The neutrino oscillation industry

Solar Neutrinos

SuperK : Solar neutrino-gram

•Light from the solar core takes a million years to reach the surface

- Fusion processes generate electron neutrinos which take
 2s to leave
- Solar neutrinos are a direct probe of the solar core
- Roughly 4.0 x 10^{10} solar $v_e^{}$ per cm² per second on earth

Solar neutrino generation

Solar Neutrino Flux

As predicted by Bahcall's Solar model

The Solar Neutrino Problem -Homestake

10³⁶ atoms per second

Homestake sensitive to ⁸B and ⁷Be *electron neutrinos*

 $E_{v} > 800 \text{ keV}$

Observe 1/3 of the expected number of solar neutrinos

Something wrong with the experiment? the SSM? the neutrinos?

(Super)Kamiokande

1987 – Kamiokande : 1000 phototubes, 5000 tons of water 1997 – SuperKamiokande : 11000 PMT, 50000 tons of water

SuperK can only observe the ⁸B flux (> 5 MeV)

 $\frac{Data}{SSM} = 0.451 \pm 0.017$

Confirmation that it wasn't just Homestake

SuperK only sensitive to v_e

Experimental summary

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Atmospheric Neutrinos

Neutrinos produced from cosmic rays interactions in the atmosphere

Flux modelled using
Measured primary flux
Cross sections from accelerators
Includes
geomagnetic effects
Absolute flux only known to 20-30%

$$\delta(R) = \delta\left(\frac{\nu_{\mu} + \overline{\nu_{\mu}}}{\nu_{e} + \overline{\nu_{e}}}\right) \sim 5\%$$

Atmospheric Neutrino Problem

Study of atmospheric neutrinos started in the early 1980's

Background for proton decay experiments.

"Today's background is tomorrow's signal"

Neutrino Flavour Oscillations

Mixing

CKM
Mechanism
$$\begin{pmatrix} u \\ d' \end{pmatrix}_{L}, \begin{pmatrix} c \\ s' \end{pmatrix}_{L}, \quad d' = d\cos\theta_{c} + s\sin\theta_{c}$$

 $s' = -d\sin\theta_{c} + s\cos\theta_{c}$

In the quark sector, the flavour eigenstates (those states which couple to the W/Z) are not identical to the mass eigenstates (those states which are solutions of the Dirac equation)

Weak
states
$$\rightarrow \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} 0.97 & 0.23 & 0.003 \\ 0.23 & 0.97 & 0.04 \\ 0.008 & 0.04 & 0.99 \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \rightarrow Mass$$
states

Mixing

CKM
Mechanism
$$\begin{pmatrix} u \\ d' \end{pmatrix}_{L}, \begin{pmatrix} c \\ s' \end{pmatrix}_{L}, \quad d' = d\cos\theta_{c} + s\sin\theta_{c}$$

 $s' = -d\sin\theta_{c} + s\cos\theta_{c}$

In the quark sector, the flavour eigenstates (those states which couple to the W/Z) are not identical to the mass eigenstates (those states which are solutions of the Dirac equation)

Neutrino Oscillations

$$Amp(\nu_{\alpha} \rightarrow \nu_{\beta}) \propto \sum_{i} U_{\alpha i}^{*} \operatorname{Prop}(\nu_{i}) U_{\beta i}$$

If we can't resolve the individual mass states then the amplitude involves a <u>coherent</u> superposition of v_i states

$$Prob(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E}) + 2\sum_{i>j} \Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin(\Delta m_{ij}^{2}\frac{L}{2E})$$

•If $\Delta m_{ii}^2 = 0$ then neutrinos don't oscillate

•Oscillation depends on $|\Delta m^2|$ - absolute masses, or mass patterns cannot be determined.

