the quark model

1964  CP violation discovered in Kaon decays (Cronin&Fitch)

1960-1968 Jµ part of triplet of weak gauge
         currents. Neutral current interactions
         predicted and, later, observed at CERN.

However, the predicted flavour-changing
neutral current (FCNC) processes
such as KL ➔µ+µ- are not observed!

HW = −GF J
µ
J
†
µ

Jµ = ūγµPL(cos θcd + sin θcs) + ν̄eγ
µPLe + ν̄µγµPLµ

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6

d u

e ν

GF =
g2

4
√

2M2

W

4 S. Jäger: Supersymmetry beyond minimal flavour violation

uLi

dLj

W± i Vij g γµPL

uLi

d̃Lj

w̃+ i Vij

√
2g PR

ũLi

dLj

w̃− i Vij

√
2g PL

ui

dj

H± i Vij (cosβ yujPL+sinβ ydjPR)

uLi

d̃Rj

h̃+ i Vij sinβ ydjPR

ũRi

dLj

h̃− i Vij cosβ yuiPL

Fig. 1. Flavour-changing vertices involving fermions in the
super-CKM basis.

for small to moderate (< 30) values of tanβ but can give
rise to a distinctive pattern at larger values even for mini-
mal flavour violation. We will not discuss these effects; for
a recent review see [20]. Most of the constraints discussed
below still apply in that case, but there may be stronger
ones.

2.2 Origin of (new) flavour violation: supersymmetry
breaking

The superpotential (1) does not break supersymmetry spon-
taneously at tree level. Because of supersymmetric non-
renormalization theorems [21,22,23], this remains true to
all orders in perturbation theory. Neither is electroweak
symmetry broken, at any order.

Observations exclude the presence of mass-degenerate
superpartners for many of the SM particles, which tells
us that supersymmetry is broken. The standard picture
is that supersymmetry breaking occurs in a hidden sector
of SM gauge singlets, via the condensation of an auxiliary
(F or D) component of one or more superfields X . Gauge
symmetry then requires any superpotential couplings be-
tween the visible and hidden sectors to be nonrenormaliz-
able.5 In many cases of interest, all low-energy effects of
supersymmetry breaking can be represented by such effec-
tive nonrenormalizable superpotential, gauge-kinetic, and
Kähler terms, as in

Wbreak = AU
ij
〈X〉
M

UC
i Hu · Qj, (13)

fbreak = Ma
〈X〉
M

WA
a WA

a , (14)

and

Kbreak = KQ
ij

〈XX†〉
M2

Q†
ie

2gaVaQj . (15)

Here AU
ij , Ma, and KQ

ij are dimensionless coefficients. 〈X〉 =

θ2FX is the vacuum expectation value of a hidden-sector
superfield, and the SUSY-breaking terms in the Lagrangian
are found by replacing K → K + Kbreak and W → W +
Wbreak + fbreak in (2). This can be illustrated as follows.
The MSSM, by assumption, does not have any direct renor-
malizable couplings to the hidden sector. Assume then
that the lightest “messenger”, i.e., degree of freedom that
couples both to the field X and to the MSSM fields, has
mass M . Below its mass scale, it can be integrated out of
the theory, giving rise to operators as in (13)–(15). This is
what happens, for example, in models of gauge mediation
(see below).

The term Wbreak from above gives rise to an extra
contribution

∆LA = T U
ij q̃i · huũc

j + h.c.,

T U
ij =

FX

M
AU

ij (16)

5 The one exception is a possible coupling Hu ·HdX, without
imposing further global symmetries.
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1970  To explain the absence of KL ➔µ+µ- , Glashow,
          Iliopoulos & Maiani (GIM) couple a “charmed quark”
          to the formerly “sterile” linear combination
        
          The doublet structure eliminates the Zsd coupling!

1971  Weak interactions are renormalizable (‘t Hooft)

1972  Kobayashi & Maskawa show that CP violation requires
          extra particles, for example a third doublet. CKM matrix

1974  Gaillard & Lee estimate loop
          contributions to the KL-KS mass
          difference
          Bound mc < 5 GeV

1974  Charm quark discovered

− sin θcdL + cos θcsL

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

d

s̄ d̄

s

c

c



1977  τ lepton and bottom quark discovered 

1983  W and Z bosons produced

1987  ARGUS measures Bd - Bd mass difference
         First indication of a heavy top

        The diagram depends quadratically on mt

1995 top quark discovered at CDF & D0

2012-                        SUSY, new strong interactions,
                                 extra dimensions, ...

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

d

b

b̄

d̄
t

t

Standard Model
All matter is composed of twelve “flavors” of spin-1/2 fermion,
including three neutrinos, each with different mass.

