# Professor Michael Allen

I am currently Chair of the Institute of Physics Liquids and Complex Fluids Group. I organised this year's Advanced School in Soft Condensed Matter *Solutions in the Spring* and was a co-organiser of the Conference on The Physics of Soft and Biological Matter.

I have been a member of the EPSRC Peer Review College for 20 years (1994-2000 as a member of the Physics College, 2000-2014 as a member of the consolidated College), but I have now resigned and am unavailable to referee proposals in the future. I am a frequent journal article referee for the American Physical Society (Physics Review, Physical Review Letters etc) and the Royal Society of Chemistry (Soft Matter, Physical Chemistry Chemical Physics).

I shall retire in September 2014, but will take up an Emeritus Professor position at Warwick.

#### Teaching Activities

In 2013/2014 I taught PX148 Classical Mechanics and Special Relativity (first-year undergraduate level), and NM1 Monte Carlo and molecular dynamics (a postgraduate module).

In 2011/2012 I was Chair of the Physics Department Teaching Committee. I have recently taught several modules in Physics, listed below, as well as supervising final year BSc and MPhys projects and holding tutorials for first- and second-year Maths-Physics students. I am an external examiner for Physics at the University of Bath, and was recently external examiner at the University of Leeds.

In the last few years, I have employed a new delivery method for my lectures using the Livescribe Pulse Pen, which records what I say and what I write, for later playback by students. The intention was to improve the student experience in mathematically-heavy modules (PX148 Classical Mechanics and Special Relativity, PX366 Statistical Physics and PX261 Mathematical Methods II), especially when they come to revise the material. Student feedback from all three modules has been very positive, and students have encouraged me to share my experiences with other lecturers. See my Blog for comments on how this went.

In previous years I have taught

- PX261 Mathematical Methods for Physicists II
- PX366 Statistical Physics
- PX428 MPhys Laboratory (simulation experiments)
- PX442 Laboratory for Maths-Physics Students (simulation experiments)

Inspired by my cheesy pun "How do you solve a problem like Fourier" in the Maths Methods module, two of our students, Benjamin T. Milnes and Angharad le Duc, have written the lyrics and performed this wonderful song on the subject!

#### Research Interests

My group carries out computer simulations of condensed matter systems at the molecular level, with most current activity focused on liquids and liquid crystals. The theme of the research is the understanding of the link between molecular structure and the properties of materials. Here is a videolecture taken at a conference in 2010 describing some of this work.

Computer simulations act as a bridge between experiment and theory. In order to understand complex fluid behaviour, we need an accurate theory; but the theoretical predictions also depend on how accurately we model the molecular interactions.

Computer simulation helps to test the theory independently of the precise molecular model, making the results more reliable and more generally applicable. We begin by feeding in details of the molecular interactions. The computer is then used to simulate a system of molecules: sometimes just a few hundred, sometimes as many as a million, to calculate bulk properties, structure, and dynamics at the microscopic level.

We use a wide range of simulation techniques, from straightforward solution of Newton's equations of motion, molecular dynamics, to more specialised statistical mechanical sampling methods, usually termed Monte Carlo. The process can be thought of as a kind of "virtual reality", familiar from computer games and the design of buildings, but on the molecular scale.

In a way, we are theoreticians performing particular kinds of experiments. The computer is our experimental apparatus. Some of these calculations can be performed on laboratory workstations, or even PCs. Others require the most powerful supercomputers in the country, in which hundreds of processors work on the problem in parallel. The group has been closely involved in the development of new computer programs to take advantage of these facilities in the most efficient way possible. The group interacts with many others around the University, especially in the Chemistry and Engineering departments.

#### Write to:

Department of Physics, University of Warwick, Coventry, CV4 7AL

#### Contact Details:

**Office:** PS1.40

**Telephone:**

44 (0)2476574415

**Fax:**

44 (0)2476573133

**E-Mail:**

m dot p dot allen at warwick dot ac dot uk

#### Links:

Simulation Group

Publication List

Mike's Blog

Teaching Committee

Library Matters

PX148

NM1