If there is no mixing (If $U_{\alpha i} = 0$) neutrinos don't oscillate

•One can detect flavour change in 2 ways : start with v_{α} and look for v_{β} (appearance) or start with v_{α} and see if any disappears (disappearance)

•Flavour change oscillates with L/E. L and E are chosen by the experimenter to maximise sensitivity to a given Δm^2

 Flavour change doesn't alter total neutrino flux – it just redistributes it amongst different flavours (unitarity)

Two flavour oscillations

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = U \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} \Rightarrow U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j} \sin^{2}(\Delta m_{ij}^{2} \frac{L}{4E})$$

 $P(v_{\alpha} \rightarrow v_{\beta})$: Appearance Probability $P(v_{\alpha} \rightarrow v_{\alpha})$: Survival Probability

$$P(v_{\alpha} \rightarrow v_{\beta}) = -4(U_{\alpha 1}U_{\beta 1}U_{\alpha 2}U_{\beta 2})\sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$

$$.=\sin^{2}(2\theta)\sin^{2}(1.27\Delta m^{2}(eV^{2})\frac{L(km)}{E(GeV)})$$

(changing to useful units)

$$P(\nu_{\alpha}(0) \to \nu_{\alpha}(x)) = 1 - \sin^{2}(2\theta) \sin^{2}(1.27\Delta m^{2} \frac{(L/km)}{(E/GeV)})$$

Sensitivity

	E_{ν} (MeV)	L (m)	$\Delta m^2 (eV^2)$
Supernovae	<100	>1019	10 ⁻¹⁹ - 10 ⁻²⁰
Solar	<14	1011	10-10
Atmospheric	>100	104 -107	10-4
Reactor	<10	<106	10-5
Accelerator with short baseline	>100	10 ³	10-1
Accelerator with long baseline	>100	<106	10-3

Oscillations in Matter (MSW Effect)

Electrons exist in standard matter – μ/τ do not. Electron neutrinos travelling in matter can experience an extra charged current interaction that other flavours cannot.

Oscillation probabilites are now function of θ_{M}^{2} , Δm_{M}^{2}

$$\Delta m_M^2 = \Delta m_V^2 \sqrt{\sin^2(2\theta) + (\cos 2\theta - \zeta)^2}$$
$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - \zeta)^2}$$

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m_V^2}$$

Implications

$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - \zeta)^2} \qquad \zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m_{Vac}^2}$$

•If $\Delta m^2_{Vac} = 0$ or matter is very dense, $\zeta = \infty$ and $\theta_m = 0$ •Similarly, if $\theta = 0$, then $\theta_M = 0$

If there is no matter, then $\zeta=0$ and we have vacuum mixing

•At a particular electron density, dependent on Δm^2 ,

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m^2} = \cos 2\theta \implies \sin^2 2\theta_M = 1$$

Even if the vacuum mixing angle is tiny, there is a density for which the matter mixing is large

Mass heirarchy

$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - \zeta)^2} \qquad \zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m_V^2}$$

If mass of $v_1 < mass of v_2$, $\Delta m^2 = m_1^2 - m_2^2 < 0$

$$\zeta = -\frac{2\sqrt{2}G_F N_e E}{\left|\Delta m^2\right|} \rightarrow \sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta + \zeta)^2}$$

Positive definite – no resonance

If mass of $v_1 > mass of v_2, \Delta m^2 = m_1^2 - m_2^2 > 0$

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\left|\Delta m^2\right|} \rightarrow \sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - \zeta)^2}$$

Three Flavour Oscillation

The three flavour case is more complicated, but no different

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = U \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix} \Leftrightarrow U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$Prob(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E}) + 2\sum_{i>j} \Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin(\Delta m_{ij}^{2}\frac{L}{2E})$$

Oscillation parameters

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

$$Prob(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E}) + 2\sum_{i>j}\Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin(\Delta m_{ij}^{2}\frac{L}{2E})$$

Oscillation parameters

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

Three angles

$$Prob\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin^{2}\left(\Delta m_{ij}^{2}\frac{L}{4E}\right) + 2\sum_{i>j}\Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin\left(\Delta m_{ij}^{2}\frac{L}{2E}\right)$$

Oscillation parameters

$$U = \begin{pmatrix} U_{el} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{14}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

CP violating phase

$$Prob\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{i j}^{2}\frac{L}{4E}\right) + 2\sum_{i>j} \Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{i j}^{2}\frac{L}{2E}\right)$$

Explaining the solar data

Testing oscillation hypothesis

Solar neutrino problem

 n_{e} from sun would change to n_{μ} or n_{τ} . However these have too little energy to interact via the charged current, and all the detectors are only sensitive to charge current interactions.