(
uL

dL

)
uR

dR

(
cL

sL

)
cR

sR

(
tL
bL

)
tR
bR

Q = +2/3
Q = −1/3(

νeL

eL

) −
eR

(
νµL

µL

) −
µR

(
ντ L

τL

) −
τR

Q = 0
Q = −1

Almost all interaction is due to gauge forces. Colored fermions feel
the strong interactions due to the gluon field Gµ. They and the
charged leptons also interact with the electromagnetic field Aµ.

Weak interactions, due to W+ and Z0 boson exchange, are chiral:

W+

dL uL

but not
dR uR

W+

What B-mesons tell us about the Standard Model and “New Physics” – p.3

?



Summary: what can we learn?
• The case for flavour is strong (if there is anything at TeV or 

not too far above).

• For hadronic decays at LHCb, strong QCD dynamics is the 
main theory obstacle, but less so in some observables than 
in others

• observables not depending on strong phases preferred 
[calculable phases O(as) ~ incalculable ones O(L/mb)]

• feedback from experiment important (to fit/constrain 
some amplitudes, develop theory). Look at sine 
coefficients, TP’s, and of course CP-conserving data - 
specifically “wrong polarisations” can probe RH currents

• Illustrated the power to probe fundamental scales within a 
SUSY GUT model



BACKUP



“msugra GUTs”

H

f

(a)

S

H

(b)

Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

3

1̃63

1̃0H

y
2

t

m
2

1̃63
= m

2
0 − ∆

m
2

1̃61

≈ m
2

1̃62

= m
2
0 + δ1̃63
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The sixth phase (the ‘standard’ phase δ) drops out due to θ13 = 0◦. In Eq. (14), we choose a

parametrization, where the phases could be absorbed via the phase matrices

ΘL = diag(e−ia1 , e−ia4 , e−ia5), ΘR = diag(1, ei(a1−a2), ei(a1−a3)), UD = ΘLU
∗
PMNSΘR. (15)

acting on the fields on the left and right, respectively. However, we only have this freedom for

either Vq or UD. We choose Vq ≡ VCKM to be in its standard parametrization, so UD will have the

structure indicated in Eq. (14). These phases are important constituents of our observables (see

Section 4). If we restrict to transitions between the second and third generation as in Bs−Bsmixing

then only one phase (difference) enters the observables. Then we can write4

UD = diag(1, eiξ, 1)U∗
PMNS, ξ = a5 − a4. (16)

Let us now add the supersymmetry breaking terms,

Lsoft = −1̃6
∗
i m

2 ij

1̃6
1̃6j −m2

10H 10∗H10H −m2
10′H

10∗H′10H′

−m2
16H

16∗H16H −m2
16H16

∗
H16H −m2

45H 45∗H45H

−
(
1

2
1̃6i A

ij
1 1̃6j 10H + 1̃6i A

ij
2 1̃6j

45H 10H′

2MPl
+ 1̃6i A

ij
N 1̃6j

16H16H
2MPl

+ h.c.

)
, (17)

where m are the soft scalar mass matrices and Ai the (dimensionful) coefficients of the scalar trilinear

couplings. In addition, there are B-terms for the Higgs fields as well as gaugino mass terms. As

discussed above, we assume universal parameters at MPl,

m
2
1̃6i

= m2
0 , m2

10H = m2
10′H

= m2
16H = m2

16H
= m2

45H = m2
0 , (18a)

A1 = a0 Y1 , A2 = a0 Y2 , AN = a0 YN , (18b)

as well as one universal gaugino mass, mg̃. Thus at MPl, the soft masses are diagonal in any flavor

basis. At lower energies, this universality is broken. In particular, it is broken at MGUT, which

leads to a different phenomenology than the CMSSM [16] or mSUGRA [17]. The renormalization

group evolution is conveniently performed in a flavor basis in which the up-type Yukawa couplings

are diagonal (up basis).

For completeness we also give the soft breaking terms for the CMM model in terms of SU(5)

fields:

Lsoft = −Ψ̃∗
i m

2 ij

Ψ̃
Ψ̃j − Φ̃∗

i m
2 ij

Φ̃
Φ̃j −

[
1

2
Ñim

2 ij

Ñ
Ñj + h.c.

]

−m2
H H∗H −m2

H′ H ′∗H ′ −m2
24H 24∗H24H

−
[(

1

4
Ψ̃%

A1 Ψ̃+ Ñ%
AνΦ̃

)
H +

√
2Ψ̃%

A2 Φ̃H ′ +
MN

2
Ñ%

AN Ñ + h.c.

