COBRA Double Beta Decay

How to weigh neutrinos?

- Neutrino Oscillations
- Direct Beta Decay Endpoint
- Cosmology
- Double Beta Decay

Double Beta Decay: The Process

Allowed and observed

Forbidden – Interesting!

Neutrinos must be massive Majorana particles

Experimental Techniques

$$T_{1/2} \propto \varepsilon \frac{a}{A} \sqrt{\frac{M \times t}{\Delta E \times B}}$$

A. Nucciotti, IDM2004, Edinburgh

Improvements: HowTo's

$$T_{1/2} \propto \varepsilon \frac{a}{A} \sqrt{\frac{M \times t}{\Delta E \times B}}$$
 $\langle m_{\nu_e} \rangle \propto 1/\sqrt{T_{1/2}}$

$$\langle m_{\nu_e} \rangle \propto 1/\sqrt{T_{1/2}}$$

Current sensitivity for <m>: 200 – 500 meV

On the way to 100meV: Missing factor 2-5 gained by

- 16-625 fold increase in exposure (Mt) and/or
- 16-625 fold reduction of background, B

On the way to 10meV: Extrapolate existing experiments over 5-6 orders of magnitude !!!

Not at all hopeless, but a challenge!

HowTo 2

Energy resolution and $and \\ Irreducible background (2\nu\beta\beta)$

- Need good ΔE
- Need good ε
- Need high enrichment, a
- Measurement time t limited
- Background and Mass count most

Choose appropriate detector technology (ϵ , ΔE , a, t, cost for M) and work on B!

New UK Initiative: COBRA

(<u>Cadmium-Telluride 0-neutrino double-Beta Research Apparatus</u>)

- Room-temperature semiconductor CdZnTe
 - Simple infrastructure long-term operation
- 9 potential $0\nu\beta\beta$ -emitter isotopes $(0\nu\beta^{-}\beta^{-} \text{ AND } 0\nu\beta^{+}\beta^{+})$
- Good energy resolution, needs further work
- Small crystal size -> many readout channels
- Needs enrichment (90% in ¹¹⁶Cd exists)
- Crystals seem clean infrastructure background needs investigation
- Collaboration formed (Birmingham, Dortmund, Gran Sasso, Liverpool, Sussex, Warwick, York)
 + 2 year R&D phase approved (PPARC)

Meeting the Challenge

- Gain large factor in active mass (from 10kg go to 1 ton region):
 - Cost issue
 - Large number of readout channels background issue
- Gain large factor by background reduction:
 - Improve energy resolution
 - New methods of shielding (Warwick)
 - Develop low-background electronics (Warwick)
 - Semiconductor tracking detector (Pixel, Strips) ?

Inner Chamber 36x36x30 detectors

High energy (400 MeV) neutron event shower

Basic shield design

Improved versions exist already (Warwick MPhys project: F. Samsami, J. Morton) and will be tested in near future

Low background electronics: New project to be launched

Next 2 years: To-Do-List Warwick

- Low radioactivity light sensor to be developed
- Combine with liquid scintillator
- Low radioactivity electronics to be developed
- Optimising shield for costs and mechanical design