Non-n component would effectively disappear, reducing the apparent n flux.

Proof : Neutral current event rate shouldn't change.

Sudbury Neutrino Observatory

1000 tonnes of $D_{2}0$

6500 tons of H₂0

Viewed by 10,000 PMTS

In a salt mine 2km underground in Sudbury, Canada

SNO

$$\begin{array}{cc} & & \\ \hline & & \\ &$$

-Q = 1.445 MeV

- good measurement of v_e energy spectrum
- some directional info $\propto (1 1/3 \cos \theta)$

 $-v_only$

NC
$$\nu_x + d \rightarrow p + n + \nu_x$$

-Q = 2.22 MeV

- measures total ⁸B v flux from the Sun

- equal cross section for all v types

n captures on deuteron ${}^{2}H(n, \gamma){}^{3}H$ Observe 6.25 MeV γ $v_{a} + v_{\mu} + v_{r}$

Ve

$$\underbrace{\mathsf{ES}}_{v_x} + \mathrm{e}^- \to v_x + \mathrm{e}^-$$

- low statistics
- mainly sensitive to v_e , some v_{μ} and v_{τ}
- strong directional sensitivity

Produces Cherenkov Light Cone in D₂O

$$v_{e}$$
+0.15*(v_{μ} + v_{τ})

SNO Results

5.3 σ appearance of $v_{_{\mu\tau}}$ in a $v_{_{e}}$ beam Roughly 70% of $v_{_{\mu}}$ oscillates away

Adding SNO to the mix

The data shows that the solar oscillations come mostly from the MSW effect.

The neutrinos have oscillated before they get to the solar surface.

KamLAND

KamLAND uses the entire Japanese nuclear power industry as a long-baseline source

KamLAND @ Kamioka

750

1000

KamLAND

An oscillation!

Mixing matrix

$$U = \begin{pmatrix} U_{el} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

Solar sector
$$\theta_{e\mu} = 32.5^{\circ} \pm 2.4^{\circ} \\ \Delta m_{12}^{2} = +7.9 \times 10^{-5} eV^{2}$$

Explaining the atmospheric data

Cosmic Labs

Survival Probability

Super-Kamiokande

SuperK has both energy and direction information

Sees disappearance of v_{μ} but NOT into $v_{e}^{}$ – almost total $v_{\mu}^{} \rightarrow v_{\tau}^{}$ oscillations?

MINOS verification

 $\frac{\# events observed}{\# events expected} = P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2(2\theta) \sin^2(\Delta m^2 L 4 E)$

$$\Delta m^2 = 2.35^{+0.11}_{-0.08} \times 10^{-3} eV^2$$

sin²(20)>0.91(@90 CL)

Mixing matrix

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

Solar sector : $n_{\mu} \rightarrow n_{e}$
 $\theta_{e\mu} = 32.5^{\circ} \pm 2.4^{\circ}$
 $\Delta m_{12}^{2} = +7.9 \times 10^{-5} eV^{2}$
$$Atmospheric sector$$
 $n_{\mu} \rightarrow n_{\tau}$
 $\theta_{\mu\tau} = 45.0^{\circ} \pm 2.4^{\circ}$
 $\Delta m_{23}^{2} = |2.35 \times 10^{-3}| eV^{2}$

Mixing matrix

$$U = \begin{pmatrix} U_{el} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

And this sector?