]
. (19)

The fields Ψi, Φi, Ni, H and H ′ live in the representations 10, 5, 1, 5 and 5 of SU(5), respectively.

4The corrections to the diagonalization matrix of the right-handed down quarks, UD, are studied in [38].

[Hall, Kostelecky, Raby 86;  Barbieri, Hall, Strumia 95]
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4The corrections to the diagonalization matrix of the right-handed down quarks, UD, are studied in [38].

Assume that SUSY breaking is flavour blind and universal (like 
msugra) at or near the Planck scale

radiative corrections lead to a nonuniversal sfermion mass matrix 
at the GUT scale, diagonal in the U-basis



Higgs mass constraint
• like in mSUGRA, the weak scale gives one relation between 

µ and the soft SUSY breaking parameters

• like always in the MSSM, the Higgs
‘likes’ to be light tree level

(very) small values of tanβ
disfavoured

• one & two loops

• larger tanβ reduces yt and size of flavour effects

• could be relaxed by allowing the Higgs multiplets to have 
different Planck-scale masses from the sfermions (similarly 
to the ‘non-universal Higgs model’ (NUHM))

2 3 4 5 6
0

20

40

60

80

100

mH

tanβ

30

where in the convention of [40] Z+ and Z− are the chargino mixing matrices, ZN is the neutralino

mixing matrix, ZL is the lepton mixing matrix, Zν = UD is the sneutrino mixing matrix and

xJi =
m2

ν̃J

m2
χ+
i

, yJi =
m2

l̃J

m2
χ0
i

. (119)

The loop functions are given by:

H1(x) =
1− 6x+ 3x2 + 2x3 − 6x2 lnx

12(x− 1)4

H2(x) =
−1 + 4x− 3x2 + 2x2 lnx

2(x− 1)3

H3(x) =
−2− 3x+ 6x2 − x3 − 6x lnx

12(x− 1)4

H4(x) =
1− x2 + 2x lnx

2(1− x)3

(120)

Neglecting left-right mixing in the slepton sector, the rotation matrix is given as

ZL =

(
U∗
D 0

0 V #
CKM

)

. (121)

From this we can read off that in the neutralino contribution the two terms proportional to

Z2J∗
L Z3J

L ≈ U2J
D U3J∗

D dominates whereas the terms ∝ Z2J∗
L Z6J

L need LR-mixing.

4.4 The neutral Higgs mass

Another observable that is quite restrictive for the CMM model is the mass of the lightest neutral,

CP-even Higgs boson of the MSSM. At tree level its mass is bounded from above by the Z boson

mass. However, radiative corrections shift the mass to higher values. An approximate formula at

O(ααs) is given by [67]

M2
h = M2,tree

h +
3

2

GF

√
2 m4

t

π2

{

− ln

(
m2

t

M2
S

)
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S
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|Xt|2

12M2
S

)}

− 3
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√
2αsm4

t

π3

{

ln2
(
m2

t

M2
S

)
+

[
2

3
− 2

|Xt|2

M2
S

(

1−
|Xt|2

12M2
S

)]

ln

(
m2

t

M2
S

)}

, (122)

where

Xt = −
At

yt
−

µ∗

tanβ
, (123)

mt = 165± 2 GeV is the MS mass of the top quark and

M2
S =

√
m2

q̃3
m2

ũ3
. (124)
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12(x− 1)4

H2(x) =
−1 + 4x− 3x2 + 2x2 lnx

2(x− 1)3

H3(x) =
−2− 3x+ 6x2 − x3 − 6x lnx

12(x− 1)4

H4(x) =
1− x2 + 2x lnx

2(1− x)3

(120)

Neglecting left-right mixing in the slepton sector, the rotation matrix is given as

ZL =

(
U∗
D 0

0 V #
CKM

)

. (121)

From this we can read off that in the neutralino contribution the two terms proportional to

Z2J∗
L Z3J

L ≈ U2J
D U3J∗

D dominates whereas the terms ∝ Z2J∗
L Z6J

L need LR-mixing.