Probabilities

For Atmospheric L/E and $\delta = 0$

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \cos^{4} \theta_{13} \sin^{2} 2 \theta_{23} \sin^{2} (1.27 \Delta m_{23}^{2} \frac{L}{E})$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2 \theta_{13} \sin^{2} \theta_{23} \sin^{2} (1.27 \Delta m_{23}^{2} \frac{L}{E})$$

$$P(\nu_{e} \rightarrow \nu_{\tau}) = \sin^{2} 2 \theta_{13} \cos^{2} \theta_{23} \sin^{2} (1.27 \Delta m_{23}^{2} \frac{L}{E})$$

For Solar L/E and δ = 0

$$P(v_e \to v_{\mu,\tau}) = \cos^2 \theta_{13} \sin^2 2 \theta_{12} \sin^2 (1.27 \Delta m_{12}^2 \frac{L}{E}) + 0.5 \sin^2 \theta_{13}$$

If
$$\theta_{13} = 0$$

For Atmospheric L/E and $\delta = 0$

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^{2} 2 \theta_{23} \sin^{2} (1.27\Delta m_{23}^{2} \frac{L}{E})$$
$$P(\nu_{\mu} \rightarrow \nu_{e}) = P(\nu_{e} \rightarrow \nu_{\tau}) = 0$$

For Solar L/E and $\delta = 0$

$$P(v_e \rightarrow v_{\mu,\tau}) = \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 \frac{L}{E})$$

 $\boldsymbol{\theta}_{_{13}}$ couples the atmospheric and solar sectors. So what is it?

How do we get to θ_{13} ?

 $\nu_{_{\rm II}} \rightarrow \nu_{_{\rm O}}$ oscillations with atmospheric L/E

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2 \theta_{13} \sin^{2} \theta_{23} \sin^{2} (1.27 \Delta m_{23}^{2} \frac{L}{E})$$

 $\nu_{e} \rightarrow \nu_{x}$ disappearance oscillations with atmospheric L/E

$$P(v_e \rightarrow v_x) = \sin^2(2\theta_{13})\sin^2(1.27\Delta m_{23}^2\frac{L}{E})$$

 $\overline{\mathbf{v}_{e}} \rightarrow \overline{\mathbf{v}_{x}}$ disappearance oscillations with atmospheric L/E $P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{x}) \stackrel{\hat{C}\hat{P}\hat{T}}{=} P(\overline{\mathbf{v}_{e}} \rightarrow \overline{\mathbf{v}_{x}})$

CHOOZ Experiment Ardennes, France

Baseline ~ 1 km Δm^2 ~ 2 x 10⁻³ eV²

$$R = \frac{N_{observed}}{N_{expected}} = 1.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (stat) \pm 2.7 \% (sys)$$

$$\stackrel{9}{\longrightarrow} 0.01 \pm 2.8 \% (sys)$$

This is what we know...

This is what we want to know...

Better estimates of the oscillation parameters using accelerators

Is the atmospheric mixing angle maximal?

The next 20 years

Measurement	Method	Experiments	Why?	When
$ \Delta m_{23}^{2} $	$v_{\mu}^{}$ Disapp.	MINOS	More precise Estimates	Now
θ_{23} θ_{13}	$v_{\mu}^{}$ Disapp. $v_{e}^{}$ Appear.	T2K, NovA T2K, NovA	Is it maximal? Equal to 0? Can't measure δ_{CP} if it is	2012 2012
	Anti-v _e Disapp.	Reactor		2012
Sgn(Δm_{23}^{2}) δ_{CP}	v_e / anti- v_e	T2KK, neutrino Factory, ???	Unification, GUT Lepton asymmetry	2025?