4.4 The neutral Higgs mass

Another observable that is quite restrictive for the CMM model is the mass of the lightest neutral,

CP-even Higgs boson of the MSSM. At tree level its mass is bounded from above by the Z boson

mass. However, radiative corrections shift the mass to higher values. An approximate formula at

O(ααs) is given by [67]

M2
h = M2,tree

h +
3

2

GF

√
2 m4

t

π2

{

− ln

(
m2

t

M2
S

)
+

|Xt|2

M2
S

(

1−
|Xt|2

12M2
S

)}

− 3
GF

√
2αsm4

t

π3

{

ln2
(
m2

t

M2
S

)
+

[
2

3
− 2

|Xt|2

M2
S

(

1−
|Xt|2

12M2
S

)]

ln

(
m2

t

M2
S

)}

, (122)

where

Xt = −
At

yt
−

µ∗

tanβ
, (123)

mt = 165± 2 GeV is the MS mass of the top quark and

M2
S =

√
m2

q̃3
m2

ũ3
. (124)
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LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND
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):
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suppr. by small QCD-peng. Wilson coeff. or CKM λ̂u

q = c start @ q2 ∼ (MJ/ψ)2 ≈ 9.6 GeV
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, (Mψ�)2 ≈ 13.6 GeV
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⇒ usually A[B → P + �̄�]SD−FCNC = “non-resonant part”
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Form factor                  
(lattice, QCD sum rules)

q = charm / u / d / s
not calculable in terms of form factors[Fig C Bobeth]



Long-distance effects
• no known way to treat charm resonance region to 

the necessary precision (would need << 1% to 
see short-distance contribution) 
“solution”: cut out 6 GeV2 < q2 < 14 GeV2

above (high-q2) charm loops calculable in OPE
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at low q2 , long-distance charm effects also suppressed, but photon can 
now be emitted from spectator withouth power suppression

Figure 1: Leading contributions to 〈γ∗K̄∗|Heff |B̄〉. The circled cross marks
the possible insertions of the virtual photon line.

with αs ≡ αs(µ). The sign convention for O7,8 corresponds to a negative C7,8 and
+igsTA, +igemef for the ordinary quark–gauge-boson vertex (ef = −1 for the lepton
fields). We will present our result in terms of “barred” coefficients C̄i (for i = 1, . . . , 6),
defined as certain linear combinations of the Ci as described in Appendix A. The linear
combinations are chosen such that the C̄i coincide at leading logarithmic order with the
Wilson coefficients in the standard basis [7].

As for form factors and non-leptonic two-body decays there exist two distinct classes
of non-factorizable effects. (By “non-factorizable” we mean all those corrections that are
not contained in the definition of the QCD form factors for heavy-to-light transitions.
For example, the familiar leading-order diagrams shown in (a) and (b) of Figure 1 are
factorizable.) The first class involves diagrams in which the spectator quark in the B
meson participates in the hard scattering. This effect occurs at leading order in an
expansion in the strong coupling constant only through a weak annihilation diagram
[Figure 1c]. The relevant diagrams at next-to-leading order are shown as (a) and (b) in
Figure 2 below and in Figure 3. They contribute at order α0,1

s to the functions Ta in
(1). Diagrams of this form have already been considered (for q2 = 0) in [8]. However,
bound state model wave-functions (rather than light-cone distribution amplitudes) were
used and no attempt was made to systematically expand the hard scattering amplitude
in 1/mb. As a consequence, the result of [8] for B̄ → K∗γ depends on an infrared cut-off.
This difficulty is resolved in the present factorization approach. The second class contains
all diagrams shown in the second row of Figure 2 below. Here the spectator quark is
connected to the hard process represented by the diagram only through soft interactions.
The result is therefore proportional to the form factor ξa and the hard-scattering part
gives an αs-correction to the functions Ca in (1).

In this section we present the results of the calculation of these diagrams. Some of the
results needed for diagrams of the second class can be extracted from work on inclusive
radiative decays [9, 10] and we have made use of these results as indicated below. The
conventions for the form factors and light-cone distribution amplitudes for B mesons
and light mesons are those of [4].

2.1 Notation and leading-order result

Since the matrix elements of the semi-leptonic operators O9,10 can be expressed through
B → K∗ form factors, non-factorizable corrections contribute to the decay amplitude
only through the production of a virtual photon, which then decays into the lepton pair.

3

Figure 2: Non-factorizable contributions to 〈γ∗K̄∗|Heff |B̄〉. The circled cross
marks the possible insertions of the virtual photon line. Diagrams that follow
from (c) and (e) by symmetry are not shown. Upper line: hard spectator scat-
tering. Lower line: diagrams involving a B → K∗ form factor (the spectator
quark line is not drawn for these diagrams).