A spanner in the works

The LSND experiment was the first accelerator experiment to report a positive appearance signal

LSND Result (1997)

87.9 ± 22.4 ± 6 excess events from $\overline{n}_{\mu} \rightarrow \overline{n}_{\rho}$

 3.3σ evidence for oscillations

LSND Result

 $87.9 \pm 22.4 \pm 6$ excess events

MiniBooNE

Currently running since 2002 at Fermilab

•Average neutrino energy $\approx 1 \text{ GeV}$

L/E the same as LSND

Same technology as LSND

•Different energy = different event types = different systematics

```
• Looks for \nu_{_{\mu}} \! \to \! \nu_{_{e}} oscillations \begin{array}{c} = \nu_{_{e}} \! \to \! \nu_{_{\mu}} \end{array} if CPT symmetry holds
```


But there is a possible signal for antineutrino running

But only about 1.3 σ significance

Very small excess below 475 MeV

Summary

• LSND reports a 3 σ excess of antineutrino events probing a $\Delta m^2 \approx 1.0 \text{ eV}^2$

• miniBooNE reports a 1.5 σ excess of antineutrino events probing a $\Delta m^2 \approx 1.0 \text{ eV}^2$

• miniBooNE reports a 3 σ excess of neutrino events probing a $\Delta m^2 \approx 0.3 \text{ eV}^2$

- Antineutrino result suggests the existence of at least one sterile (remember the Z⁰ result - we know that there are 3 active light neutrinos) neutrino taking part in the oscillation process
- Neutrino result can only be modeled (badly) by an extra two sterile neutrinos plus significant CP violation

Decaying sterile neutrinos?

CPT Violation?

Lorentz violation?

Extra dimensions?

No bleedin' idea

Wait for more data

θ_{13} determines the next 15-30 years or so of the field

How large is it?

Fogli et al arXiv:0905.3549

 $\sin^{2}(\theta_{13}) = 0.02 \pm 0.01 \Rightarrow \theta_{13} = 8^{\circ} \pm 3^{\circ}$ CHOOZ limit : $\theta_{13} < 10^{\circ}$

Real or accidental? Need more data...

How do we get to θ_{13} ?

 $\nu_{_{II}} \rightarrow \nu_{_{
m O}}$ oscillations with atmospheric L/E

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2 \theta_{13} \sin^{2} \theta_{23} \sin^{2} (1.27\Delta m_{23}^{2} \frac{L}{E})$$

 $\nu_{_{e}} \rightarrow \nu_{_{x}}$ disappearance oscillations with atmospheric L/E

$$P(v_e \rightarrow v_x) = \sin^2(2\theta_{13}) \sin^2(1.27\Delta m_{23}^2 \frac{L}{E})$$

 $\overline{\mathbf{v}_{e}} \rightarrow \overline{\mathbf{v}_{x}}$ disappearance oscillations with atmospheric L/E $P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{x}) \stackrel{\hat{C}\hat{P}\hat{T}}{=} P(\overline{\mathbf{v}_{e}} \rightarrow \overline{\mathbf{v}_{x}})$

The experiment

How do we get to θ_{13} ?

 $\nu_{_{\mu}} \rightarrow \nu_{_{e}}$ oscillations with atmospheric L/E

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} (1.27\Delta m_{23}^{2} \frac{L}{E})$$

 $v_{e} \rightarrow v_{x}$ disappearance oscillations with atmospheric L/E

$$P(v_e \rightarrow v_x) = \sin^2(2\theta_{13}) \sin^2(1.27\Delta m_{23}^2 \frac{L}{E})$$

 $\overline{\mathbf{v}_{e}} \rightarrow \overline{\mathbf{v}_{x}}$ disappearance oscillations with atmospheric L/E $P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{x}) \stackrel{\hat{C}\hat{P}\hat{T}}{=} P(\overline{\mathbf{v}_{e}} \rightarrow \overline{\mathbf{v}_{x}})$

The T2K (Tokai-2-Kamioka) Experiment

~500 members, 61 Institutes, 12 countries

Canada

TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany U. Aachen

Italy INFN, U. Roma INFN, U. Napoli INFN, U. Padova INFN, U. Bari

Japan

ICRR Kamioka ICRR RCCN KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U. U. Tokyo

Poland

A. Soltan, Warsaw
H.Niewodniczanski, Cracow
T. U. Warsaw
U. Silesia, Katowice
U. Warsaw
U. Wroclaw

Russia

INR

S. Korea

N. U. Chonnam U. Dongshin U. Sejong N. U. Seoul U. Sungkyunkwan

Spain IFIC, Valencia U. A. Barcelona

Switzerland

U. Bern U. Geneva ETH Zurich

United Kingdom Imperial C. London Queen Mary U. L. Lancaster U. Liverpool U. Oxford U. Sheffield U. Warwick U.

STFC/RAL STFC/Daresbury

USA

Boston U. B.N.L. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington

What can T2K do?

n_e Appearance

			МС		Acc. BG (12µs window)
T2K-SK events		Data	No oscillation	With oscillation and θ_{13} =0	
	Fully-Contained	33	54.5	24.6	0.0094
	Fiducial Volume, E _{vis} > 30MeV	23	36.8	16.7	0.0011
	Single-ring e-like P _e >100MeV/c	2	1.5±0.7	1.3±0.6	-

 $\sin^2(2\theta_{13}) < 0.5 @ 90 CL$

$$\Delta m_{23}^2 = 2.4 \times 10^{-3} eV^2$$

We have 4 times the amount of data released in the can which should push the limit down to about 0.1.

Expect release of this data by summer.

Earthquake

- Subsidence at the LINAC building
- But the near detector seems to be superficially OK

•The accelerator magnets may need realignment but the ring seems to be also OK

 Japanese build for earthquakes

Ash River

Fermilab

United States

© 2011 Google © 2011 Europa Technologies Image USDA Farm Service Agency © 2011 INEGI

45°38'45.26" N 91°08'38.26" W elev 982 ft

Eye alt 1238.99 mi

Only NOvA can measure matter effect to get the mass heirarchy. Probably need a combination of NOvA, T2K and the reactors to fully disentangle the parameter space.

Summary - Near Future

- If $\theta_{_{13}}$ is large (> 6°) we should have an indication and
- possibly a measurement by the end of this year
- If θ_{13} is > 2° we should know in 3 years

 \bullet If $\theta_{_{13}}$ is less than 2° we will have to think about what to do

Summary - Near Future

- If $\theta_{_{13}}$ is large (> 6°) we should have an indication and
- possibly a measurement by the end of this year
- If θ_{13} is > 2° we should know in 3 years

 \bullet If $\theta_{_{13}}$ is less than 2° we will have to think about what to do

CERN Council Strategy Document dixit, July 2006 be in position to define the optimal neutrino program in around 2012

Including Neutrino Factory International Design Study

SuperBeams

- Conventional neutrino beam with a MW proton beam (T2K has the most intense beam - 750 kW)
- Challenge to proton source (so-called proton driver)
- Challenge to the targetry MW pulse would vaporise the target

CP Violation redux

Could study CPV using a superbeam and an experiment sensitive to both maxima using only a neutrino beam.

Future VLBL Experiments

High power beam and very large detectors at the second maxi

	current	plan	under discussion	
	~0.05MW	0.75 MW	4MW	
J-PARC/KEK	Τ2Κ (θ ₁₃)		JPARC-to-somewhere (CPV, hierarchy, θ_{13})	
	22.5ktor	n W.C. (SK)	540kton W.C. or 100kton LArTPC	
	~0.3MW	0.7 MW	~2MW (Project-X)	
FNAL	NuMI/MINOS (v _μ disapp.)	NOvA (θ ₁₃ , hierarchy)	FNAL-to-DUSEL (CPV, hierarchy, θ_{13})	
		14kton Liquid Scint.	~300kton W.C. and/or ~50kton LArTPC	
	~0.3MW	0.4MW	2MW(HP-PS2) ~ 4MW(HP-SPL)	
CERN	CNGS/OPERA (v _τ app.)		130~2300km site (CPV, hierarchy, θ_{13})	
			~500kton W.C. or ~100kton LArTPC or ~50kton LiquidScint.	