T (f)
⊥,−(u, ω) = T (f)

‖,−(u, ω) = 0 (22)

The non-factorizable correction is obtained by computing matrix elements of four-quark
operators and the chromomagnetic dipole operator represented by diagrams (a) and (b)
in Figure 2. The projection on the meson distribution amplitudes is straightforward. In
the result we keep only the leading term in the heavy quark limit, expanding the ampli-
tude in powers of the spectator quark momentum whenever this is permitted by power
counting. In practice this means keeping all terms that have one power of the spectator
quark momentum in the denominator. Such terms arise either from the gluon propagator
that connects to the spectator quark line or from the spectator quark propagator, when
the photon is emitted from the spectator quark line. We then find:

T (nf)
⊥, +(u, ω) = −

4ed C eff
8

u + ūq2/M2
B

+
MB

2mb

[

eut⊥(u, mc) (C̄2 + C̄4 − C̄6)

+ ed t⊥(u, mb) (C̄3 + C̄4 − C̄6 − 4mb/MB C̄5) + ed t⊥(u, 0) C̄3

]

(23)

T (nf)
⊥,−(u, ω) = 0 (24)

T (nf)
‖, + (u, ω) =

MB

mb

[

eut‖(u, mc) (C̄2 + C̄4 − C̄6) + ed t‖(u, mb) (C̄3 + C̄4 − C̄6)

+ ed t‖(u, 0) C̄3

]

(25)

T (nf)
‖,− (u, ω) = eq

MBω

MBω − q2 − iε

[

8 C eff
8

ū + uq2/M2
B

+
6MB

mb

(

h(ūM2
B + uq2, mc) (C̄2 + C̄4 + C̄6) + h(ūM2

B + uq2, mb) (C̄3 + C̄4 + C̄6)

7

possible photon 
attachments more significant for b ➔s transitions

small Wilson coefficients

long-distance “resonance” effects as in top figure (q=u,d,s) CKM and power suppressed

The results of this paper are restricted to the kinematic region in which the energy
of the final state meson scales with the heavy quark mass in the heavy quark limit.
In practice we identify this with the region below the charm pair production threshold
q2 < 4m2

c ≈ 7 GeV2. The various form factors appearing in (7)-(9) are then related by
symmetries [5, 4]. Adopting the notation of [4], (7)-(9) simplify to

T1(q
2) ≡ T⊥(q2) = ξ⊥(q2)

[

C eff
7 δ1 +

q2

2mbMB
Y (q2)

]

, (12)

T2(q
2) =

2E

MB
T⊥(q2), (13)

T3(q
2) −

MB

2E
T2(q

2) ≡ T‖(q
2) = −ξ‖(q

2)
[

C eff
7 δ2 +

MB

2mb
Y (q2) δ3

]

, (14)

where E = (M2
B − q2)/(2MB) refers to the energy of the final state meson and ξ⊥,‖ refer

to the form factors in the heavy quark and high energy limit. The factors δi are defined
such that δi = 1 + O(αs). The αs-corrections have been computed in [4] and will be
incorporated into the next-to-leading order results later on. The appearance of only
two independent structures is a consequence of the chiral weak interactions and helicity
conservation, and hence holds also after including next-to-leading order corrections [4,
12]. We therefore present our results in terms of the invariant amplitudes T⊥, ‖(q2), which
refer to the decay into a transversely and longitudinally polarized vector meson (virtual
photon), respectively. At next-to-leading order we represent these quantities in the form

Ta = ξa

(

C(0)
a +

αsCF

4π
C(1)

a

)

+
π2

Nc

fBfK∗, a

MB
Ξa

∑

±

∫ dω

ω
ΦB,±(ω)

∫ 1

0
du ΦK∗, a(u) Ta,±(u, ω), (15)

where CF = 4/3, Nc = 3, Ξ⊥ ≡ 1, Ξ‖ ≡ mK∗/E, and Ta,±(u, ω) is expanded as

Ta,±(u, ω) = T (0)
a,±(u, ω) +

αsCF

4π
T (1)

a,±(u, ω). (16)

fK∗, ‖ denotes the usual K∗ decay constant fK∗. fK∗,⊥ refers to the (scale-dependent)
transverse decay constant defined by the matrix element of the tensor current. The
leading-order coefficient C(0)

a follows by comparison with Eqs. (12) and (14) setting δi = 1.
To complete the leading-order result we have to compute the weak annihilation am-

plitude of Figure 1c, which has no analogue in the inclusive decay and generates the
hard-scattering term T (0)

a,±(u, ω) in (15). To compute this term we perform the projec-
tion of the amplitude on the B meson and K∗ meson distribution amplitude as explained
in [4]. The four diagrams in Figure 1c contribute at different powers in the 1/mb expan-
sion. It turns out that the leading contribution comes from the single diagram with the
photon emitted from the spectator quark in the B meson, because this allows the quark
propagator to be off-shell by an amount of order mbΛQCD, the off-shellness being of order
m2

b for the other three diagrams. With the convention that the K∗ meson momentum

5

light-cone wave functions

b

b

q

q

calculable