OA Beam L = 660 km 500 MeV @ 2^{nd} Max

•v only run

•Can detect CP Violation at 3 sigma significance if $sin^{2}(2\theta_{13}) > 0.02$

SuperBeam Summary

- Future Superbeam facilities will look for CPV and mass heirarchy measurements using Very Long Baseline experiments
- Could be built now upgrade of the existing beams (J-PARC, NUMI) and new main detector
- Competitive CPV discovery potential down to $\theta_{13} > 2$ degrees
- a lot of R&D already done. Detector is on the cutting edge, but could be build soon with more work.
- Cost on the order of £4 million.
- What we'll go for if θ_{13} is large.

Neutrino Factories

In a conventional beam the neutrinos from pion decay In a neutrino factory the neutrinos come from muon decay

$$\mu^{-} \rightarrow \nu_{\mu} \overline{\nu_{e}} e^{-}$$
$$\mu^{+} \rightarrow \overline{\nu_{\mu}} \nu_{e} e^{+}$$

Beam is very clean 50% n_{μ} , n_{e} Extremely high flux Precise and predictable energy spectrum

Neutrino Factory Oscillation

Golden channel

•No background from other neutrino flavours

 But this requires the charge of the final state lepton to be known

•Need to magnetise the far detector

Neutrino Factory outperforms other options:

- Larger discovery reach
- Competitors (large θ₁₃):
 - Beta beam:

•

- But requires large Ne flux, high-γ, and/or 4-ions
- Low energy Neutrino Factory:
 - See later, but, reduced redundancy/flexibility

EUROnu: 1005.3146v1

Targetry – MERIT Experiment

Targetry – MERIT Experiment

Other ideas out there : supercooled tungsten ring tungsten powder jet

Muon Cooling

MICE

Muon Ionisation Cooling Experiment @ Rutherford Labs in Ox

Detectors

Physics sensitivity prefers two 50 kton (mass of the Titanic) detectors around 4000 km from the beam, and around 7500 km from the beam

Arlit:	3636
Baskan:	3366
Boulby:	229
Carlsbad:	7293
Essen:	565
Gaspe:	4264
GranSasso:	1514
Homestake:	6655
Kamioka:	8621
KingsMountain:	6095
Lucenac:	1002
Norsaq:	2788
Soudan:	5925
Sudbury:	5548

Neutrino Factory Summary

- Best discovery potential and sensitivity from all options
- Couldn't be built now. If we decided to build one it, and it's detectors, wouldn't be ready until 2025 or so.
- Only choice if $\theta_{_{13}} < 1^{\circ}$
- Design study underway and the problems are being
 addressed by demonstrator experiments
- Cost on the order of £3 billion (LHC cost £3 billion; 2008 bank bailout was £ 50 billion, although that wasn't cash in hand)
- Can we do this now? No.
- Wait for next θ_{13} measurement

Concluding Remarks

We have gone through a lot but I can easily fill another 15 hours of lectures.

The neutrino is : light, neutral, left-handed (chiral) and almost left-handed (helicity). It is generated purely in weak interactions (which is why it is chiral). It is generated by many sources : the Big Bang, astrophysical events, supernova, the sun, cosmic rays, radioactive decays, and countless other sources. We can generate them in reactors and accelerators. Their cross sections are tiny and we need big detectors to look at them. They mix and oscillate.

They may be the reason that we are here at all.

But...what is their mass? Why is it so small? Why are the mixing parameters so odd? Still lots of questions remain. We have a 20 year plan for trying to deal with them.

The first thing we need to do is determine the size of θ_{13} .

In words

Because v_e can suffer an extra interaction it picks up an effective mass that is slightly different from its vacuum mass. From another point of view, the extra interaction gives the v_e an apparent inertia with respect to the other neutrinos.

Think of this in much the same way as phonons in crystals which have "effective" masses arising from interactions with the crystal lattice

Matter presents an effective refractive index for $\boldsymbol{v}_{\text{p}}$

This inertia is felt by some linear combination of the mass eigenstates, and hence passed to the other flavours. Oscillations still happen, but now with a different effective mass splitting